
A Computational Interpretation of the ��-calculusG.M. BiermanUniversity of Cambridge
AbstractThis paper proposes a simple computational interpretation of Parigot's ��-calculus.The ��-calculus is an extension of the typed �-calculus which corresponds via the Curry-Howard correspondence to classical logic. Whereas other work has given computationalinterpretations by translating the ��-calculus into other calculi, I wish to propose herethat the ��-calculus itself has a simple computational interpretation: it is a typed �-calculus which is able to save and restore the runtime environment. This interpretationis best given as a single-step semantics which, in particular, leads to a relatively simple,but powerful, operational theory.This is an expanded version of a paper presented at the 23rd InternationalSymposium on Mathematical Foundations of Computer Science. August 24{28, 1998. Brno, Czech Republic.

c G M B September 2, 1998

i

1 IntroductionIt is well-known that the typed �-calculus can be viewed as a term assignment for naturaldeduction proofs in intuitionistic logic (IL). Consequently the set of types of all closed �-termsenumerates all intuitionistic tautologies. This is known as the Curry-Howard correspondence,or the formulae-as-types principle. Thus one can talk of a computational interpretation ofIL. A natural question is whether there is such a computational interpretation of classicallogic (CL). A �rst step is to devise a well behaved natural deduction formulation for CL andgive a term assignment. A number of proposals have been made but recently Parigot [25]introduced a extension of the typed �-calculus, which he called the ��-calculus. The set oftypes of all closed ��-terms enumerates all classical tautologies and the calculus is amazinglywell behaved, satisfying both strong normalisation and conuence.However two questions remain. First, what does this extension to the �-calculus meancomputationally? Secondly, if the ��-calculus is extended in much the same way as the �-calculus is extended to yield PCF, what is its operational theory? Of course the answer to thesecond question is heavily dependent upon the answer to the �rst. In this paper I suggest thatthe ��-calculus has a natural computational reading: it is a �-calculus which has operatorsto save and restore the runtime environment. This can easily be expressed using evaluationcontexts which are common in work on control operators.Morris-style contextual equivalence is commonly accepted as the natural notion of equiv-alence for functional languages. There has been signi�cant e�ort in devising alternativecharacterisations of contextual equivalence which are more amenable for constructing proofs.For PCF the common solution is to use some form of (applicative) bisimilarity [12]. Howeverthese techniques do not often extend to (call-by-value) languages with control. In x7 I givea simple notion of program equivalence, based on transitions in an abstract machine, whichcoincides with contextual equivalence.2 Parigot's ��-calculusIn his seminal paper Parigot introduced an extension of the typed �-calculus, which he calledthe ��-calculus. The extension is such that terms no longer have a single type but a sequenceof types, one of which is designated to be the active type and the rest which are said to bepassive.Types are given by the grammar � ::= ? j �! �and raw ��-terms are given by the grammarM ::= x Variablej �x:�:M Abstractionj MM Applicationj [a:�]M Passivatej �a:�:M Activate;where x is taken from a countable set of �-variables, � is a well-formed type (formula) and ais taken from another countable set of �-variables.Typing judgements are of the form, � . M :�;�, where � is a set of pairs of �-variablesand types written x: , M is a term from the above grammar and � denotes a set of pairs of�-variables and types written a:' (thus � is the active type). The typing rules are as follows.1

Identity�; x:� . x:�;��; x:� .M : ;� !I� . �x:�:M :� ! ;� � .M :�! ;� � . N :�;� !E� .MN : ;�� .M :�;� Passivate� . [a:�]M :?; a:�;� � .M :?; a:�;� Activate� . �a:�:M :�;�The new rules are called Passivate and Activate. The former takes a term whose active typeis � (where � is not ?) and passivates it, i.e. � becomes a passive type (and is hence labelledwith a). The resulting term has an active type of ?.1 The Activate rule works similarly butin the reverse direction.As an example the following derivation gives a (well-typed) term whose type is the Peirceformula.
y: (�!)! � . y: (�!)! �; b:�

Identityx:�; y: (�!)! � . x:�; a: Passivatex:�; y: (�!)! � . [b: �]x:?; b:�; a: Activatex:�; y: (�!)! � . �a: :[b: �]x: ; b:� !Iy: (�!)! � . �x:�:�a: :[b:�]x:�! ; b:�!Ey: (�!)! � . y(�x:�:�a: :[b:�]x):�; b:� Passivatey: (�!)! � . [b: �]y(�x:�:�a: :[b:�]x):?; b:� Activatey: (�!)! � . �b:�:[b:�]y(�x:�:�a: :[b: �]x):� !I.�y:�b:�:[b: �]y(�x:�:�a: :[b:�]x): ((�!)! �)! �There are a number of reduction rules associated with the ��-calculus. In full they are asfollows. (�x:�:M)N ;� M [x := N]�a:�:[a:�]M ;s M where a 62 �fv(M)[a:�]�b:�:M ;s M [a=b](�a:�! :M)N ;c �b: :M [a:�! ([b:] �N]The �-rule is familiar from the �-calculus. The ��-calculus introduces three new reductionrules. Two are known as simpli�cation rules [26] and are written;s. In the �rst simpli�cationrule, �fv(M) denotes the set of free �-variables in M , which is de�ned as follows.�fv(x) def= ;�fv(�x:M) def= �fv(M)�fv(MN) def= �fv(M) [�fv(N)�fv([a]M) def= �fv(M) [fag�fv(�a:M) def= �fv(M)� fag1This ensures that every term has an active type. It is possible to give a formulation where terms need nothave an active type. 2

A term is said to be �-closed if it has no free �-variables; it is said to be �-closed if it has nofree �-variables, and closed if it is both �-closed and �-closed. In the second simpli�cationrule, M [a=b] denotes the term M where all free occurrences of the �-variable b are replacedwith a.The third new reduction rule is essentially a commuting conversion, and is written ;c.I have used the notation M [a (P [�]] to denote the term M where all occurrences of thesubterm [a]N have been replaced by the term P [N] (where P [�] is a term with a single holein it, and P [N] is the result of replacing the hole with N). This complicated commutingconversion is often glossed over in other papers. In truth there are actually two di�erent rulesdepending on the type of the �-variable a. In detail, the commuting conversion is de�ned asfollows. (�a:�! :M)N ;c � �b: :M [a:�! ([b:] �N] where 6=?M [a:�! (�N] where =?where x[a:�(P [�]] def= x(�x:M)[a:� (P [�]] def= �x:(M [a:�(P [�]])(MN)[a:�(P [�]] def= (M [a:�(P [�]])(N [a:�(P [�]])(�b: :M)[a:�(P [�]] def= �b: :(M [a:�(P [�]])([b:�]M)[a:�(P [�]] def= � P [M [a:�(P [�]]] if a = b[b:�](M [a:�(P [�]]) o0wiseAs a rewriting step, this commuting conversion is a highly unusual rule, the substitutioninvolves a replacement of term for term, rather than the more familiar substitution of term forvariable. Certainly one would hope not to implement this operation in practice. Fortunatelythe treatment given in later sections removes the need to implement this substitution, incontrast to the framework given by Ong and Stewart [24].Term will be assumed to have been written so that all forms of substitution are non-capturing.3 A Computational InterpretationIn contrast to the situation for the �-calculus, there is little attention in the literature tocomputational aspects of the ��-calculus. How do programs execute? How do we handledi�erent evaluation orders? What is the computational signi�cance of having two distinctvariable spaces? How can we reason about programs? At the time of writing only the paperby Ong and Stewart [24] addresses these sorts of questions. This paper is an attempt toprovide an alternative, and hopefully simpler, approach to these questions.Before presenting this approach I need �rst to introduce some standard terminology fromwork on control operators. To formalise the notion of an evaluation order, Felleisen andFriedman [8] de�ned an evaluation context. This is essentially a term with a single `hole' in it,written E[�] (this will be de�ned formally in the next section). The result of placing a term,M , in that hole is written E[M]. The idea is that the hole sits at the place where reductionwill next occur. In other words, evaluation contexts are devised so that every closed term,M , is either a value (canonical) or can be written uniquely as E[R], where R is a redex. Thecontext E[�] essentially represents the rest of the computation that remains to be done afterR has been reduced. In this sense it can be seen as the continuation of R and is often referredto as the current continuation. 3

Evaluation is then written as (E[R]; E)) (M 0; E 0)where E is a function from �-variables to evaluation contexts|the need for this will becomeclear. The important evaluation rules are(E[�a:M]; E)) (M; E] fa 7! E[�]g)(E[[a]M]; E] fa 7! E0[�]g)) (E0[M]; E] fa 7! E0[�]g);where E] fa 7! E[�]g denotes the extension of the function E with the mapping a 7! E[�].Thus in the �rst reduction rule the current continuation is `saved' by adding it to E , indexedwith a. In the second reduction rule the current continuation is thrown away and the appro-priate indexed continuation is restored from E . In summary, the Activate and Passivate rulesare interpreted as (indexed) save and restore operators, respectively.24 �PCFRather than develop an operational theory for the ��-calculus, I shall �rst enrich it withnatural numbers, a conditional, pairs and recursion. This is essentially what Ong and Stewartcall �PCF [24]. Thus �PCF types are given by the grammar� ::= intj ?j �! �j �� �and the additional typing rules are as follows.Nat� . n: int;� � .M : int;� Suc� . suc(M): int;�� .M : int;� � . N :�;� � . P :�;� Conditional� . ifzM thenN else P :�;�� .M :�;� � . N : ;� �I� . hM;Ni:�� ;� � .M :�� ;� �E� . fst(M):�;� � .M :�� ;� �E� . snd(M): ;��; f :�! �; x:� .M :�;� �; f :�! � . N : ;� Recursion� . letrec f = �x:M inN : ;�The next step is to choose an evaluation strategy. Most work on control operators hasconsidered a call-by-value strategy and to aid comparison I shall adopt the same.3 It isimportant to note that what is developed in this and following sections can easily be adjustedto reect a call-by-name strategy; some details are given in x9. This is in contrast with Ongand Stewart's framework, which requires signi�cant changes to move from call-by-name tocall-by-value (some details are in their paper [24]).2The reader familiar with control operators will recognise the save operation as a form of `catch' and restoreas a form of `throw'.3This means that recursion is restricted to function de�nitions in the usual way [33, x11.1].4

The syntactic classes of values, evaluation contexts and redexes are de�ned as follows.Values v ::= n j �x:M j hv; viEvaluation Contexts E ::= �j vE j EMj hE;Mi j hv; Eij fst(E) j snd(E)j suc(E)j ifzE thenM elseMRedexes R ::= vvj fst(v) j snd(v)j suc(v)j ifz v thenM elseMj letrec f = �x:M inNj [a]M j �a:MThe fundamental property of evaluation contexts is the following.Lemma 1. Every closed term, M , is either a value, v, or is uniquely of the form E[R], whereE[�] is an evaluation context and R is a redex.We can now write out the (single-step) reduction rules in full, which are as follows.(E[(�x:M)v]; E)) (E[M [x := v]]; E)(E[fst(hv; wi)]; E)) (E[v]; E)(E[snd(hv; wi)]; E)) (E[w]; E)(E[suc(n)]; E)) (E[n+ 1]; E)(E[ifz 0 thenM elseN]; E)) (E[M]; E)(E[ifz (n+ 1) thenM elseN]; E)) (E[N]; E)(E[letrec f = �x:M inN]; E)) (E[N [f := �x:letrec f = �x:M inM]]; E)(E[�a:M]; E)) (M; E] fa 7! E[�]g)(E[[a]M]; E] fa 7! E0[�]g)) (E0[M]; E] fa 7! E0[�]g)5 ExamplesIn this section I give a number of examples of �PCF-programs to give the reader a feel for thecomputational power of the calculus. In particular, in x5.4, I shall reconsider the examples ofencodings given by Ong and Stewart [24].5.1 Idealised SchemeFelleisen et al. [8, 9] presented an extension to the (untyped) call-by-value �-calculus, calledIdealised Scheme. Two new operators are added, written A(M) and C(M), which are calledabort and control, respectively. Both forms are considered to be redexes and their reductionbehaviour is given by the following rules.E[A(M)] ;A ME[C(M)] ;C M(�z:A(E[z]))Informally A(M) abandons the current continuation, E[�]. C(M) also abandons the currentcontinuation and M is applied to the abstraction of the current continuation. If this abstrac-tion is invoked with the value v in an evaluation context E1[�], then E1[�] will be abandonedand evaluation will continue with E[v]. 5

More concretely, consider the term E0[C(�j:M)]:Evaluation of this term can be thought of as a `catch' which labels the current continuationE0[�] with j. If j doesn't get used in the evaluation ofM then E0[�] is e�ectively garbaged. Ifan application of j occurs in the evaluation ofM , e.g. E1[jv], then the computation is `thrown'back to the evaluation context labelled with j, along with the value v. Thus computationcontinues with the term E0[v].Gri�n [14] showed that control and abort can be typed as follows.� .M : (�!?)!? Control� . C�(M):� � .M :? Abort� .A�(M):�Thus control corresponds to the double negation elimination rule proposed by Gentzen [11]for classical logic, and abort corresponds to the (intuitionistic) ?-elimination rule.With these typings in mind, these operators can be encoded in �PCF as follows.C�(M) def= �a:�:M(�z:�:[a:�]z)A�(M) def= �b:�:M(In both encodings the �-variables are assumed to be fresh.) Consider an evaluation of theencoding of an abort in �PCF. (E0[A�(M)]; E)def= (E0[�b:�:M]; E)) (M; E] fb 7! E0[�]g)As b is assumed to be fresh, then it is easy to see that the evaluation context E0[�] is aban-doned.Consider an evaluation of the encoding of an application of control in �PCF.(E0[C�(�j:M)]; E)def= (E0[�a:�:(�j:M) (�z:�:[a:�]z)]; E)) ((�j:M) (�z:�:[a:�]z); E] fa 7! E0[�]g)) (M [j := (�z:�:[a:�]z)]; E] fa 7! E0[�]g)... (E1[(jv)[j := (�z:�:[a:�]z)]]; E] fa 7! E0[�]g) (y)def= (E1[(�z:�:[a:�]z)v]; E] fa 7! E0[�]g)) (E1[[a:�]v]; E] fa 7! E0[�]g)) (E0[v]; E] fa 7! E0[�]g)At stage (y) the substitution has been left explicit to aid comparison with the earlier discussionof the control operator, C, in Idealised Scheme. Hopefully it is clear that the e�ect of thisencoding is that evaluation has been thrown back to E0, along with the value v.Remark. It is also possible to encode the Scheme variant of the Control operator [4], whichdoes not initially abandon the current continuation. This rule, as observed by Gri�n, is typedusing the Peirce formula, i.e. � .M : (�!)! �� . P(M):�6

Its reduction rule is E[P(M)];P E[M(�z:A(E[z]))]and it can be encoded into �PCF as follows.P(M) def= �b:�:[b:�]M(�x:�:�a: :[b:�]x)It is left as an exercise to the reader to verify that this encoding has the expected operationalbahviour.5.2 de Groote's Exception Handling Calculusde Groote [7] presented a simply-typed �-calculus extended with an ML-like exception han-dling mechanism. A new class of exception variable is introduced and typing judgements areof the form �;� . M :� where � is the typing environment for normal �-variables and � thetyping environment for exception variables. Two new term constructors are introduced whosetyping rules are as follows.�;� .M :� Raise�;�; e:�!? .raise(e;M): �;�; e::� .M : �; x:�; � . N : Handle�;� . let e inM handle e x) N : (where :� def= �!?). As de Groote notes, the typing rule Raise corresponds to the standard(intuitionistic) rules for falsity. The typing rule Handle is clearly related to classical logic: itcorresponds to the rule of the excluded middle.Associated with these rules are a number of reduction rules.4v(raise(e; w)) ; raise(e; w)(raise(e; v))M ; raise(e; v)raise(e; raise(e0; v)) ; raise(e0; v)let e in v handle e x) N ; v (e 62 fv(v))let e in raise(e; v) handle e x) N ; N [x := v] (e 62 fv(v;N))let e in raise(e0; v) handle e x) N ; raise(e0; v) (e 62 fv(v))This exception handling mechanism can be encoded into �PCF quite simply, as follows.[[raise(e;M)]] def= (�x:�b:[a]x)[[M]][[let e inM handle e x) N]] def= �b:[b](�x:[[N]])(�e:[b][[M]])It is quite easy to verify that this translation preserves the expected operational behaviour.Here are two examples. (E[[[let e in v handle e x) N]]]; E)def= (E[�b:[b](�x:[[N]])(�e:[b][[v]])]; E))2 (E[(�x:[[N]])(�e:[b][[v]])]; E] fb 7! E[�]g)) ([b][[v]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]g)) (E[[[v]]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]g)4de Groote also gives a second, more complicated, set of reduction rules.
7

(E[[[let e in raise(e; v) handle e x) N]]]; E)def= (E[�b:[b](�x:[[N]])(�e:[b](�x:�c:[e]x)[[v]])]; E))2 (E[(�x:[[N]])(�e:[b](�x:�c:[e]x)[[v]])]; E] fb 7! E[�]g)) ([b](�x:�c:[e]x)[[v]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]g)) (E[(�x:�c:[e]x)[[v]]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]g)) (E[�c:[e][[v]]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]g)) ([e][[v]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]c 7! E[�]g)) (E[(�x:[[N]])[[v]]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]c 7! E[�]g)) (E[[[N]][x := [[v]]]]; E] fb 7! E[�]; e 7! E[(�x:[[N]])�]c 7! E[�]g)Remark. The reader familiar with SML will recognise that this exception handling mecha-nism is less powerful than that in SML. This is to be expected as it known that the typed�-calculus extended with SML exception handling can encode the untyped �-calculus, andthus is not strongly normalising [21]. As the typed ��-calculus is strongly normalising, itclearly can not encode true SML exception handling.5.3 PairingIt is easy to verify that �� � :(� ! :) in CL. This logical equivalence can be used tosimulate pairing in �PCF. The constructor and deconstructors are encoded as follows.5pair def= �m:�:�n: :�f : (� ! (!?)):f m nfst def= �p:�a:p(�x:�b:[a]x)snd def= �p:�a:p(�y:�x:[a]x)It is simple to see that these encodings satisfy the expected (call-by-value) behaviour, e.g.(fst (pair v w); E)def= (fst ((�mnf:f m n) v w); E))2 (fst (�f:f v w); E)) (�a:((�f:f v w)(�x:�b:[a]x)); E)) ((�f:f v w)(�x:�b:[a]x); E] fa 7! �g)) ((�x:�b:[a]x) v w; E] fa 7! �g)) ((�b:[a]v) w; E] fa 7! �g)) ([a]v; E] fa 7! �; b 7! (�w)g)) (v; E] fa 7! �; b 7! (�w)g)5.4 Ong/Stewart EncodingsIn their paper, Ong and Stewart [24] give variants of callcc and exceptions and show howthey can be encoded in �PCF. I shall reconsider these encodings in the light of the simpleroperational treatment o�ered by this paper.5.4.1 ExceptionsOng and Stewart considered extending PCF with a simple system of exception handling,which was inspired by (but less powerful than) work by Gunter et al. [15]. (Their systemis actually quite similar to de Groote's system, considered in x5.2.) Typed exceptions are5A similar encoding using Idealised Scheme was given by Gri�n [14].8

identi�ed with names, thus typing judgements are now of the form �;� . M :� where � isthe usual typing environment and � is the typing environment for the exception names. Twonew operators are added to PCF whose typing rules are as follows.�;� .M :��;�; a:� . raise(a;M): �;�; a:� .M :�! �;�; a:� . N : �;� . handle(a;M;N): The intended interpretation is that the term raise(a;M) �rst evaluates M to a value v andthen raises an exception named a associated with v. The term handle(a;M;N) evaluates Mto a value (say v) and then evaluates N . If N evaluates to a value w then this is the overallresult, but if it raises an exception named a with a value u, then this is applied to v. Givenas reduction rules the intended interpretation is as follows.handle(a; v; w) ; w (a 62 fn(w))handle(a; v; E[raise(a; u)]) ; vu (a 62 fn(v; u))These operators can be translated into �PCF as follows (where b is a fresh �-variable).[[raise(a;M)]] def= (�x:�b:[a]x)[[M]][[handle(a;M;N)]] def= �b:[b][[M]](�a:[b][[N]])It is relatively simple to show that this translation preserves the operational behaviour, e.g.(where [[M]])� v and [[N]])� u)([[handle(a;M;E[raise(a;N)])]]; E)def= (�b:[b][[M]](�a:[b]E[(�x:�c:[a]x)[[N]]]); E))2 ([[M]](�a:[b]E[(�x:�c:[a]x)[[N]]]); E] fb 7! �g))� (v(�a:[b]E[(�x:�c:[a]x)[[N]]]); E] fb 7! �g)) ([b]E[(�x:�c:[a]x)[[N]]]; E] fa 7! (v�); b 7! �g)) (E[(�x:�c:[a]x)[[N]]]; E] fa 7! (v�); b 7! �g))+ (E[�c:[a]u)]; E] fa 7! (v�); b 7! �g)) ([a]u; E] fa 7! (v�); b 7! �; c 7! E[�]g)) (vu; E] fa 7! (v�); b 7! �; c 7! E[�]g)5.4.2 CallccOng and Stewart also considered extending PCF with a variant of callcc (again inspiredby work by Gunter et al. [15]). Continuations are both typed and associated with names,and so typing judgements are of the form �;� . M :�, where � is the typing environmentfor continuation names. Three new operators are added to PCF, whose typing rules are asfollows. �;� .M : (�!)! ��;� . callcc(M):� �;� .M :��;�; a:� . abort(a;M): �;�; a:� .M :��;� . set(a;M):�The callcc operator applies the term M to an abstraction of the current continuation. Theset serves as a delimiter for continuations, and the abort discards the current continuation(delimited by a). Given as reduction rules their intended operational behaviour is as follows.set(a;E[abort(a;M)]) ; M (a 62 fn(M))set(a; v) ; v (a 62 fn(v))E[callcc(M)] ; set(a;E[M(�x:abort(a;E[x]))])9

These operators can be translated into �PCFas follows.[[callcc(M)]] def= �a:[a]([[M]](�x:�b:[a]x))[[abort(a;M)]] def= �b:[a][[M]] where b 62 fn([[M]])[[set(a;M)]] def= �a:[a][[M]]Again it is simple to check that this translation preserves the operational behaviour, e.g.([[set(a;E[abort(a;M)])]]; E)def= (�a:[a]E[�b:[a][[M]]]; E))2 (E[�b:[a][[M]]]; E] fa 7! �g)) ([a][[M]]; E] fa 7! �; b 7! E[�]g)) ([[M]]; E] fa 7! �; b 7! E[�]g)6 A Transition SystemAn implementation based on the reduction rules given in x4 would work as follows. Take aterm M : if it is a value then we are done; if not, it can be given uniquely as E[R]. Onetakes the relevant reduction step (determined by R)|the resulting term is either a value, inwhich case we are done, or it has to be re-written again as an evaluation context and a redex.This process is repeated until a value is reached. The continual intermediate step of rewritinga term into an evaluation context and a redex would be ine�cient in practice and is quitecumbersome theoretically. Consequently I shall give a new set of reduction rules where theevaluation context and the redex are actually separated. Reduction rules are now of the form(S;M; E) �! (S0;M 0; E 0)where S is a stack of evaluation frames, which are de�ned as follows.F ::= �M j v�j h�;Mi j hv; �ij fst(�) j snd(�)j suc(�) j ifz � thenM elseM(Clearly E is now a function from �-variables to stacks.) The reduction rules essentiallydescribe the transitions of a simple abstract machine.6 In full they are as follows.(F [�] :: S; v; E) �! (S; F [v]; E)(S;MN; E) �! ((�N) :: S;M; E) M not a value(S; vN; E) �! ((v�) :: S;N; E) N not a value(S; (�x:M)v; E) �! (S;M [x := v]; E)(S; hM;Ni; E) �! (h�; Ni :: S;M; E) M not a value(S; hv;Ni; E) �! (hv; �i :: S;N; E) N not a value(S; fst(M); E) �! (fst(�) :: S;M; E) M not a value(S; fst(hv; wi); E) �! (S; v; E)(S; snd(M); E) �! (snd(�) :: S;M; E) M not a value(S; snd(hv; wi); E) �! (S;w; E)(S; suc(M); E) �! (suc(�) :: S;M; E) M not a value(S; suc(n); E) �! (S; n+ 1; E)(S; ifzM thenN else P; E) �! ((ifz � thenN else P) :: S;M; E) M not a value6Harper and Stone [16] give simple transition rules in their analysis of SML and Pitts [27] has used similarrules in work on functional languages with dynamic allocation of store.10

(S; ifz 0 thenM elseN; E) �! (S;M; E)(S; ifz (n+ 1) thenM elseN; E) �! (S;N; E)(S; letrec f = �x:M inN; E) �! (S;N [f := �x:letrec f = �x:M inM]; E)(S; �a:M; E) �! ([];M; E] fa 7! Sg)(S; [a]M; E] fa 7! Tg) �! (T;M; E] fa 7! Tg)An example may make these reduction rules clearer. Consider an instance of the Ong/Stewart`callcc' reduction rule given in x5.4.2.set(a; (�x:N)(abort(a;M)));MThe left hand term is translated into the following �PCF-term.�a:[a](�x:[[N]])(�b:[a][[M]])The reduction of this term is as follows.(S; �a:[a](�x:[[N]])(�b:[a][[M]]); E)�! ([]; [a](�x:[[N]])(�b:[a][[M]]); E] fa 7! Sg)�! (S; (�x:[[N]])(�b:[a][[M]]); E] fa 7! Sg)�! (((�x:[[N]])�) :: S; �b:[a][[M]]; E] fa 7! Sg)�! ([]; [a][[M]]; E] fa 7! S; b 7! ((�x:[[N]])�) :: Sg)�! (S; [[M]]; E] fa 7! S; b 7! ((�x:[[N]])�) :: Sg)To compare these two formulations I shall de�ne a function dEe which converts a givenevaluation context, E to a stack of frames, and a function S@M which takes a stack of frames,S, and a term, M , and converts the stack back to an evaluation context before inserting M .d�e def= []dvEe def= dEe@[v�]dEM e def= dEe@[�M][]@M def= MFor example d(((�x:M)�)P)Qe def= ((�x:M)�) :: ((�P) :: ((�Q) :: []))((�x:M)�) :: ((�P) :: ((�Q) :: []))@N def= (((�x:M)N)P)QThe two sets of reduction rules can be related in the following sense.Proposition 1.(S@M; E)) (N; E 0) i� 9S0;M 0:N = S0@M 0; (S;M;d Ee) �!� (S0;M 0;d E 0e)An important fact (�rst discovered by Pitts [27] in a di�erent setting) is that the set&def= f(S;M; E) j 9v; E 0:(S;M; E) �!� ([]; v; E 0)ghas a direct, inductive de�nition which is as follows.11

([]; v; E)& (S; F [v]; E)&(F [�] :: S; v; E)&((�N) :: S;M; E)& M not a value(S;MN; E)& ((v�) :: S;N; E)& N not a value(S; vN; E)&(S;M [x := v]; E)&(S; (�x:M)v; E)& (S;N [f := �x:letrec f = �x:M inM]; E)&(S; letrec f = �x:M inN; E)&(h�; Ni :: S;M; E)& M not a value(S; hM;Ni; E)& (hv; �i :: S;N; E)& N not a value(S; hv;Ni; E)&(fst(�) :: S;M; E)& M not a value(S; fst(M); E)& (S; v; E)&(S; fst(hv; wi); E)&(snd(�) :: S;M; E)& M not a value(S; snd(M); E)& (S;w; E)&(S; snd(hv; wi); E)&(T;M; E] fa 7! Tg)&(S; [a]M; E] fa 7! Tg)& ([];M; E] fa 7! Sg)&(S; �a:M; E)&These rules will form the basis of a notion of program equivalence given in the next section.7 Program Equivalence�PCF is a simple functional programming language for recursively de�ned, higher orderfunctions along with facilities to save and restore the runtime environment. As for purefunctional languages, we should like to develop methods for reasoning about properties of�PCF programs. One possibility is to devise a set of equations and reason equationally aboutprograms. Such equations have been considered for Idealised Scheme by Felleisen et al. [10],Gri�n [14] and Hofmann [18]. Another possibility is to develop a denotational model andreason about programs via their denotations. Cartwright et al. [3] give a (fully abstract)model of Idealised Scheme and some models of the ��-calculus have been considered recentlyby Ong [23], Hofmann and Streicher [19] and Selinger [30].In this paper I shall rather consider techniques based on the operational behaviour of�PCF programs. One advantage of such operationally based techniques is that they requirerelatively little mathematical overhead. (Further arguments in favour of operationally basedtechniques can be found in the literature, e.g. [13].)Morris-style, contextual equivalence is accepted as a natural notion of equivalence forsequential languages. Essentially two programs are considered contextually equivalent if in-terchanging one for the other in any larger program does not a�ect the result. Before theformal de�nition, here are a couple of simple de�nitions.
12

(M; E) + (v; E 0) def= (M; E))� (v; E 0) and (v; E 0) 6)(M; E) + v def= 9E 0:(M; E) + (v; E 0)(M; E) + def= 9v:(M; E) + v(M; E) * def= :(9v:(M; E) + v)De�nition 1. Let M and N be terms and C a �-closing context. M is said to contextuallyre�ne N , written � �M v N :�;�, when 8C; E : if (C[M]; E) + then (C[N]; E) + : They aresaid to be contextually equivalent, written ��M � N :�;�, just when ��M v N :�;� i���N vM :�;�.Reasoning about languages with control is di�cult. One reason for this is that, in termsof contextual equivalence, control is invariably a non-conservative extension. By this, I meanthat terms which are contextually equivalent in the call-by-value �-calculus, may no longerbe contextually equivalent in a call-by-value �-calculus extended with control. For example,consider the following PCF-terms (this example is due to Meyer and Riecke [22]).M1 def= �x:�y:�z:(�w:(y x) w)(z x):�! (�! ! ')! (�!)! 'M2 def= �x:�y:�z:(y x)(z x):�! (�! ! ')! (�!)! 'It can be seen that these terms are PCF-contextually equivalent: Meyer and Riecke claim ancomplicated inductive argument can be used, although a more modern approach would be toshow that they are applicatively bisimilar (some details of the de�nition are given by Pitts [28,x6]) and use the fact that applicative bisimilarity coincides with contextual equivalence.Of course, M1 and M2 are valid �PCF-terms. However they are not �PCF-contextuallyequivalent: they can be distinguished by the contextC def= �b: int:[b: int]((� 1)(�u:
int!int)(�v:�a:[b]1))where
int!int is a non-terminating term.7 Thus C[M1] terminates by the following steps(where, for clarity, I have in places underlined the redex).(C[M1]; E)def= (�b: int:[b: int]((M1 1)(�u:
)(�v:�a:[b]1)); E))2 ((M1 1)(�u:
)(�v:�a:[b]1); E] fb 7! �g)def= (((�x:�y:�z:(�w:(y x) w)(z x)) 1)(�u:
)(�v:�a:[b]1); E] fb 7! �g))3 ((�w:((�u:
) 1) w)((�v:�a:[b]1) 1); E] fb 7! �g)) ((�w:((�u:
) 1) w)(�a:[b]1); E] fb 7! �g)) ([b]1; E] fb 7! �; a 7! (�w:((�u:
) 1) w)�g)) (1; E] fb 7! �; a 7! (�w:((�u:
) 1) w)�g)Unfortunately C[M2] does not terminate. It evaluates as follows.(C[M2]; E)def= (�b: int:[b: int]((M2 1)(�u:
)(�v:�a:[b]1)); E))2 ((M2 1)(�u:
)(�v:�a:[b]1); E] fb 7! �g)def= (((�x:�y:�z:(y x)(z x)) 1)(�u:
)(�v:�a:[b]1); E] fb 7! �g))3 (((�u:
) 1)((�v:�a:[b]1) 1); E] fb 7! �g)) (
 ((�v:�a:[b]1) 1); E] fb 7! �g)*7For example
int!int def= letrec f = �x: int! int:fx in f(�y: int:y).13

This counter-example is quite serious. Both M1 and M2 are closed terms and so they are notdistinguished by binding some free �-variable in some complicated way. In fact they di�erby having a slightly di�erent order of evaluation in their bodies. In �PCF there is enoughcomputational power to di�erentiate between these di�erent orders of evaluation (a similarthing happens with languages with state [29]).Here's another problem when reasoning about �PCF programs. Typically given two pro-grams of function type, we might think that if they behave in the same way for all givenarguments, then they can safely be thought of as indistinguishable, i.e. contextually equiv-alent. For example, notions of applicative bisimilarity of PCF-programs use this idea intheir de�nition [1, 28, 12]. As one may have feared, things are more complicated for �PCF.Consider the closed programsT1 def= �a:[a](�y:�c:[a](�x:ifz y then
 else 0)): int! intT2 def= �z:�b:[b]((�y:�c:[b]((�x:ifz y then
 else 0)z))z): int! intwhere, again,
 is a non-terminating term. It is easy to verify that for all natural numbers nand E (T1n; E) + 0() (T2n; E) + 0Thus given the argument above, one may conclude that T1 and T2 should be thought of ascontextually equivalent. Unfortunately they are not, as the contextC def= (�s:s(s1))�can distinguish between T1 and T2! Indeed C[T1] terminates in the following way.(C[T1]; E)def= ((�s:s(s1))(�a:[a](�y:�c:[a](�x:ifz y then
 else 0))); E))2 ((�s:s(s1))(�y:�c:[a](�x:ifz y then
 else 0)); E] fa 7! (�s:s(s1))�g)) (U(U1); E] fa 7! (�s:s(s1))�g)) (U(�c:[a](�x:ifz 1 then
 else 0)); E] fa 7! (�s:s(s1))�g))2 ((�s:s(s1))(�x:ifz 1 then
 else 0); E] fa 7! (�s:s(s1))�; c 7! U�g))3 (0; E] fa 7! (�s:s(s1))�; c 7! U�g)(U is used as shorthand for the term �y:�c:[a](�x:ifz y then
 else 0).) However C[T2] loops inthe following way.(C[T2]; E)def= ((�s:s(s1))T2; E)) (T2(T21); E)) (T2(�b:[b]((�y:�c:[b]((�x:ifz y then
 else 0)1))1)); E))2 (T2((�y:�c:[b]((�x:ifz y then
 else 0)1))1); E] fb 7! T2�g)) (T2(�c:[b]((�x:ifz 1 then
 else 0)1)); E] fb 7! T2�g))2 (T2((�x:ifz 1 then
 else 0)1); E] fb 7! T2�; c 7! T2�g)) (T20; E] fb 7! T2�; c 7! T2�g)) (�b0:[b0]((�y:�c0:[b0]((�x:ifz y then
 else 0)0))0); E] fb 7! T2�; c 7! T2�g))2 ((�y:�c0:[b0]((�x:ifz y then
 else 0)0))0); E] fb 7! T2�; c 7! T2�; b0 7! �g)) (�c0:[b0]((�x:ifz 0 then
 else 0)0); E] fb 7! T2�; c 7! T2�; b0 7! �g))2 ((�x:ifz 0 then
 else 0)0; E] fb 7! T2�; c 7! T2�; b0 7! �; c0 7! �g)) (ifz 0 then
 else 0; E] fb 7! T2�; c 7! T2�; b0 7! �; c0 7! �g)* 14

A consequence of this example is the fact that simple de�nitions of applicative bisimilarityare unlikely to coincide with contextual equivalence. (Indeed as Ong and Stewart point out,the most obvious de�nition of applicative bisimilarity fails even to be a congruence!)The problem with contextual equivalence is that it is very hard to reason about. Asdemonstrated above, it is easy to see when two programs are not contextually equivalent|one simply �nds a context which distinguishes them. To show that two programs are con-textually equivalent is much harder: the problem lies in the quanti�cation over all programcontexts. Indeed, the discussion above demonstrates how �PCF's save and restore featuresalso complicate the problem.Despite these di�culties let us consider a very simple notion of program equivalence whichuses the notion of termination given at the end of x6. Informally, the idea is that two programsare considered equivalent if they have the same termination properties. The formal de�nitionis as follows.De�nition 2. Given two programsM and N ,M is said to ciu-re�neN , writtenM � N :�;�,just when 8S; E : if (S;M; E)& then (S;N; E)&. They are said to be ciu-equivalent, writtenM ' N :�;� just when M � N :�;� and M � N :�;�.These can be extended to open terms as follows~x: ��M �� N :�;� def= 8~v:M [~x := ~v] � N [~x := ~v]:�;�~x: ��M '� N :�;� def= 8~v:M [~x := ~v] ' N [~x := ~v]:�;�The obvious question is in what way are ciu-equivalence and contextual equivalence related? Itis possible to show that they coincide, or, put in another way, ciu-equivalence is an alternative(but relatively simpler) characterisation of contextual equivalence.Theorem 1. (ciu theorem) ��M � N :�;� i� ��M '� N :�;�.Proof. Some details are given in Appendix A.This means that to prove two terms contextually equivalent we need only to show that theyare ciu-equivalent, which is signi�cantly easier. For example, it can be shown that the (call-by-value variants of the) reduction rules of the ��-calculus given in x2 are contextual equivalences,by showing that they are, in fact, ciu-equivalences.(�x:�:M)v � M [x := v]: ;� (1)�a:�:[a:�]M � M :�;� (a 62 �fv(M)) (2)[a:�]�b:�:[c:]M � ([c:]M)[a=b]:?; a:�;� (3)(�a:�! :M)N � �b: :M [a([b:] �N]: ;� (4)For example, the equivalence (2) holds by observing(S;M; E] fa 7! Sg)&([]; [a]M; E] fa 7! Sg)&(S; �a:[a]M; E)&and the fact that a 62 �fv(M) by assumption.15

A number of other equivalences can be derived. For example, consider a term M suchthat �; x:� . M : ;�. An instance of equivalence (1) is�; x:�� (�x:�:M)x '� M : ;� (5)In Appendix A it is shown that ciu-equivalence is a congruence. In particular, this meansthat the following rule is valid. �; x:��M '� N : ;��� �x:�:M '� �x:�:N :�! ;�Applying this to equivalence 5 gives�� �x:�:(�x:�:M)x '� �x:�:M :�! ;�:Setting v for the term �x:�:M , this implies the following contextual equivalence.�� �x:�:vx � v:�! ;� (6)(where x 62 fv(v)). Hence the call-by-value �-rule is a contextual equivalence. Here are acouple more examples of contextual equivalences.E[�a:[b]M] � [b]M :? (a 62 �fv(M)) (7)�a:[b](ifzM thenN else P) � ifzM then �a:[b]N else �a:[b]P :� (a 62 �fv(M)) (8)The �rst equivalence is a sort of `abort' axiom, the second is a typical compiler optimisation.Further study of provable contextual equivalences is important future work.8 ImplementationIn this section I shall give details of two implementations. The �rst is simply the SML codefor a tail recursive interpreter based on the transition system of x6. The second is a simpleabstract machine, which is based on the framework proposed by Curien [5].8.1 InterpreterAs mentioned in x6, the transition system essentially describes a tail recursive interpreter for�PCF. In this section I shall give details for such an interpreter, written in SML. The functionmapping �-variables to stacks is implemented as a list of pairs. The main datatypes are asfollows.datatype 'a exp = const of int| suc of 'a exp| var of 'a| abs of 'a * ('a exp)| app of ('a exp) * ('a exp)| pair of ('a exp) * ('a exp)| fst of ('a exp)| snd of ('a exp) 16

| ifz of ('a exp) * ('a exp) * ('a exp)| letrec of 'a * 'a * ('a exp) * ('a exp)| save of 'a * ('a exp)| restore of 'a * ('a exp);type term = string exp;(* type typed_term = (string*formula) exp *)datatype hole = Bullet;datatype frame = csuc of hole| appl of hole*term| appr of term*hole| pairl of hole*term| pairr of term*hole| cfst of hole| csnd of hole| cifz of hole*term*term;type stack = frame list;type stack_function = (string*stack) list;(* type typed_stack_function = ((string*formula)*stack) list *)The main interpreter consists of two mutually recursive routines eval and unwind. They callthree subsidiary functions: insert and get, which handle the function update and accessrespectively, and subs which performs substitution of a term for a variable. The code for theinterpreter is then as follows.fun eval S (const i) C = unwind S (const i) C| eval S (suc(e)) C = eval (csuc(Bullet)::S) e C| eval S (abs(x,e)) C = unwind S (abs(x,e)) C| eval S (app(e,f)) C = eval (appl(Bullet,f)::S) e C| eval S (fst(e)) C = eval (cfst(Bullet)::S) e C| eval S (snd(e)) C = eval (csnd(Bullet)::S) e C| eval S (pair(e,f)) C = eval (pairl(Bullet,f)::S) e C| eval S (ifz(e,f,g)) C = eval (cifz(Bullet,f,g)::S) e C| eval S (letrec(f,x,e,g)) C = unwindSsubs(abs(x,letrec(f,x,e,e),f,g)C| eval S (restore(n,e)) C = let val T=get n Cin eval T e Cend| eval S (save(n,e)) C = eval [] e (insert (n,S) C)andunwind S v C = case S of[] => v| (csuc(Bullet)::S) => let val (const i) = vin unwind S (const (i+1)) Cend| (appl(Bullet,e)::S) => eval (appr(v,Bullet)::S) e C| (appr(abs(x,e),Bullet)::S) => eval S (subs(v,x,e)) C17

| (pairl(Bullet,e)::S) => eval (pairr(v,Bullet)::S) e C| (pairr(w,Bullet)::S) => unwind S (pair(w,v)) C| (cfst(Bullet)::S) => let val pair(u,w)=vin unwind S u Cend| (csnd(Bullet)::S) => let val pair(u,w)=vin unwind S w Cend| (cifz(Bullet,f,g)::S) => let val (const i) = vin if (i=0) then eval S f Celse eval S g Cend;8.2 Towards an Abstract MachineIn his paper, Curien [5] describes a simple framework for abstract machines which evaluatefunctional programs using environments and closures. Both the CAM and Krivine's machinearise naturally as instances of this abstract framework. In this section, I shall extend Curien's\Eager Machine" to �PCF (actually without recursion).The machine essentially consists of a triple. The �rst part is an environment. For simplic-ity I shall consider this to be a pair of symbol tables (functions), the �rst maps �-variables tovalues and the second mapping �-variables to stacks. In a realistic machine this indirectionwould be removed by compiling both �- and �-variables into de Bruijn indices. I have chosennot to do this for clarity. The second part of the triple is the term. The third part is a stackof values (I use :: as an in�x `push' operator). The evaluation rules for the abstract machineare as follows.(h�; Ei; n; S) � (�;�; n :: S)(h�; Ei; suc(M); S) � (h�; Ei;M;SUC :: S)(�;�; n :: SUC :: S) � (�;�; n+ 1 :: S)(h�] fx 7! vg; Ei; x; S) � (�;�; v :: S)(h�; Ei; �x:M; S) � (�;�; cl(h�; Ei; �x:M) :: S)(h�; Ei;MN; S) � (h�; Ei;M;L :: cl(h�; Ei; N) :: S)(�;�; v :: L :: cl(h�; Ei;M) :: S) � (h�; Ei;M;R :: v :: S)(�;�; v :: R :: cl(h�; Ei; �x:M) :: S) � (h�] fx 7! vg; Ei;M; S)(h�; Ei; �a:M; S) � (h�; E] fa 7! Sgi;M; [])(h�; E] fa 7! Sgi; [a]M;T) � (h�; E] fa 7! Sgi;M; S)(h�; Ei; ifzM thenN else P; S) � (h�; Ei;M; IFZ :: cl(h�; Ei; hN;P i) :: S)(�;�; 0 :: IFZ :: cl(h�; Ei; hN;P i) :: S) � (h�; Ei; N; S)(�;�; n+ 1 :: IFZ :: cl(h�; Ei; hN;P i) :: S) � (h�; Ei; P; S)As the environment is separate from the term, the value of a function is naturally a closure,which has a code part and an environment part. Closures are written cl(h�; Ei;M).The feature of this machine (and related environment machines) is that the recursive callsare implemented using the stack and the \markers" (L, R, SUC and IFZ).8 Consequentlythe stack contains either natural numbers, closures or markers.Further details of such environment machines and more generally about calculi of closurescan be found in Curien's paper [5]. Low level details of implementing other related control8The L and R markers are not required in a call-by-name setting. The resulting machine in that case isessentially a Krivine machine|a related machine has been given by Selinger [31].18

operators are given by Hieb et al. [17].9 Call-by-NameThis paper has so far considered only call-by-value computation. However it is very simpleto provide a computational interpretation for a call-by-name evaluation strategy. The maindi�erence is in the (new) de�nition of values, evaluation contexts and redexes, which are asfollows. (As normal the call-by-value function restriction on recursion can be relaxed [33,x11.5].) Values v ::= n j �x:M j hM;MiEvaluation Contexts E ::= �j EMj fst(E) j snd(E)j suc(E)j ifz E thenM elseMRedexes R ::= vMj fst(v) j snd(v)j suc(v)j ifz v thenM elseMj rec x:Mj [a]M j �a:MThe evaluation rules are essentially as before.(E[(�x:M)N]; E)) (E[M [x := N]]; E)(E[fst(hM;Ni)]; E)) (E[M]; E)(E[snd(hM;Ni)]; E)) (E[N]; E)(E[suc(n)]; E)) (E[n+ 1]; E)(E[ifz 0 thenM elseN]; E)) (E[M]; E)(E[ifz (n+ 1) thenM elseN]; E)) (E[N]; E)(E[rec x:M]; E)) (E[M [x := (rec x:M)]]; E)(E[�a:M]; E)) (M; E] fa 7! E[�]g)(E[[a]M]; E] fa 7! E0[�]g)) (E0[M]; E] fa 7! E0[�]g)The development of the corresponding operational theory follows closely that outlined inx7. The di�ers from the treatment given by Ong and Stewart [24] who have to introducecompletely new reduction rules to move from a call-by-name to a call-by-value setting.10 ConclusionIn this paper I have given a simple computation interpretation of the ��-calculus: it is a�-calculus which is extended with indexed operators to save and restore the runtime envi-ronment. This is maybe not too surprising as Gri�n [14] has shown the close relationshipbetween classical logic and languages with control. This interpretation can be expressed asa single-step reduction semantics using environment contexts. In turn I gave an equivalentsemantics expressed as steps of a simple transition system, which eliminated the need for theevaluation contexts. Using this simple transition system it is possible to de�ne a notion of19

program equivalence based on a termination relation which can be proved to be equivalent toa natural de�nition of contextual equivalence.Clearly the work by Ong and Stewart [24] is most closely related to that reported here.Their thesis is that �PCF is a foundational language for call-by-value functional computationwith control and this paper can be seen as further evidence to that claim. However I wouldsuggest that the operational treatment given here is more intuitive, more exible (in thatdi�erent calling mechanisms can be handled easily) and leads to a more re�ned notion ofprogram equivalence.This paper has given a computational interpretation directly to the ��-calculus butde Groote [6] has worked in the other direction, using existing work on continuation passingto give an interpretation for the (call-by-name) ��-calculus. A fuller comparison of theseapproaches is important future work.The techniques used in this paper to de�ne a ciu-equivalence and prove a ciu-theoremcan be applied to a number of complicated languages.9 Pitts has used this in recent work onvarious calculi with explicit state. In unpublished work, the author and Pitts have appliedthese techniques to both Idealised Scheme [8] and the generalised control language of Gunteret al. [15].AcknowledgementsI am currently supported by EPSRC Grant GR/M04716 and Gonville and Caius College,Cambridge. I am grateful to Nick Benton, S�ren Lassen, Luke Ong, Andrew Pitts and PeterSelinger for helpful comments and discussions.An abridged version of this paper appears in the MFCS proceedings [2].References[1] S. Abramsky. The lazy lambda calculus. In D.A. Turner, editor, Research Topics inFunctional Programming, chapter 4, pages 65{116. Addison-Wesley, 1990.[2] G.M. Bierman. A computational interpretation of the ��-calculus. In L. Brim,J. Gruska, and J. Zlatu�ska, editors, Proceedings of Symposium on Mathematical Foun-dations of Computer Science, volume 1450 of Lecture Notes in Computer Science, pages336{345, August 1998.[3] R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract semantics forobservably sequential languages. Information and Computation, 111(2):297{401, June1994.[4] W. Clinger and J. Rees. The revised3 report on the algorithmic language Scheme.ACM SIGPLAN Notices, 21(12):37{79, 1986.[5] P.-L. Curien. An abstract framework for environment machines. Theoretical ComputerScience, 82(2):389{402, May 1991.9After completing the �rst draft of this paper, the work of Talcott [32] was brought to my attention. Talcottalso proves a ciu-theorem for an untyped variant of Idealised Scheme as well as for a language with explicitmemory e�ects. 20

[6] P. de Groote. On the relation between the ��-calculus and the syntactic theory ofsequential control. In Proceedings of Conference on Logic Programming and AutomatedReasoning, volume 822 of Lecture Notes in Computer Science, pages 31{43, 1994.[7] P. de Groote. A simple calculus of exception handling. In Proceedings of SecondInternational Conference on Typed �-calculi and applications, volume 902 of LectureNotes in Computer Science, pages 201{215, 1995.[8] M. Felleisen and D.P. Friedman. Control operators, the SECD-machine and the�-calculus. In Formal Description of Programming Concepts III, pages 131{141. North-Holland, 1986.[9] M. Felleisen, D.P. Friedman, E.E. Kohlbecker, and B. Duba. Reasoning withcontinuations. In Proceedings of Symposium on Logic in Computer Science, pages 131{141, June 1986.[10] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequentialcontrol and state. Theoretical Computer Science, 103(2):235{271, September 1992.[11] G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor, The CollectedPapers of Gerhard Gentzen, pages 68{131. North-Holland, 1969. English Translation of1935 German original.[12] A.D. Gordon. Bisimilarity as a theory of functional programming: Mini-course. Tech-nical Report NS{95{2, BRICS, Department of Computer Science, University of �Arhus,July 1995.[13] A.D. Gordon and A.M. Pitts, editors. Higher Order Operational Techniques inSemantics. Publications of the Newton Institute. Cambridge University Press, 1998.[14] T.G. Griffin. A formulae-as-types notion of control. In Proceedings of Symposium onPrinciples of Programming Languages, pages 47{58, 1990.[15] C.A. Gunter, D. R�emy, and J.G. Riecke. A generalisation of exceptions and con-trol in ML-like languages. In Proceedings of Conference on Functional ProgrammingLanguages and Computer Architecture, pages 12{23, 1995.[16] R. Harper and C. Stone. An interpretation of Standard ML in type theory. TechnicalReport CMU{CS{97{147, School of Computer Science, Carnegie Mellon University, June1997.[17] R. Hieb, R.K. Dybvig, and C. Bruggeman. Representing control in the presenceof �rst-class continuations. In Proceedings of the Conference on Programming LanguageDesign and Implementation, pages 66{77, June 1990.[18] M. Hofmann. Sound and complete axiomatisations of call-by-value control operators.Mathematical Structures in Computer Science, 5:461{482, 1995.[19] M. Hofmann and T. Streicher. Continuation models are universal for ��-calculus.In Proceedings of Symposium on Logic in Computer Science, pages 387{397, 1997.21

[20] D.J. Howe. Equality in lazy computation systems. In Proceedings of Symposium onLogic in Computer Science, pages 198{203, August 1989.[21] M. Lillibridge. Exceptions are strictly more powerful than call/cc. Technical ReportCMU{CS{95{178, School of Computer Science, Carnegie Mellon University, July 1995.[22] A.R. Meyer and J.G. Riecke. Continuations may be unreasonable (Preliminary Re-port). In Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,pages 63{71, July 1988.[23] C.-H.L. Ong. A semantic view of classical proofs: type-theoretic, categorical and deno-tational characterizations. In Proceedings of Symposium on Logic in Computer Science,pages 230{241, 1996.[24] C.-H.L. Ong and C.A. Stewart. A Curry-Howard foundation for functional computa-tion with control. In Proceedings of Symposium on Principles of Programming Languages,pages 215{227, 1997.[25] M. Parigot. ��-calculus: an algorithmic interpretation of classical natural deduction.In Proceedings of Conference on Logic Programming and Automated Reasoning, volume624 of Lecture Notes in Computer Science, pages 190{201, 1992.[26] M. Parigot. Proofs of strong normalisation for second order classical natural deduction.Journal of Symbolic Logic, 62(4):1461{1479, December 1997.[27] A.M. Pitts. Operational semantics for program equivalence. Slides from talk given atMFPS, 1997.[28] A.M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer andA.M. Pitts, editors, Semantics and Logics of Computation, Publications of the NewtonInstitute, pages 241{298. Cambridge University Press, 1997.[29] A.M. Pitts and I.D.B. Stark. Operational reasoning for functions with local state. InA.D. Gordon and A.M. Pitts, editors, Higher Order Operational Techniques in Semantics,Publications of the Newton Institute, pages 227{273. Cambridge University Press, 1998.[30] P. Selinger. Control categories: an axiomatic approach to the semantics of control infunctional languages. Unpublished manuscript, May 1998.[31] P. Selinger. An implementation of the call-by-name ���-calculus. Unpublishedmanuscript, July 1998.[32] C. Talcott. Reasoning about functions with e�ects. In A.D. Gordon and A.M. Pitts,editors, Higher Order Operational Techniques in Semantics, Publications of the NewtonInstitute, pages 347{390. Cambridge University Press, 1998.[33] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MITPress, 1993.
22

A The ciu-theoremIn this appendix, I shall give details of the proof of the `ciu-theorem': the proof that contex-tual equivalence coincides with ciu-equivalence. First recall these two de�nitions of programequivalence.De�nition 3. Let M and N be terms and C a �-closing context. M is said to contextuallyre�ne N , written � �M v N :�;�, when 8C; E : if (C[M]; E) + then (C[N]; E) + : They aresaid to be contextually equivalent, written ��M � N :�;�, just when ��M v N :�;� i���N vM :�;�.De�nition 4. Given two programsM and N ,M is said to ciu-re�neN , writtenM � N :�;�,just when 8S; E : if (S;M; E)& then (S;N; E)&. They are said to be ciu-equivalent, writtenM ' N :�;� just when M � N :�;� and M � N :�;�.These can be extended to open terms as follows~x: ��M �� N :�;� def= 8~v:M [~x := ~v] � N [~x := ~v]:�;�~x: ��M '� N :�;� def= 8~v:M [~x := ~v] ' N [~x := ~v]:�;�Two facts are almost immediate from the de�nition of ciu-re�nement.Lemma 2.1. 8M:M �M :�;�.2. If M �M 0:�;� and M 0 �M 00:�;� then M �M 00:�;�.The following properties of relations between terms will be useful.De�nition 5. A relation, R, is said to be compatible if it satis�es the following rules.�; x:� . x R x:�;� � . n R n: int;�� .M R N :�;� WeakeningL�; x: .M R N :�;� � .M R N :�;� WeakeningR� .M R N :�;�; a: �; x:� .M R M 0: ;� !I� . �x:M R �x:M 0:�! ;�� .M R N :�! ;� � .M 0 R N 0:�;� !E� .MM 0 R NN 0: ;�� .M R M 0:�;� � . N R N 0: ;� �I� . hM;Ni R hM 0; N 0i:�� ;�� .M R M 0:�� ;� �E� . fst(M) R fst(M 0):�;� � .M R M 0:�� ;� �E� . snd(M) R snd(M 0): ;�23

� .M R M 0: int;� Suc� . suc(M) R suc(M 0): int;�� .M R M 0: int;� � . N R N 0:�;� � . P R P 0:�;� Cond� . ifzM thenN else P R ifzM 0 thenN 0 else P 0:�;��; f :�! �; x:� .M R M 0:�;� �; f :�! � . N R N 0:�;� Recursion� . letrec f = �x:M inN R letrec f = �x:M 0 inN 0:�;�� .M R N :�;� Passivate� . [a:�]M R [a:�]N :?;�; a:�� .M R N :?;�; a:� Activate� . �a:�:M R �a:�:N :�;�A precongruence is a compatible relation which is also transitive. A congruence is a precon-gruence which is also symmetric.It is easy to see that a compatible relation is reexive. Another important property is thefollowing.Lemma 3. If R is a precongruence and �;�0 . M R N :�;�;�0. Then for any context C[�],� . C[M] R C[N]: ;�.Proof. By induction over the structure of the context.We should like to prove that ciu-re�nement is a precongruence. As is usual (e.g. for purePCF), this is extremely di�cult to prove directly. Fortunately Howe [20] has given an in-genious method for proving (pre)congruences of PCF-like languages. The trick is to giveanother relation (which will be written �?), which is almost trivially compatible and ratherless trivially coincides with ciu-re�nement. As ciu-re�nement is transitive, this is enough toshow that it is a precongruence. Howe's method will be adopted here, although it has tobe extended to handle the save and restore features of �PCF. First, the de�nition of the �?relation.De�nition 6. �� n �? N : int;� def= �� n �� N : int;��; x:�� x �? N :�;� def= �; x:�� x �� N :�;��� suc(M) �? N : int;� def= 9P: ��M �? P : int;��� suc(P) �� N : int;��� �x:�:M �? N :�! ;� def= 9P: �; x:��M �? P : ;��� �x:�:P �� N :�! ;���MM 0 �? N : ;� def= 9P; P 0: ��M �? P :�! ;���M 0 �? P 0:�;��� PP 0 �� N : ;��� ifzM thenM 0 elseM 00 �? N :�;� def= 9P; P 0; P 00: ��M �? P : int;���M 0 �? P 0:�;���M 00 �? P 00:�;��� ifz P then P 0 else P 00 �� N :�;�24

�� hM;M 0i �? N :�� ;� def= 9P; P 0: ��M �? P :�;���M 0 �? P 0: ;��� hP; P 0i �� N :�� ;��� fst(M) �? N :�;� def= 9P: ��M �? P :�� ;��� fst(P) �� N :�;��� snd(M) �? N : ;� def= 9P: ��M �? P :�� ;��� snd(P) �� N : ;��� letrec f = �x:M inM 0 �? N : ;� def= 9P; P 0: �; f :�! �; x:� �M �? P :�;��; f :�! ��M 0 �? P 0: ;��� letrec f = �x:P in P 0 �� N : ;��� �a:�:M �? N :�;� def= 9P: ��M �? P :?;�; a:��� �a:�:P �� N :�;��� [a:�]M �? N :?; a:�;� def= 9P: ��M �? P :�;��� [a:�]P �� N :?; a:�;�This relation can be extended to frames, stacks of frames and functions from �-variables tostacks. This is important for technical reasons. The de�nitions are as follows.De�nition 7.1. �M �? F [�]: ;� def= 9N:M �? N :�;�8P:PN � F [P]: ;�v� �? F [�]: ;� def= 9N:v �? N :�! ;�8P:NP � F [P]: ;�h�;Mi �? F [�]:�� ;� def= 9N:M �? N : ;�8P:hP;Ni � F [P]:�� ;�hv; �i �? F [�]:�� ;� def= 9N:v �? N :�;�8P:hv; P i � F [P]:�� ;�fst(�) �? F [�]: ;� def= 8P:fst(P) � F [P]: ;�snd(�) �? F [�]: ;� def= 8P:snd(P) � F [P]: ;�suc(�) �? F [�]: int;� def= 8P:suc(P) � F [P]: int;�ifz � thenM elseM 0 �? F [�]: ;� def= 9N;N 0: M �? N : ;�M 0 �? N 0: ;�8P: ifz P thenN elseN 0 � F [P]: ;�2. [] �? [] F [�] �? F 0[�] S �? S0(F [�] :: S) �? (F 0[�] :: S0)3. E �? E 0 i� 8a:Ea �? E 0a:It is fairly easy to verify that all these relations are reexive.Lemma 4. (Reexivity)1. 8M:��M �? M :�;�. 25

2. 8F [�]:F [�] �? F [�]:�;�.3. 8S:S �? S.4. 8E :E �? E .It is not hard to see that the �? relation is not transitive. However the following propertywill su�ce.Lemma 5. If M �? M 0:�;� and M 0 �M 00:�;� then M �? M 00:�;�.Proof. By induction on M �? M 0:�;�.One half of the coincidence of the �? relation and ciu-re�nement is now immediate.Proposition 2. If M � N :�;� then M �? N :�;�.Proof. We know that M �? M :�;� and have that M � N :�;�. Hence by lemma 5 weconclude that M �? N :�;�.The following two properties will be useful.Lemma 6.1. If v �? v0:�;� and �; x:��M �? M 0: ;� then ��M [x := v] �? M 0[x := v0]: ;�.2. If v �? M :�;� then 9w:v �? w:�;� and w �M :�;�.Proof. Part 1 follows by induction on M . Part 2 by induction on v.The following property relates the �? relation and the termination relation.Proposition 3. If S �? S0, M �? M 0:�;�, E �? E 0 and (S;M; E)& then (S0;M 0; E 0)&.Proof. By induction on depth of (S;M; E)&.Corollary 1. If (S;M; E)& and M �? N :�;� then (S;N; E)&.We can now show the other direction of the coincidence of the �? relation and ciu-re�nement(cf. Proposition 2)Proposition 4. If M �? N :�;� then M � N :�;�.Proof. Assume that M �? N :�;� and that (S;M; E)&. Then by corollary 1, it follows that(S;N; E)&.As the �? relation is trivially compatible, Propositions 2 and 4 allow one to conclude thatciu-re�nement is also compatible. In addition, ciu-re�nement is transitive (Lemma 2), whichallows one to conclude that it is a precongruence.Proposition 5. � is a precongruence.This now allows us to conclude that ciu-re�nement is included in contextual re�nement.26

Proposition 6. If M � N :�;� then M v N :�;�.Proof. By Proposition 5 we have that C[M] � C[N]: which is su�cient.An important property of the termination relation and evaluation contexts is the following.Lemma 7. (S;E[M]; E)& i� (dE[�]e :: S;M; E)&.Proof. By induction on the structure of E[�].Evaluation contexts and frame stacks can be seen to be in one-to-one correspondence asfollows.Lemma 8.1. 8E[�];9S such that S =dE[�]e.2. 8S;9E[�] such that S =dE[�]e.We can now conclude that contextual re�nement is included in ciu-re�nement.Proposition 7. If M v N :�;� then M � N :�;�.Proof. By assumption we have that if ([]; C[M]; E)& then ([]; C[N]; E)&. In particularwe can take only the contexts which are evaluation contexts; thus, if ([]; E[M]; E)& then([]; E[N]; E)&. From Lemma 7 we have that if (dE[�]e;M; E)& then (dE[�]e; N; E)&. FromLemma 8 we are done.Thus we have proved the ciu-theorem.Theorem 2. ��M v N :�;� i� ��M �� N :�;�.Proof. The �-closed instances follow from Propositions 6 and 7. It is relatively straightfor-ward to extend these to the open versions.

27

