
Towards a formal type system for ODMG OQLG.M. Bierman A. TrigoniUniversity of Cambridge Computer Laboratory�September, 2000
AbstractIn this paper we consider in detail the type system of the object-oriented databasequery language, OQL, as de�ned by the ODMG [6]. Our main technical contributionis a formal de�nition of the typing relation for OQL|surprisingly we could not �nd acomplete de�nition in the literature. We have also uncovered a number of inaccuraciesin the original ODMG proposal, and other work.

�Authors' address: University of Cambridge Computer Laboratory, New Museums Site, Cambridge,CB2 3QG. UK. Email: fgmb; at263g@cl.cam.ac.uk

1 Introduction \OQL is a functional language where operators can freely becomposed, as long as the operands respect the type system."ODMG [6, Page 89].Object database management systems (ODBMS) provide an integration of (object-oriented) programming languages and database systems. By the early 1990s a numberof proposals and systems were available, all with di�erent underlying object models andsystem-speci�c features. Rather than continuing to work in di�erent directions, the majorcompanies and organisations in the ODBMS industry joined forces to form the ObjectDatabase Management Group (ODMG). The aim of the ODMG is to provide a de factostandard for ODBMS. To this aim they produced a book: the Object Data Standard (here-after referred to simply as the Standard). The Standard consists of four major components:an object model; an object speci�cation language (ODL); an object query language (OQL);and several programming language bindings (currently for Java, C++ and Smalltalk).In this paper we will focus mainly on OQL. In particular we aim to make good theclaim in the Standard of a well-de�ned type system for OQL. In contrast to the Stan-dard's rather informal discussion, we present the type system formally using techniquesfamiliar in modern programming language design [7, 12, 4]. Our paper presents a precise,mathematical description of the OQL type system which should be useful to both currentimplementors (we found it straightforward to implement an OQL type inference enginegiven our formal description), and for future extensions to the Standard.Our paper is organised as follows. In Section 2 we identify a core OQL|a fragmentof the language de�ned in the Standard, but which has the same expressive power. InSection 3 we de�ne the notion of a type for OQL. In Section 4 we formalise the notion ofsubtyping inherent in the object model and show how schema de�nitions yield a subtypingrelation. In Section 5 we give formal type rules for forming judgements about the type ofOQL programs, de�nitions and queries. In Section 6 we compare our work to other relatedwork. We conclude, in Section 7, with details of work in progress.2 Core OQLOQL is the object query language proposed by the ODMG to support their object datamodel. In this paper we address primarily the type system of OQL. Despite their aims ofsimplicity, the designers of OQL have, in many cases, provided several ways of writing thesame query. This has been motivated by the desire of compatibility with SQL 92 and otherquery languages. For the purposes of this paper, however, we shall study a core OQL|afragment of the language in the Standard, but which has the same expressive power. (Itis easy to see how the full OQL can be translated into our core OQL.)In the rest of this section we shall de�ne the core OQL. First we shall assume a set ofbinary operators and a set of unary operators as follows.1

binop = fand; or; intersect; union; except;=; ! =; <;>;<=; >=;+;�; �; =; jj; modgunop = ffirst; last; max; min; avg; sum; count; distinct; listtoset;element; flatten; abs; not;�gThe grammar for (untyped) OQL queries is then as follows.q ::= b j f j i j c j sj xj bag(q; : : : ; q) j set(q; : : : ; q) j list(q; : : : ; q) j array(q; : : : ; q)j dictionary((q; q); : : : ; (q; q)) j struct(l: q; : : : ; l: q)j C(l: q; : : : ; l: q) j q:l j (C)qj q[q] j q in q j q() j q(q; : : : ; q)j forall x in q: q j exists x in q: qj q binop q j unop(q)j select [distinct] qfrom (q as x; � � � ; q as x)where q[group by (l: q; � � � ; l: q)][having q][order by (q ascjdesc; � � � ; q ascjdesc)]where b; f; i; c; s range over booleans, oats, integers, characters and strings respectively, xis taken from a countable set of identi�ers, l is taken from a countable set of labels, andC ranges over a countable set of class names.In OQL we are able to make named de�nitions. A de�nition is given by the followinggrammar. d ::= define x as qj define x(x:�; : : : ; x:�) as qAn OQL program then consists of a number (maybe zero) of named de�nitions followedby a query.3 TypesOQL, or more generally the underlying object model, has a quite complex notion of a type.Obviously our core OQL has a slightly simpler language of types|for example, we do not2

consider the types de�ned in the Standard [x2.3.7] for dates and time-zones. However, evenwith our core system we have a number of primitive types, n-ary function types, multiple(arbitrarily nested) collection types, structures and classes (the underlying object model isclass-based).More formally, the types for OQL are given by the following grammar.� ::= int j float j bool j char j string j voidj � � � � � � � ! �j bag(�) j set(�) j list(�) j array(�)j dictionary(�; �) j struct(l:�; � � � ; l:�)j CWe use the `!' symbol to denote a function type. For example, int ! float is thetype of a function which expects an argument value of type int and returns a value oftype float. Function types arise when de�ning methods which take parameters.The other types are self-explanatory. For example, the type bag(bool) is the type ofa bag of booleans, and the type set(list(string)) a set of lists of strings. The typedictionary(string; set(int)) is the type of a dictionary with keys of type string andassociated values of type set(int). The type struct(a: int; b: struct(c: float; d: char)),is the type of a structure with two �elds: the �rst has label a with associated integer values,the second �eld has label b with an associated structure value, which itself has two �elds(c and d).We �nd it useful to adopt the following conventions. We will write Col(�), to denotean arbitrary collection type (array, bag, dictionary, list or set), with elements of type �.The types char, int, real and string are said to be orderable types. We will use thesymbol O to range over the subset of types that are orderable.4 ODL Schema4.1 IntroductionThe Object De�nition Language (ODL) is a language to de�ne the speci�cation of objecttypes that conform to the ODMG object model. In more traditional database parlance,ODL is the data de�nition language for ODMG-compliant ODBMSs. We assume that thereader is familiar with ODL (see, e.g. [11]).To determine the type of an OQL program we obviously need to use certain typeinformation taken from the ODL schema. Primarily this includes the extents, attributenames and their types, the method names and their types, and the relationship names andtheir types. (The information concerning the type hierarchies is discussed in Section 4.2.)We shall assume that from a given schema we have constructed a schema typingenvironment, which contains the important typing information from the class de�nitions.3

More precisely, a schema typing environment, written S, is a pair hC;Ei, where C is apartial function mapping class names to their type information, and E is a set of extentnames along with their corresponding class identi�ers. More formallyS = hC;EiC : classId* Att �Rel�MethE : }(Id� Type) Att : }(Id� Type)Rel : }(Id� Type) Meth : }(Id� Type)For example, consider the following schema.class C extends D(extent Cs){ attribute int a;float m (in int x)};This yields the following schema typing environment.S = hC;EiC = fC 7! fa: intg � ; � fm: int! floatggE = fCs: CgIn following sections we will �nd it useful to employ some shorthand. Given a schematyping environment, S, and a class C, the collection of its attributes is denoted by A(S; C),the collection of its relationships is denoted by R(S; C), and the collection of its methods isdenoted by M(S; C). The union of these three sets is denoted by I(S; C). Given a schematyping environment, S, the collection of extents is denoted by E(S).4.2 SubtypingThe ODL class de�nitions also contain the details of the type hierarchies, that is, thesub-classing information. We can take a collection of class de�nitions and build a relation,vC , where C vC D when class C extends class D (as in the example above). From thissub-class relation we build a general subtype relation between types.1 The idea is that �is a subtype of � (conversely � is a supertype of �) if a value of type � can be used in anycontext in which a value of type � is expected. This is written � � � .The rules for building a subtype relation from a sub-class relation are as follows.
1In Java subtyping is often referred to as widening.4

TopC � ObjectC vC C0 Sub-ClassC � C0 �0 � � � � � 0 Sub-Fun� ! � � �0 ! � 0�1 � �1 � � � �k � �k Sub-Tuple�1 � � � � � �k � �1 � � � � � �k � � � Sub-CollCol(�) � Col(�)�1 � �1 � � � �k � �k Sub-Structstruct(l1:�1; : : : ; lk:�k; : : : ; lk+n:�k+n) � struct(l1: �1; : : : ; lk: �k)Sub-Re� � � � � �0 �0 � �00 Sub-Trans� � �00These rules are relatively straightforward, but it is perhaps worth explaining in somedetail the Sub-Fun rule. Another way of thinking about subtyping is to treat the relation� � � as an assertion of a well-behaved `coercion' function from values of type � to valuesof type � [3]. Let us assume that � � � 0, i.e. we have a coercion function from values oftype � to values of type � 0. We can see that � ! � � � ! � 0, i.e. we can coerce a functionof type � ! � to be one of type � ! � 0 by applying the function to a given value of type� and then coercing the result (which will be of type �) to a value of type � 0.The coercion of the domain type is more tricky. If we assume that �0 � �, then we canshow that � ! � � �0 ! � 0, which is perhaps the reverse of what one might �rst expect.We can coerce a function of type � ! � to be one of type �0 ! � by �rst coercing a givenvalue of type �0 to be one of type �, and then applying the function to produce a value oftype � .In later sections we will use the notion of a least upper bound of two types, as describedinformally in the Standard [x4.10].2 This notion can be de�ned formally as follows.De�nition 1 Given types � and �0, their least upper bound (lub) is a type � such that1. � � � and �0 � � , and2. 8� 0: � � � 0 and �0 � � 0 then � � � 0.2It should be noted that given any pair of types, it is not necessarily the case that they have a leastupper bound, but rather several distinct upper bounds. Casting may be required, as is the case for Java.
5

5 The type system of OQLThis section contains the main technical contribution of our paper. In it we develop thetype system of OQL. In other words we give formal rules for determining the type of a givenOQL program. As this formal approach may not be that widely known in the databasecommunity, we give a brief introduction in Appendix A. (A more complete introduction,albeit one biased to programming languages, can be found in [4].)5.1 Typing judgementsLet us now consider forming typing judgements for OQL programs, de�nitions and queries.We shall give three type systems for these three syntactic categories (and we shall usedi�erent symbols for the turnstile for clarity).First let us consider OQL programs. As discussed in x4, to type an OQL program,we need to use typing information extracted from the class de�nitions. In addition theStandard [x4.10.2] states that query de�nitions are persistent. Thus we need to know thetype information from any previous query de�nitions. Also the Standard [x2.10] allowsnamed objects to be inserted into the database from a language binding, and moreoverto be referenced directly in OQL by their names. Hence we need the type informationconcerning these named objects.Thus rather than have just the one typing environment, we �nd it convenient to keepthe three typing environments (for the schema, de�nitions and named objects) separate.A program typing judgement for a given OQL program, p, is writtenS;D;N I p:�;D0:where S is a schema typing environment, D is a de�nition typing environment and N isa named object typing environment. As the program p may extend the de�nition typingenvironment D, the program typing judgement has also as a conclusion D0, which is theresulting de�nition typing environment.A de�nition typing judgement for an OQL de�nition, d is writtenS;D;N � d) D0where S, D and N are as before. A query typing judgement for an OQL query q, iswritten S;D;N ;Q ` q:�where S, D and N are as before. Q contains the types of any free identi�ers in q, and isknown as the query typing environment.In the following subsections we give complete type systems for OQL programs, de�ni-tions and queries. 6

5.2 Typing OQL programsThe rules for forming program typing judgements are as follows.S;D;N � d) D0 S;D0;N ; ; ` q:� Prog-DefS;D;N I d q:�;D0 S;D;N ; ; ` q:� Prog-QueryS;D;N I q:�;DReading the �rst rule bottom-up, it states that to type the program d q, we �rst typethe de�nition d, to get a updated de�nition environment, D0, which we use to type q, theresulting type of which is the overall type of the program. (The second rule is just a nullaryversion where there are no de�nitions.)The reader will also note that in typing the query q in both rules, we have insisted thatthe query environment is empty. In other words a top-level query may not have any freequery identi�ers.35.3 Typing OQL de�nitionsThe three rules for forming de�nition typing judgements are as follows.S;D;N ; ; ` q: � Def-NullaryS;D;N � define f as q) D; f: �S;D;N ; x1:�1; : : : ; xn:�n ` q: � DefS;D;N� define f(x1:�1; : : : ; xn:�n) as q) D; f:�1 � � � � � �n ! �S;D;N � d1) D0 S;D0;N � d2) D00 Def-CompS;D;N � d1; d2) D00Consider the rule Def|reading the rule top-down it states that if a query q has type� and free query identi�ers x1; : : : ; xn of types �1; : : : ; �n respectively, then the type of thede�nition f is the function type �1 � � � � � �n ! � .It is important to note that there are three side conditions to the rules Def andDef-Nullary. Firstly, we are not permitted to overload de�nition identi�ers (the Standard[x4.10.2]).3Rather unfortunately the Standard [x4.10.1] has the erroneous statement that a query is an \expressionwith no bound variables". 7

The second side condition is the de�nition identi�er can not be an existing class name.(Algebraically 8�:(f : �) 62 dom(S).) The third side condition is that the de�nition identi�ercan not coincide with an existing named object. (Algebraically 8�:(f : �) 62 N .)The rule Def-comp handles the case of multiple de�nitions, which are typed in the orderthey are given.5.4 Typing OQL queriesWe now consider the rules for deriving query typing judgements. First are the axioms forliterals. S;D;N ;Q ` b: bool S;D;N ;Q ` i : int S;D;N ;Q ` f : floatS;D;N ;Q ` c: char S;D;N ;Q ` s: stringNext are the axioms for identi�ers. We have several axioms depending on what sortof identi�er we are dealing with: it is either an extent de�ned in a schema, a de�nition, aobject name or a query identi�er.e: C 2 E(S) Extent-IdS;D;N ;Q ` e: set(C) Def-IdS;D; d:�;N ;Q ` d:�Named-Object-IdS;D;N ; n:�;Q ` n:� Query-IdS;D;N ;Q; x:� ` x:�It is worth noting here our use of a convenient shorthand. Rather than writing anextended typing environment, for example Q [fx: �g, we write instead Q; x: �. In otherwords the comma can be interpreted as set union.Next we shall give the type rules for subtyping, which are as follows.S;D;N ;Q ` q: C C � D CastingS;D;N ;Q ` (D)q: D S;D;N ;Q ` q:� � � � SubtypingS;D;N ;Q ` q: �The Casting rule allows an expression of object type C to be explicitly cast to a super-type D. In the Standard [x4.10.12.5] it is also allowed that an object type be downcast toa subtype. This would entail changing our rule to:8

S;D;N ;Q ` q: C C � D or D � C CastingS;D;N ;Q ` (D)q: DIt is important to note that this rule has the consequence of requiring run-time typechecking.The Subtyping rule embodies our understanding of subtyping, i.e. if � � � then a valueof type � can be used in any context in which a value of type � is expected. Consequentlyif we deduce that an expression is of type �, we can also deduce that it is of type � (if� � �).The rules for structures are straightforward and are as follows.S;D;N ;Q ` q1:�1 � � � S;D;N ;Q ` qk:�k StructS;D;N ;Q ` struct(l1: q1; : : : ; lk: qk): struct(l1:�1; : : : ; lk:�k)S;D;N ;Q ` q: struct(l1:�1; : : : ; lk:�k) Struct-SelectS;D;N ;Q ` q:li:�iThere are several rules to deal with various collections, which are given in Figure 1.The important rule here is Collection. Reading the rule bottom-up, it reads that to assertthat the collection Col(q1; : : : ; qk) has type Col(�), we must assert that each qi has thetype �.The Subtyping rule given earlier allows for such a simple typing rule (c.f. [xx4.10.4.4{4.10.5.6] of the Standard). For example, imagine that expressions q1 and q2 are of type �1and �2 respectively, where �1 and �2 have a lub � . Thus we can form the following typingderivation: S;D;N ;Q ` q1:�1 Sub.S;D;N ;Q ` q1: � S;D;N ;Q ` q2:�2 Sub.S;D;N ;Q ` q2: � Colln.S;D;N ;Q ` set(q1; q2): set(�)The rules for queries dealing with quanti�cation over collections are as follows.
9

S;D;N ;Q ` q1:� S;D;N ;Q ` qk:�S;D;N ;Q ` q01: � � � � S;D;N ;Q ` q0k: � DictionaryS;D;N ;Q ` dictionary((q1; q01); : : : ; (qk; q0k)): dictionary(�; �)S;D;N ;Q ` q1:� � � � S;D;N ;Q ` qk:� CollectionS;D;N ;Q ` Col(q1; : : : ; qk): Col(�)S;D;N ;Q ` q: list(�) First-listS;D;N ;Q ` first(q):� S;D;N ;Q ` q: array(�) First-arrayS;D;N ;Q ` first(q):�S;D;N ;Q ` q: list(�) Last-listS;D;N ;Q ` last(q):� S;D;N ;Q ` q: array(�) Last-arrayS;D;N ;Q ` last(q):�S;D;N ;Q ` q1: list(�) S;D;N ;Q ` q2: int Index-listS;D;N ;Q ` q1[q2]:�S;D;N ;Q ` q1: array(�) S;D;N ;Q ` q2: int Index-arrayS;D;N ;Q ` q1[q2]:�S;D;N ;Q ` q1: dictionary(�; �) S;D;N ;Q ` q2:� Index-DictS;D;N ;Q ` q1[q2]: �S;D;N ;Q ` q1:� S;D;N ;Q ` q2: Col(�) MembershipS;D;N ;Q ` q1 in q2: boolFigure 1: Typing rules for collections
10

S;D;N ;Q ` q1: Col(�) S;D;N ;Q; x:� ` q2: bool ForallS;D;N ;Q ` forall x in q1: q2: boolS;D;N ;Q ` q1: Col(�) S;D;N ;Q; x:� ` q2: bool ExistsS;D;N ;Q ` exists x in q1: q2: boolConsider the Forall rule, reading from the top-down. First we have the judgementthat the expression q1 is of type Col(�), with free query identi�ers contained in the setQ. We then have the judgement that the expression q2 is of type bool, with free queryidenti�ers contained in the extended set Q; x: �. We can then infer that the expressionforall x in q1: q2 is of type bool, with free query identi�ers contained inQ. It is importantto note that x may be a free identi�er in the expression q2, but it is bound in the expressionforall x in q1: q2.The rules for object creation and method invocation are as follows.S;D;N ;Q ` q1:�1 � � � S;D;N ;Q ` qk:�k ObjectS;D;N ;Q ` C(l1: q1; : : : ; lk:�k): C S;D;N ;Q ` q: C PathS;D;N ;Q ` q:l:�The rule Object has an important side condition: to construct an object directly inOQL, the values for the attributes and relationships must be of the expected types, asdeclared in the schema. Put algebraically:81 � i � k: (li:�i) 2 A(S; C) or (li:�i) 2 R(S; C)(Note that the Standard [x4.4.1] allows an object to be created with certain �elds unde�ned|these unde�ned attributes and relationships \are given a default value".)The rule Path also contains a side condition that the label l produces a valid pathexpression for an object of type C. This can be expressed algebraically: (l: �) 2 I(S; C).The case where the label l represents a method which takes a number of parameters ishandled by a combination of the Path rule and the App rule, which is explained later inthis section.Now we turn our attention to the most important construct in OQL, the select query.Rather than give a single rule handling all the forms at once, we tackle each form separately.The rules for the various forms of select queries are given in Figure 2.Consider the rule Vanilla-Select, reading from the top-down. First we have the judge-ment that expression q1 is of type Col(�1), with free query identi�ers contained in Q. Thusquery identi�er x1 is of type �1 (which respects the semantic explanation given in the Stan-dard [x4.10.9]) and may occur free in expression q2, along with any identi�ers contained11

S;D;N ;Q ` q1: Col(�1)S;D;N ;Q; x1:�1 ` q2: Col(�2)� � �S;D;N ;Q; x1:�1; : : : ; xk�1:�k�1 ` qk: Col(�k)S;D;N ;Q;~x:~� ` q00: boolS;D;N ;Q;~x:~� ` q0: � Vanilla-SelectS;D;N ;Q ` select q0 from (q1 as x1; : : : ; qk as xk) where q00: bag(�)S;D;N ;Q ` q1: Col(�1)S;D;N ;Q; x1:�1 ` q2: Col(�2)� � �S;D;N ;Q; x1:�1; : : : ; xk�1:�k�1 ` qk: Col(�k)S;D;N ;Q;~x:~� ` q00: boolS;D;N ;Q;~x:~� ` q0001 :O1� � �S;D;N ;Q;~x:~� ` q000j :OjS;D;N ;Q;~x:~� ` q0: � Order-SelectS;D;N ;Q ` select q0 from (q1 as x1; : : : ; qk as xk) where q00order by (q0001 ascjdesc; : : : ; q000j ascjdesc): list(�)S;D;N ;Q ` q1: Col(�1)S;D;N ;Q; x1:�1 ` q2: Col(�2)� � �S;D;N ;Q; x1:�1; : : : ; xk�1:�k�1 ` qk: Col(�k)S;D;N ;Q;~x:~� ` q00: boolS;D;N ;Q;~x:~� ` q0001 : �1S;D;N ;Q;~x:~�; l1: �1 ` q0002 : �2� � �S;D;N ;Q;~x:~�; l1: �1; : : : ; lj�1: �j�1 ` q000j : �jS;D;N ;Q;~x:~�;~l:~�; partition: bag(struct(~x:~�)) ` q0000: boolS;D;N ;Q;~x:~�;~l:~�; partition: bag(struct(~x:~�)) ` q0:' Group-Having-SelectS;D;N ;Q ` select q0 from (q1 as x1; : : : ; qk as xk) where q00group by (l1: q0001 ; : : : ; lj: q000j)having q0000: bag(')Figure 2: Typing rules for select queries
12

in Q. This continues until we have the judgement that expression qk is of type Col(�k),with free identi�ers from fx1; : : : ; xk�1g and Q. We then form the judgement that q00 is oftype bool, with free query identi�ers from fx1; : : : ; xkg (which we abbreviate to ~x) and Q.Similarly we form the judgement that the query q0 has type � , with free query identi�ersfrom ~x and Q. Given these (k+2) judgements we can conclude that the select query is oftype bag(�).It is important to notice that the free query identi�ers of the select query are containedin Q. In other words, the identi�ers ~x are bound by the query. This is an importantadvantage of our use of formal typing rules|the distinctions of bound and free identi�ersis explicit in the rules themselves. (The precision and clarity of these rules should becompared to the rather verbose description given in the Standard [x4.10.9, x4.10.15].)The rule where the select query has a distinct clause is omitted for space reasons,but is identical to the Vanilla-Select rule, except that the overall type of the query is a setand not a bag (unless it it has an order clause, in which case it remains a list).Discussion. It is important to point out here that there is a serious error in the informaldiscussion of the typing of a select query in the Standard [page 111]. There they state thatthe qi are \of type Collection", i.e. the class type, and not the literal type Col(�i) as wehave given. We view this as a mistake|it certainly contradicts x4.10.4.3 of the Standard,where it is stated that given the declaration \e as x", then \e is of type collection(t) ",as well as their discussions of examples (e.g. [page 90]).Unfortunately Alagi�c [1] has taken this erroneous statement at face value, and so pro-poses the following (simpli�ed) type rule (where any is a notional polymorphic class type,no longer part of the ODMG standard).S;D;N ;Q ` q1: Collection S;D;N ;Q; x1: any ` q00: bool S;D;N ;Q; x1: any ` q0: �S;D;N ;Q ` select q0 from q1 as x1 where q00: BagGiven this type rule, he concludes that \OQL queries cannot be type-checked in theODMG object model" [1, Theorem 2]. Given that the literal types we use in our rules arecertainly valid in the ODMG object model (see the Standard [x2.4.1.2]), we refute Alagi�c'stheorem, and in fact assert the opposite.Fact 1 OQL queries can be type-checked in the ODMG object model. 2Discussion. The reader may have noticed that we have not provided a select � form.Primarily this is because we view it as essentially syntactic sugar. More seriously, how-ever, the way it is de�ned in the Standard [x4.10.9] breaks the convention that the queryidenti�ers in the `as' clause are bound by the select query. The Standard [page 112] statesthat the queryselect *from (Students as x, x.takes as y, y.taught_by as z)where z.rank="Full Professor" 13

should be assigned the type bag(struct(x: Student; y: Section; z: Professor)). In otherwords, the bound query identi�ers become labels for the structure, i.e. they change theirsyntactic category. We take the opinion that this confusion was an unfortunate designerror. In core OQL we insist that this query be written as follows.select struct(x: x', y: y', z: z')from (Students as x', x'.takes as y', y'.taught_by as z')where z'.rank="Full Professor" 2Now we return to the rules for select queries, and consider that concerning an extensionwith an order by clause. This rule is similar to the vanilla select rule. The important thingto note is that the expressions which order the results, the q000i , must be of an orderabletype (as de�ned in Section 3). The Standard [x4.10.9.1, item 3] speci�es that the type ofan ordered select query is always a list.Discussion. The Standard does not specify what happens when the sort criterion in theorder clause does not distinguish completely between results, e.g. in the queryselect x from Employees as xorder by x.Salarywhat if there are employees with the same salary? Presumably their order in the resultinglist is system-dependent. To alleviate this problem we suggest that the resultant type inthe Order-Select rule be changed to list(bag(�)) (the duplicates are now stored in bags).2There are two remaining type rules which deal with the application of an expression ofa function type to appropriately typed arguments.
S;D;N ;Q ` q: void! � App-NullaryS;D;N ;Q ` q(): � S;D;N ;Q ` q:�1 � � � � � �n ! �S;D;N ;Q ` q1:�1� � �S;D;N ;Q ` qn:�n AppS;D;N ;Q ` q(q1; : : : ; qn): �Consider the App rule, reading from the top-down. First we have the judgement thatthe expression q is of a function type �1�� � ���n ! � , i.e. it is a function of n parameters.We then have a judgement for each of the n parameters that they are of the expected type.Given these we can conclude that applying these n arguments to the expression q, givesan expression whose type is � .We often use this rule in conjunction with the Path rule given earlier. Suppose wehave a class C which has a method m, which expects an input parameter of type float14

and returns a value of type int. Then assuming that an expression q1 is of type C, andexpression q2 is of type float, we can form the following typing derivation.S;D;N ;Q ` q1: C PathS;D;N ;Q ` q1:m: float! int S;D;N ;Q ` q2: float App.S;D;N ;Q ` q1:m(q2): intTo complete our discussion of the OQL type system we need to consider the types ofthe unary and binary operators. Most of these operators are overloaded, in the sensethat they are intended to have a number of distinct types. Thus for each operator thereare a number of type axioms. For reasons of brevity we shall just give the four axioms forthe union operator, the others are self-apparent.S;D;N ;Q ` union: set(�)� set(�)! set(�)S;D;N ;Q ` union: bag(�)� set(�)! bag(�)S;D;N ;Q ` union: bag(�)� set(�)! bag(�)S;D;N ;Q ` union: bag(�)� bag(�)! bag(�)
6 Related workAfter completing the �rst draft of our paper, Alagi�c's paper [1] was published. He alsoconsiders a formalisation of the OQL type system, and claims that \several negative resultsare proved about the ability to type-check queries". We have seen earlier that his problemsconcerning the OQL type system can be overcome by using a di�erent typing rule (onewhich is consistent with the Standard).However, Alagi�c also demonstrates a much more serious problem with the Java languagebinding, although again we disagree with some of what he says. He gives a type rule [1,Rule 26], which appears to be a rule for typing Java directly, i.e. he considers OQL asa language extension of Java. Clearly there is a problem here as OQL has parameterisedtypes (e.g.bag(int)), but Java does not (all it has is covariant arrays).Using the host language type system to type queries has been a dream of OODBMSdesigners (see, for example, [13, x2.3].) However, nowhere in the Standard does the ODMGpropose that the Java type system be used to type OQL. Instead the Standard gives anumber of language bindings, for example in [x7.4.2] it gives the following Java interface.15

public interface OQLQuery{public void create(String query)throws QueryInvalidException;public void bind(Object parameter)throws QueryParameterCountInvalidException,QueryParameterTypeInvalidException;public Object execute()throws QueryException;}So we would use these methods in our Java program to create and execute OQL queries,for example:OQLQuery example;example.create("select x.agefrom Persons as xwhere x.name="Pat");answers=(DBag)example.execute();Thus we would expect the implementation of the create method, to actually implementthe type system described in this paper. If the query can not be well typed, then theQueryInvalidException exception is raised. Alagi�c's claim that this can not be done inJava is quite wrong.However, Alagi�c is correct in pointing out the mismatch between the expressive power ofthe OQL type system and that for Java|others [8] have criticised Java for this omission. Asa consequence, invocations of the bind method, which enable Java objects to be passed intoOQL queries, clearly require the Java objects to be re-typed under the ODMG type system(again we assume this is why the ODMG speci�ed a QueryParameterTypeInvalidExceptionmethod). How this is achieved, however, is clearly system-speci�c.Riedel and Scholl [9] also set out to describe formally the type system underlying theODMG object model. There are certainly strong similarities between their presentationand ours, but also some di�erences. Firstly, they study a much earlier version of theStandard (version 1.2), so some of their work is no longer relevant. Secondly, they treatclass types quite di�erently to us (indeed, quite di�erently from the way they are treatedby Java). Finally, (despite their title) they do not give many formal details of the typerules, but rather describe them using examples.7 Conclusions and future workIn this paper we have studied closely the query language, OQL, proposed by the ODMGfor object databases. We have identi�ed a core OQL which is of the same expressivepower as the full language, and for this core language we have given a complete set of typerules. These specify precisely the valid judgements one can make concerning the type of agiven OQL program. In the process of de�ning the type rules we have shown what type16

information needs to be extracted from the ODL schema and how the subtyping relationis generated.The principal feature of our work is the application of techniques familiar from modernprogramming language design (see, for example, the work on SML [7], and Java [10, 12])to database query language design. Of course, this has entailed the use of a modicum ofmathematical formalism (although no more than one can reasonably expect a ComputerScience graduate to understand). We can give a number of reasons (there are many more!)why we think this is worthwhile.� Precision. The use of mathematical formalism forces one to be completely preciseabout the type system (certainly more precise than the Standard!).� Conciseness. Typing rules are a very concise method for de�ning type systems.Certainly the type rules for our core OQL take only a couple of pages. The typerules for Standard ML, a high-level, general-purpose programming language withhigher-order functions, polymorphism, exceptions, user-de�ned recursive datatypesand a powerful module system, takes under two dozen pages to de�ne [7].� Correctness. Given a mathematical description of a type system, one is then able toprove (formally) facts about the system. Clearly it is very di�cult to prove any factsabout a type system that has only been informally de�ned, but worse, it is easy tocome to false conclusions. For example, the informal description of the type systemfor Ei�el, an object-oriented programming language, was thought to be correct beforea formal study showed it to be faulty [5].� Flexibility. Our formalisation provides a exible framework to study, for example,possible extensions to the underlying object model (e.g. the possibility of allowingparametric polymorphism for class types [8, 2]).There are several areas of current work in progress, following on from that describedin this paper. One topic we are working on is the problem of type inference. This is theprocess of discovering, automatically, the type of a given OQL program. The reader willhave noticed that nearly all our type rules are syntax-directed, in that for each programconstruct there is only one rule which could be applied to produce a type derivation. Theexception is the Subtyping rule. This rule complicates the process of type inference (indeed,without it, type inference would be trivial!).The solution is to provide an alternative set of rules which are syntax-directed, and thushave the action of the Subtyping rule built into them. For example, here is a (simpli�ed)version of an application rule.S;D;N ;Q ` q1:� ! � S;D;N ;Q ` q2:�0 �0 � �S;D;N ;Q ` q1(q2): �In a forthcoming paper this syntax-directed typing system is proven correct with respectto the system given in this paper. 17

We have implemented the type system described in this paper in Java. Given ourformal description of the type system, we found this a relatively straightforward process(another advantage of our approach!). We used the Poet Object Server (version 6.0) tostore the objects and schema that are referenced in the OQL programs. We are currentlyextending our implementation to cover the full OQL language.AcknowledgementsWe should like to thank Ken Moody for his guidance. Trigoni is funded by the NationalScholarships Institute of Greece and the National Bank of Greece.References[1] S. Alagi�c. Type-checking OQL queries in the ODMG type systems. ACM Transactionson Database Systems, 24(3):319{360, 1999.[2] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe forthe past: Adding genericity to the Java programming language. In Object-OrientedProgramming: Systems, Languages, Applications (OOPSLA). ACM, 1998.[3] V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance and im-plicit coercion. Information and Control, 93(1):172{221, 1991.[4] L. Cardelli. Type systems. In Handbook of Computer Science and Engineering, chapter103. CRC Press, 1997.[5] W.R. Cook. A proposal for making Ei�el type-safe. In Proceedings of the Europeanconference on object-oriented programming, pages 57{72. Cambridge University Press,1989.[6] R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,2000.[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard ML(Revised). MIT Press, 1997.[8] A.C. Myers, J.A. Bank, and B. Liskov. Parameterized types for Java. In Proceedingsof Symposium on Principles of Programming Languages, pages 132{145, 1997.[9] H. Riedel and M.H. Scholl. A formalization of ODMG queries. In Proceedings of the7th IFIP 2.6 Working Conference on Database Semantics, 1997.[10] D. Syme. Proving Java type soundness. Technical Report 427, Computer Laboratory,University of Cambridge, 1997. 18

[11] J.D. Ullman and J. Widom. A First Course in Database Systems. Prentice-HallInternational, 1997.[12] D. von Oheimb and T. Nipkow. Machine-checking the Java speci�cation: Provingtype-safety. In Formal Syntax and Semantics of Java, volume 1523 of Lecture Notesin Computer Science, pages 119{156. 1999.[13] S. Zdonik and D. Maier. Fundamentals of object-oriented databases. In Readings inObject-oriented Database Systems, pages 1{32. Morgan Kaufmann, 1990.

19

A A brief introduction to type systemsType systems are speci�ed using a particular formalism. The basic building block is atyping judgement. A typical typing judgement is of the form� ` e:�which is read as an assertion that from the assumptions contained in the set �, the expres-sion e has type � (the symbol ``' is often referred to as a turnstile). � contains the typesof any free identi�ers in the expression e, and is often called a typing environment.Elements of a typing environment are written, for example y: bool, which states that theidenti�er y is of type bool. For example, two typing judgements might be; ` true: bool, andx: float ` set(x; 3:14): set(float):The former judgement states that from no assumptions we can conclude that the expressiontrue is of type bool; the latter that from the assumption that the identi�er x is of typefloat, then the expression set(x; 3:14) is of type set(float).Any typing judgement is either valid (such as the two above) or invalid (such as ; ``c'+ 3:6: int). We characterise the set of valid typing judgements by giving a number ofaxioms and rules for forming these judgements. These axioms are essentially judgementswhich are intrinsically valid. One example might be:; ` 4: intA type rule allows us to build valid typing judgements on the basis of other judgementswhich are known to be valid. We write these rules in the formP1 : : : PkCwhere the Pi are the premise judgements, and C the (single) conclusion judgement. Whenall of the premises are satis�ed, then the conclusion must hold. An example of a possibletype rule is: � ` e: int � ` f: int� ` e+ f: intThis states that if the expressions e and f can be shown to be of type int, then theexpression e+ f is of type int.A collection of axioms and type rules is called a type system. A typing derivationis a tree of judgements, where the leaves are axioms and where each typing judgement isobtained from the ones above it using a particular type rule. Given a typing environment �,an expression e is said to be well-typed, if there exists a type � such that we can constructa typing derivation with the root � ` e: �. The process of discovering a derivation (andhence the type) for a given expression is known as type inference and is discussed inSection 7. 20

