
Observations on a Linear PCF(Preliminary Report)G.M. BiermanGonville and Caius College,Cambridge. England.AbstractThis paper considers some theoretical and practical issues concerning the use of lin-ear logic as a logical foundation of functional programming languages such as Haskelland SML. First I give an operational theory for a linear PCF: the (typed) linear �-calculus extended with booleans, conditional and non-termination. An operationalsemantics is given which corresponds in a precise way to the process of �-reductionwhich originates from proof theory. Using this operational semantics I de�ne notionsof observational equivalence (sometimes called contextual equivalence). Surprisingly,the linearity of the language forces a reworking of the traditional notion of a context(the details are given in an appendix). A co-inductively de�ned notion, applicativebisimularity, is developed and compared with observational equivalence using a vari-ant of Howe's method. Interestingly the equivalence of these two notions is greatlycomplicated by the linearity of the language. These equivalences are used to study acall-by-name translation of PCF into linear PCF. It is shown that this translation isadequate but not fully abstract. Finally I show how Landin's SECD machine can beadapted to execute linear PCF programs.1 IntroductionSince its inception, Girard's linear logic [11] has promised to give a re�ned view of com-putation due to its resource-conscious nature. The intuitionistic fragment yields, via theCurry-Howard correspondence, a (typed) linear �-calculus [3, 5]; where linearity meansthat variables occur exactly once and, consequently, there are explicit operations to discardand duplicate terms. An important result is that there are several ways of translating the(typed) �-calculus (the foundation of functional programming languages) into the linear�-calculus. Semantically this has proved a very useful viewpoint|rather than devising amodel of the �-calculus one can, in its stead, produce a model of the linear �-calculus [6].This approach has been utilised, for example, by Plotkin in studying recursion and para-metricity [21] and by Abramsky et al. [2] to produce fully abstract models of PCF.A more operational perspective is to consider the linear �-calculus as some sort ofintermediate language to which the �-calculus is compiled.1 This has an obvious practicaladvantage in that the linear calculus is explicit about its manipulation of data and sopossible optimisations should be expressible as simple term rewrites. The picture in mindis 1Maybe a more fashionable description is to say that the linear �-calculus can be thought of as acomputational metalanguage. 1



Functional Language?Compilation�-calculus?Translationlinear �-calculuswhere the �rst step traditionally occurs in functional language compilers [15]. At the levelof the �-calculus we normally say that an optimisation is the replacement of a subtermM with another, N , which we permit only if they are observationally equivalent , viz. ifno matter where they are placed in a program we can not tell them apart. Thus if weare including an extra stage of translation to the linear �-calculus we need not only todevelop a theory of observational equivalence for the linear calculus, but also to considerto what extent the translation process preserves this equivalence. This paper represents a�rst step in that direction.This paper is organised as follows. In x2 I give the syntax and operational semanticsfor a linear PCF. I consider the question of a formal de�nition of a context for the linearcalculus and show that traditional treatments for non-linear calculi are inadequate. I givea more precise de�nition which is suitable for the linear calculus. Using this de�nition Igive two versions of observational equivalence: one where observations are made only atboolean type (ground) and one where observations are made at all types (lazy). I thengive a co-inductive de�nition of program equivalence known as applicative (bi)simularity.Employing a variant of Howe's method I show that applicative bisimularity coincides withlazy observational equivalence. In x3.1 I give the syntax of PCF and also a translationof terms from linear PCF to PCF. In x3.2 I give a call-by-name operational semanticsfor PCF and also recall standard de�nitions of observational equivalence and applicativebisimulation. In x4 I give a translation of terms from (call-by-name) PCF to linear PCFand show that the translation is adequate but not fully abstract. In x5 I show how Landin'sSECD machine can be adapted to execute linear PCF-terms. I conclude, in x6, with anindication of future work. 2 A Linear PCFThe core corresponds via the Curry-Howard correspondence to the natural deductionformulation of the (
;��; !)-fragment of Intuitionistic Linear Logic (ILL). For the purposesof this paper the core calculus has been extended with booleans, a conditional operator andnon-terminating constants (at all types) to yield a simple linear functional programminglanguage, which we refer to as linear PCF.Types are given by the grammar� ::= bool j ���� j �
� j !�;
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and raw terms are then given by the grammarM ::= true; false Booleansj x Variablej �x:�:M Abstractionj MM Applicationj M
M Multiplicative Pairj letM be x
x inM Splitj if M thenM elseM Conditionalj promote ~M for ~x inM Promotej derelict(M) Derelictj discardM inM Discardingj copyM as x; x inM Duplicationj 
� Non-termination;where x is taken from some countable set of variables and � is a well-formed type. Atyping judgement is written �.M :� where � is a multiset of (variable,type)-pairs. In thispaper we shall only consider well-typed terms, i.e. those for which there is a valid typingjudgement. The rules for forming typing judgements are given in Figure 1. A term Mcontaining no free variables (i.e. ; . M :�) is said to be closed (otherwise it is said to beopen). The set of linear PCF-terms which can be assigned the type � given � shall bewritten Exp�(�). If the multiset � is empty this shall be abbreviated to Exp(�).The one-step `�-rules' arise for the core calculus by analysing the process of normalisa-tion via the Curry-Howard correspondence (those for the conditional are intuitive). Theyare as follows. (�x:�:M)N ;� M [x := N ]letM
N be x
y in P ;� P [x :=M;y := N ]derelict(promote ~M for ~x inN) ;� N [~x := ~M ]discard (promote ~M for ~x inN) in P ;� discard ~M in Pcopy (promote ~M for ~x inN) as y; z in P ;� copy ~M as ~x0; ~x00 inP [y := promote ~x0 for ~x inN;z := promote ~x00 for ~x inN ]if true thenM elseN ;� Mif false thenM elseN ;� NAgain further details can be found in earlier papers [3, 5]. Two important properties arethe following, which are known as closure under substitution and the subject reductionproperty, respectively.Proposition 1.1. If � . M :� and �; x:� . N : then �;� . N [x :=M ]: .2. If � . M :� and M ;� N then � . N :�.To use linear PCF in the operational rôle mentioned in the introduction, we need toconsider how a program (a closed term) is reduced, or evaluates, to a value. To do thiswe need to consider where and when to apply the �-rules from above. This can be doneby de�ning a big-step operational semantics, viz. an inductively de�ned relation, written3



x:� . x:� ; . b: bool ; . 
�:��; x:� . M : (��I)� . �x:�:M :��� � . M :��� � . N :� (��E)�;� . MN : �1 . M1: !�1 � � ��n . Mn: !�n x1: !�1; : : : ; xn: !�n . N : Promotion�1; : : : ;�n . promote ~M for ~x inN : ! � . M : !� Dereliction� . derelict(M):�� . M : !� � . N : Weakening�;� . discardM inN : � . M : !� �; x: !�; y: !� . N : Contraction�;� . copyM as x; y inN : � . M :� � . N : (
I)�;� . M
N :�
 � . M :�
 �; x:�; y: . N :' (
E)�;� . letM be x
y inN :'� . M : bool � . N :� � . P :� Conditional�;� . if M thenN else P :�Figure 1: Type Assignment for Linear PCF.
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M + vwhere M and v are closed terms and v is a value (de�ned later).Normally when de�ning this relation there are a number of choices corresponding to thedi�erent calling mechanisms. In his inuential paper, Abramsky [1] demonstrated thatthe re�ned connectives of linear logic e�ectively suggest their own evaluation strategy.However, Abramsky's semantics was for a slightly di�erent calculus (one which fails tohave the properties given in Proposition 1), although the main di�erence is with the rulesinvolving the exponential.Firstly values are de�ned inductively asv ::= true; falsej �x:�:Mj v
vj promote ~v for ~x inM:The operational semantics is given in Figure 2.Two remarks are worth making here. Firstly it is tempting to suggest that as attentionis restricted to just closed terms, all occurrences of the Promotion rule yield terms of theform promote � for � inM;and so one need only consider the syntactic form promote(M) (c.f. [17, p. 403]). Unfortu-nately, as there are constants, this simply is not true; for example the closed termpromote (promote � for � in true) for x in x:Secondly, there are alternative de�nitions of the rules for Weakening and Contraction, viz.M + promote ~v for ~x in P discard ~v inN + v0discardM inN + v0M + promote ~v for ~z in P copy ~v as ~z0; ~z00 inN " x := promote ~z0 for ~z in Py := promote ~z00 for ~z in P # + v0copyM as x; y inN + v0These are given directly by the �-rules and were included in a �rst draft of this paper.However given the de�nition of values above, they are equivalent (and much less e�cient)to those in Figure 2. If we had constants of exponential type, it might be the case thatthese rules were preferable. Another reason for not using them here is practical. In thealternative rule for Contraction given above, the upper two substitutions involve openterms, which is quite unusual and would require a complicated implementation involvingpointers (the rules of Figure 2 can be implemented quite simply, see x5).An alternative method of presenting program evaluation is to de�ne a transition rela-tion, written M )M 05



(+ Bool)b + b (+ ��I)�x:�:M + �x:�:MM + �x:�:P N + v P [x := v] + v0 (+ ��E )MN + v0M + v N + v0 (+ 
I)M
N + v
v0M + v
v0 N [x := v; y := v0] + v00 (+ 
E )letM be x
y inN + v00M + true N + v (+ Cond)if M thenN else P + v M + false P + v (+ Cond)if M thenN else P + vMi + vi 0 � i � k (+ Promotion)promoteMi for xi inN + promote vi for xi inNM + promote ~v for ~x inN N [~x := ~v] + v0 (+ Dereliction)derelict(M) + v0M + promote ~v for ~z in P N [x; y := promote ~v for ~z in P ] + v0 (+ Contraction)copyM as x; y inN + v0M + promote ~v for ~x in P N + v0 (+Weakening)discardM inN + v0Figure 2: Operational Semantics for Linear PCF.
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(�x:�:M)v )M [x := v]let v
v0 be x
y in P ) P [x := v; y := v0]derelict(promote ~v for ~x inN)) N [~x := ~v]discard (promote ~v for ~x inN) in P ) discard ~v in Pcopy (promote ~v for ~x inN) as y; z in P ) copy ~v as ~x0; ~x00 in P "y := promote ~x0 for ~x inNz := promote ~x00 for ~x inN #if true thenM elseN )Mif false thenM elseN ) NM )M 0MN )M 0N N ) N 0vN ) vN 0M )M 0if M thenN else P ) if M 0 thenN else PM )M 0M
N )M 0
N N ) N 0v
N ) v
N 0M )M 0letM be x
y inN ) letM 0 be x
y inNMi )M 0ipromoteM1; : : : ;Mi; : : : ;Mk for x1; : : : ; xi; : : : ; xk inN) promoteM1; : : : ;M 0i ; : : : ;Mk for x1; : : : ; xi; : : : ; xk inNM )M 0derelict(M)) derelict(M 0)M )M 0discardM inN ) discardM 0 inNM )M 0copyM as x; y inN ) copyM 0 as x; y inNFigure 3: Transition Semantics for Linear PCF.
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where M and M 0 are closed terms. In contrast to the operational semantics given earlier,this is a single-step semantics. The rules are given in Figure 3.2The two systems are equivalent in the following sense.Theorem 1. M + v i� M )� v.Proof. From left to right by induction on M + v. From right to left by proving that ifM )M 0 and M 0 + v then M + v (by induction on M )M 0).I shall use the big-step semantics of Figure 2 in the rest of this paper as it is more abstract.Next we need to introduce the notion of a context. This is to be thought of as a linearPCF-term with a typed `hole' in it; in to which another term may be substituted. Unlikeordinary substitution, this process is permitted to capture variables.Unlike the case for PCF, formally de�ning this notion of a linear context is surprisinglydi�cult. More details are given in Appendix A. For now it is su�cient just to understandthe notation: �(�):�;� . L[��]: denotes a linear context, L, of type  , with free variables �, and with a single hole of type� and free variable set given by �. An example may be useful. Consider�(x:�):�
bool; ; . �x:�:�:���(�
bool);which is a linear context with a single hole. The rule governing placement of a context fora hole is H; � . M :� H0; �(�):�;� . N : Placement:H;H0;� . N [M=�]: Thus for the example above we could place the termx:� . x
true:�
boolin the hole to yield the term ; . �x:�:x
true:���(�
bool)where one should notice that the free variable x has become bound by the process ofplacement.It is now possible to de�ne a notion of observation. As is the case for PCF we areable to give two de�nitions which di�er on what can be observed: either elements of theground type(s) (in this case just booleans) or termination at all types. For call-by-valuePCF these notions coincide, but there is some doubt as to whether they do for linear PCFdespite the fact it is a call-by-value language. This point will be considered in more detailat the end of this section.De�nition 1. Given � . M :� and � . N :� we shall say that M ground-observationallyre�nes N , written � . M vgnd� N , where for all closing boolean contexts, �(�):�; ; .L[��]: bool, if L[M ] + true then L[N ] + true.2One could present these rules more succinctly by de�ning a notion of evaluation context.8



We would then write � .M �gnd� N i� � .M vgnd� N and � . N vgnd� M and refer to thisrelation as ground observational equivalence.De�nition 2. Given �.M :� and �.N :� we shall say thatM lazy-observationally re�nesN , written � . M vlazy� N , where for all closing contexts, �(�):�; ; . L[��]: , if L[M ] +then L[N ] +.We write � .M �lazy� N i� � .M vlazy� N and � .N vlazy� M and refer to this relation aslazy observational equivalence. It is clear that lazy observational equivalence is a strongernotion than ground observational equivalence.Lemma 1. If � . M �lazy� N then � . M �gnd� N .Lemma 2.1. If � . M vgnd� N then � . L[M ] vgnd L[N ] for all contexts �(�):�;� . L[��]: .2. If � . M vlazy� N then � . L[M ] vlazy L[N ] for all contexts �(�):�;� . L[��]: .Proof. E�ectively by composition of contexts.A linear pre-congruence relation is essentially a relation on linear PCF-terms which re-spects the rules of term formation.De�nition 3.1. If R is a family of relations R�;� � Exp�(�) � Exp�(�) which satis�es the rules inFigure 4, then it is said to be a pre-congruence.2. If R is a pre-congruence and, in addition, satis�es the rule� . M RN :� Symmetry� . N RM :�then it is said to be a congruence.Lemma 3. Let R be a pre-congruence relation. Suppose that � . M RN :�. Then for alinear context �(�):�;� . L[�]: it is the case that � . L[M ]RL[N ]: .Proof. By induction on the derivation of L[�]. (The rules for formation are given inAppendix A.)Lemma 4. v is a pre-congruence.The problem with both de�nitions of observational equivalence is that the quanti�cationover all contexts makes them very di�cult to work with. Instead a co-inductive de�nitionof program equivalence called applicative bisimulation can be given, which can then becompared to the notions of observational equivalence.The relation of applicative simularity is de�ned as the greatest �xed point of a certainmonotone operation on relations. This operation is given in two stages.9



� . M :� Reexivity� . M RM :�� . M RN :� � . N R P :� Transitivity� . M R P :�� . M :� �; x:� . N R P : Subs1�;� . N [x :=M ]R P [x :=M ]: � . M RN :� �; x:� . P : Subs2�;� . P [x :=M ]R P [x := N ]: �; x:� . M RN : (��I)� . �x:�:M R �x:�:N :��� �1 . M1 RM 01: !�1 � � ��n . Mn RM 0n: !�n x1: !�1; : : : ; xn: !�n . N RN 0: Promotion�1; : : : ;�n . promote ~M for ~x inN R promote ~M 0 for ~x inN 0: ! � . M RM 0: !� �; x: !�; y: !� . N RN 0: Contraction�;� . copyM as x; y inN R copyM 0 as x; y inN 0: � . M RM 0:�
 �; x:�; y: . N RN 0:' (
E )�;� . letM be x
y inN R letM be x
y inN :'Figure 4: Rules for a Linear Pre-Congruence Relation.
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De�nition 4. Given a family of (type-indexed) relations R = (R� � Exp(�) � Exp(�))between closed linear PCF-terms, we can de�ne a family of relations hRi� between closedvalues as follows.� b hRibool b0 if b � b0,� v1
v2 hRi�
 v01
v02 if v1 hRi� v01 and v2 hRi v02,� �x:�:M hRi��� �x:�:M 0 if 8v:�:M [x := v] R M 0[x := v], and� promote ~v for ~x inM hRi!� promote ~v0 for ~x0 inM 0 if M [~x := ~v] R�M 0[~x0 := ~v0].This de�nition can be extended to closed linear PCF-terms as follows.M [R]�N () 8v:if M + v then 9v0:N + v0 and v hRi� v0:Lemma 5. The function R 7! [R] is monotone.Proof. Essentially by induction over v hRi� v0.A family of relations, R, satisfying R � [R], is called a (linear PCF) simulation. As thefunction described in Lemma 5 is monotone and the families indexed by their types forma complete lattice then it has a greatest �xed point, which is denoted by �, and referredto as (linear PCF) applicative simularity . Associated with this greatest �xed point is aco-inductive principle:To show (M;N) 2 � it is su�cient to �nd an S such that S � [S] and (M;N) 2 S:Applicative simularity can be extended to open linear PCF-terms as follows.x1:�1; : : : ; xn:�n . M �� N () 8vi: ; . M [~x := ~v] � N [~x := ~v]where ; . vi:�i;where the vi are values. It is easy to show that the relation� is a partial order. Applicativebisimularity, written �app is de�ned as the symmetrisation of �, viz.� . M �app� N i� � . M ��� N and � . N ��� M:An important property is that � is a pre-congruence. It turns out, as is the case for PCF,that this is rather di�cult to prove. A well-established and ingenious technique was givenby Howe [14]. One de�nes another relation, which is trivially a pre-congruence, and, ratherless trivially, is an applicative simulation. I shall adapt his technique here for linear PCF.De�nition 5. The relation �? between two well-typed expressions is de�ned inductively
11



as follows. x:� . x �?� N i� x:� . x ��� N; . b �?bool N i� ; . b �bool N; . 
� �?� M i� ; . 
� �� M� . �x:�:M �?��� N i� 9M 0:�; x:� .M �? M 0 and� . �x:�:M 0 ����� N�;� . (M1M2) �? N i� 9M 01;M 02:� . M1 �?��� M 01;� . M2 �?� M 02 and�;� . (M 01M 02) �� N�;� . M1
M2 �?�
 N i� 9M 01;M 02:� . M1 �?� M 01;� . M2 �? M 02 and�;� . M 01
M 02 ���
 N�;� . letM1 be x
y inM2 �?' N i� 9M 01;M 02:� . M1 �?�
 M 01;�; x:�; y: .M2 �?' M 02 and�;� . letM 01 be x
y inM 02 ��' N�;� . if M1 thenM2 elseM3 �?� N i� 9M 01;M 02;M 03:� . M1 �?bool M 01;� . M2 �?� M 02;� . M3 �?� M 03 and�;� . if M 01 thenM 02 elseM 03 ��� N� . derelict(M) �?� N i� 9M 0:� . M �?!� M 0 and� . derelict(M 0) ��� N�1; : : : ;�n . promote ~M for ~x inN �?! P i� 9 ~M 0; N 0:�i . Mi �?!�i M 0i ;xi: !�1; : : : ; xn: !�n . N �? N 0 and�1; : : : ;�n . promote ~M 0 for ~x inN 0 ��! P�;� . copyM as x; y inN �? P i� 9M 0:N 0:� . M �?!� M 0;�; x: !�; y: !� . N �? N 0 and�;� . copyM 0 as x; y inN 0 �� P�;� . discardM inN �? P i� 9M 0; N 0:� . M �?!� M 0;� . N �? N 0 and�;� . discardM 0 inN 0 �� PAn important property of this relation is the followingLemma 6. If � . M �?� N and � . N ��� P then � . M �?� P .Proof. By induction over � . M �?� N . Here I give three example cases.1. � . derelict(M) �?� N . Thus 9M 0:� . M �?!� M 0 and � . derelict(M 0) ��� N . Byassumption and transitivity of �� then � . derelict(M 0) ��� P and we are done.2. � . promoteM for x inQ �?!� N . Thus 9M 0; Q0:� . M �?! M 0 and x: ! . Q �?� Q0and � . promoteM 0 for x0 inQ0 ��!� N . By assumption and transitivity of �� then� . promoteM 0 for x0 inQ0 ��!� P and we are done.3. �;�.copyM as x; y inQ �?� N . Thus 9M 0; Q0:�.M �?! M 0 and �; x: ! ; y: ! .Q �?�Q0 and �;� . copyM 0 as x; y inQ0 ��� N . By assumption and transitivity of �� then�;� . copyM 0 as x; y inQ0 ��� P and we are done.12



One direction of the equivalence is now immediate.Proposition 2. If � . M ��� N then � . M �?� N .Proof. It is clear that � . M �?� M (reexivity) and, by assumption, that � . M ��� N .From Lemma 6 we conclude � . M �?� N .It is also relatively straightforward to prove the following.Lemma 7. If � .M �?� M 0 and �; x:� .P �? P 0 then �;� .P [x :=M ] �? P 0[x :=M 0].Proof. By induction on the structure of P .An important property is the following.Lemma 8. If ; . M �?� N and M + v then 9v0 such that N + v0 and ; . v �?� v0.Proof. By induction on structure of M + v. Four example cases are the following.1. promoteM for x inQ + promote v for x inQ: By assumption 9M 0; Q0:; . M �?! M 0and x: ! .Q �?� Q0 and ;.promoteM 0 for x inQ0 �!� N . By induction we haveM 0 +v0 and ; . v �?� v0. We can deduce that promoteM 0 for x inQ0 + promote v0 for x inQ0and hence it follows that N + w and ; . promote v0 for x inQ0 �!� w. From Proposi-tion 2 we can conclude ; . promote v for x inQ �?!� w and we are done.2. derelict(M) + v: By assumption 9M 0:; . M �?!� M 0 and ; . derelict(M 0) �� N .By induction we have M 0 + v00 and ; . promote v0 for x in P �?!� v00. By de�nition9w;P 0:; . v0 �?! w and x: ! . P �?� P 0 and ; . promote w for x in P 0 �!� v00. ByLemma 7 we have that ; . P [x := v0] �?� P 0[x := w]. By determinancy of evaluationwe have that v00 � promote w00 for y inQ and then as ; . promote v0 for x in P 0 �!�promote w00 for y inQ we can conclude that ; . w �! w00 and ; . P 0[x := w] ��Q[y := w00]. From Lemma 6 we have that ; . P [x := v0] �?� Q[y := w0] and then byinduction Q[y := w0] + a and ; . v �?� a. We can now conclude that derelict(M 0) + aand hence that N + c and ;.a �� c. From ;.v �?� a and ;.a �� c we can concludethat ; . v �?� c and we are done.3. discardM in P + v: By assumption 9M 0; P 0:; . M �?!� M 0 and ; . P �? P 0 and; . discardM 0 in P 0 � N . By induction we have both M 0 + w and ; . v0 �?!� w; andP 0 + w0 and ; . v �? w0. We can deduce that discardM 0 in P 0 + w0 and hence N + aand ; . w0 � a. By Lemma 6 we can conclude ; . v �? a and we are done.4. copyM as x; y in P + v: By assumption 9M 0; P 0:; .M �?!� M 0 and x: !�; y: !� . P �? P 0 and ; . copyM 0 as x; y in P 0 � N . By induction we have that M 0 + v00 and; . v0 �?!� v00. By Lemma 7 we have that ; . P [x; y := v0] �? P 0[x; y := v00]. Byinduction we have that P 0[x; y := v00] + v000 and ; . v �? v000. We can deduce thatcopyM 0 as x; y in P 0 + v000 and by assumption then N + w and ; . v000 � w. From; . v �? v000 and ; . v000 � w, we can conclude that ; . v �? w and we are done.
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Lemma 9. If ; . v �?� v0 then vh�?iv0.Proof. By induction on the structure of v. For example, assume that ;.promote ~v for ~x inM �?!�promote ~v0 for ~x0 inM 0 viz. 9~w;N such that ;.vi �?! 1 wi; ~x.M �?� N and ;.promote ~w for ~x inN �!�promote ~v0 for ~x0 inM 0. By de�nition this implies ; . N [~x := ~w] �� M 0[~x0 := ~v0]. ByLemma 7 we have also that ; . M [~x := ~v] �?� N [~x := ~w]. By Lemma 6 we can concludethat ; . M [~x := ~v] �?� M 0[~x0 := ~v0] and we are done.We can now prove the other direction of the equivalence.Proposition 3. If � . M �?� N then � . M ��� N .Proof. Form the setS def= f(M;N) j ; . M �?� Ng � Exp(�)� Exp(�)and show that S � [S] which holds given Lemmas 8 and 9. Thus we have that ;.M �?� Nimplies ;.M �� N . We have that 8v:;.v �? v, hence given any open terms ~x: �.M �?� Nwe have by Lemma 7 that ; . M [~x := ~v] �?� N [~x := ~v] and then we can invoke the abovereasoning for the resulting closed terms.Proposition 4. �? is a pre-congruence.Proof. Simply by checking that �? satis�es the rules given in Figure 4. The Subs1 andSubs2 rules follow from Lemma 7. The other rules hold trivially by de�nition and giventhat � is reexive.Theorem 2. �� is a pre-congruence.Proof. Immediate from Propositions 2, 3 and 4.It is now possible to consider to what extent the two notions of program equivalence,observational equivalence and applicative bisimularity, are equivalent.Proposition 5. If � . M ��� N then � . M vlazy� N .Proof. Suppose that �.M ��� N . As �� is a pre-congruence we have that for any closinglinear context �(�):�; ; . L[��]: that; . L[M ] � L[N ]which by de�nition gives that if L[M ] + v then 9v0 such that L[N ] + v0 and we are done.Corollary 1. If � . M ��� N then � . M vgnd� N .Proposition 6. If ; . M vlazy� N then ; . M �� N .14



Proof. We form the set S = f(M;N) j ; . M vlazy� Ngand show that S � [S]. Thus take M and N such that ;.M vlazy� N andM + v. As theyare lazy-observationally equivalent, taking the identity context gives that there exists a v0such that N + v0. We show that v hSi� v0 by induction on the type �.1. (� � bool) Build the contextL[�bool] def= if � then true else 
:Thus L[M ] + true i� M + true i� L[N ] + true i� N + true and we are done. Thecase for M + false is similar.2. (� � �
 ) This holds by induction.3. (� � ��� ) We have that M + �x:P and N + �x:Q. Take any context L[� ] andcall L0 the context which results from replacing the occurrence of the hole � withthe term ���� v. ThusL[P [x := v]] + () L[(�x:P )v] +() L0[�x:P ] +() L0[M ] +() L0[N ] +() L0[�x:Q] +() L[(�x:Q)v] +() L[Q[x := v]] + :4. (� �!�) Thus we have that M + promote ~v for ~x in P and N + promote ~v0 for ~x0 inQ.Take any context L[��] and call L0 the context which results from replacing the hole�� with the term derelict( �!� ). ThusL[P [~x := ~v]] + () L[derelict(promote ~v for ~x in P )] +() L0[promote ~v for ~x in P ] +() L0[M ] +() L0[N ] +() L0[promote ~v0 for ~x0 inQ] +() L[derelict(promote ~v0 for ~x0 inQ)] +() L[Q[~x0 := ~v0]] + :
15



Lemma 10. If �; x:� .M vlazy N then � . M [x := v] vlazy N [x := v] for any ; . v:�.Proof. Assume that �; x:� . M vlazy N . Then for a given context �(�): ; ; . L[� ]:',we call L0 the context which results from replacing the hole � which the term (�x:�:� )v(hence �(�; x:�); ; . L0[� ]:').L[M [x := v]] + () L[(�x:M)v] +() L0[M ] +() L0[N ] +() L[(�x:N)v] +() L[N [x := v]] +Proposition 7. If � . M vlazy� N then � . M ��� N .Proof. By de�nition ~x: � . M ��� N i� ; . M [~x := ~v] �� N [~x := ~v] for values ~v. FromLemma 10 we have that ;.M [~x := ~v] vlazy� N [~x := ~v] and then we can apply Proposition 6to get ; . M [~x := ~v] �� N [~x := ~v] and we are done.Thus two notions of program equivalence coincide; this is often called operational exten-sionality.Corollary 2. � . M �lazy� N i� � . M �app� N .Discussion. However it does not appear that ground observational equivalence coincideswith applicative bisimularity (unlike call-by-value PCF). This seems to be a problem withlinearity: there are very few linear contexts of type bool. For example there appears to beno boolean context which distinguishes3�x: !bool:discard x in 
bool from 
!bool��bool;thus ; . �x: !bool:discard x in 
 vgnd!bool��bool 
. However given De�nition 4 they are clearlynot applicatively similar. A co-inductive de�nition of applicative bisimularity which coin-cides with ground observational equivalence must wait for a future paper.3 PCF3.1 SyntaxWe shall consider a PCF which is simply the �-calculus extended with pairs, booleans, aconditional and non-terminating constants. More precisely, types are given by the gram-mar � ::= bool j � � � j � ^ �;3Any context either entirely discards the term (in which case they are observably the same), or usesthe term, viz. it is applied to an argument (in which case they both fail to terminate and are observablythe same). Any other alternative seems excluded by the type system.16



and raw terms by the grammare ::= true; false Booleansj x Variablej �x:�:e Abstractionj ee Applicationj he; ei Pairj fst(e) First Projectionj snd(e) Second Projectionj if e then e else e Conditionalj 
� Non-termination;where x is taken from some countable set of variables and � is a well-formed type. Atyping judgement is written � . e:� where � is a set of (variable,type)-pairs. Again weshall consider only well-typed terms. The rules for forming typing judgements are givenin Figure 5. �; x:� . x:� � . b: bool � . 
�:�� . e:� � . f : � (^I)� . he; fi:� ^ � � . e:� ^ � (^E�1)� . fst(e):� � . e:� ^ � (^E�2)� . snd(e): ��; x:� . e: � (�I)� . �x:�:e:� � � � . e:� � � � . f :� (�E)� . ef : �� . e: bool � . f :� � . g:� Conditional� . if e then f else g:�Figure 5: Type Assignment for PCF.There is a simple translation on formulae from ILL to intuitionistic logic (IL), whichreplaces the linear connectives with their intuitionistic counterparts and removes any oc-currences of the exponential. This is denoted by (�)s and is given bybools def= bool(��� )s def= �s �  s(�
 )s def= �s ^  s(!�)s def= �s:It can be extended to terms (in context) as follows, where �s denotes the application ofthe translation to all the members of �.
17



jx:� . x:�js def= x:�s . x:�sj; . b: booljs def= ; . b: boolj; . 
�:�js def= ; . 
�s :�sj� . �x:�:M :��� js def= �s . �x:�s:jM js:�s �  sj�;� . MN : js def= �s;�s . jM jsjN js: sj�;� . M
N :�
 js def= �s;�s . hjM js; jN jsi:�s ^  sj�;� . letM be x
y inN :�js def= �s;�s . jN js[x := fst(jM js); y := snd(jM js)]:�sj�;� . if M thenN else P :�js def= �s;�s . if jM js then jN js else jP js:�sj�;� . discardM inN :�js def= �s . jN js:�sj�;� . copyM as x; y inN : js def= �s;�s . jN js[x; y := jM js]: sj� . derelict(M):�js def= �s . jM js:�sj~�;� . promote ~M for ~x inN : !�js def= ~�s;�s . jN js[~x := ~jM js]:�s3.2 Call-by-Name SemanticsThe de�ning feature of call-by-name is that arguments are passed in unevaluated, viz.e + �x:�:g g[x := f ] + cef + cAnother feature is that pairs are considered to be values (we do not evaluate the elementsof the pairs). Values are given by the inductive de�nitionc ::= true; falsej �x:�:ej he; ei:The (call-by-name) operational semantics are given in Figure 6.Now we need to de�ne both observational equivalence and applicative bisimularity forthe PCF as well. Both Gordon [12] and Pitts [20] have o�ered de�nitions|here I shallfollow those given by Pitts.4A context is a PCF-term with typed hole(s) in it. One can carry over the de�nition ofa linear context to the non-linear setting (the details are left to the reader). I shall adoptsimilar notation, viz. �(�):�;� . C[�]: �to represent a (PCF) context of type � , with free variables contained in � and with hole(s)�, of type � and free variable set given by �.De�nition 6. Given � . e:� and � . f :� we shall say that e observationally re�nesf , written � . e vgnd� f , where for all closing boolean contexts, �(�):�; ; . C[�]: bool, ifC[e] + true then C[f ] + true.4I shall use the same symbols as for the linear counterparts. The types should ensure that there is noconfusion. 18



b + b �x:�:e + �x:�:ee + �x:�:g g[x := f ] + cef + che; fi + he; fie + hf; gi f + cfst(e) + c e + hf; gi g + csnd(e) + ce + true f + cif e then f else g + c e + false g + cif e then f else g + cFigure 6: Call-By-Name Operational Semantics for PCF.We write � . e �gnd� f i� � . e vgnd� f and � . f vgnd� e and refer to this relation as groundobservational equivalence.5De�nition 7. Given a family of (type-indexed) relations R = (R� � Exp(�) � Exp(�))between closed PCF-terms, we can de�ne a family of relations [R]� as follows.� e[R]boolf i� 8b: if e + b then f + b,� e[R]�^� f i� fst(e)R� fst(f) and snd(e) R� snd(f),� e[R]���f i� 8g:�:eg R� fg.A family of relations, R, satisfying R � [R], is called a (PCF) simulation. As the functionR 7! [R] is monotone and the families indexed by their types form a complete lattice thenthe function has a greatest �xed point, which is denoted by �, and referred to as (PCF)applicative simularity .Applicative simularity is extended to open PCF-terms as follows.x1:�1; : : : ; xn:�n . e ��� f () 8gi: ; . e[~x := ~g] �� f [~x := ~g]where ; . gi:�i;where the gi are PCF-terms. Applicative bisimularity, written �app is de�ned as thesymmetrisation of �, viz.� . e �app� f i� � . e ��� f and � . f ��� e:It is then possible to show that these two notions of program equivalence coincide.Theorem 3. � . e �gnd� f i� � . e �app� f .Proof. An analogous proof is given in detail in Pitts's notes [20, x4].5One could also develop a notion of observation at all types but observation at ground (boolean) typeseems to be the norm. 19



4 The Call-by-Name TranslationIn his seminal paper, Girard presented a translation of formulae from IL to ILL which hedenoted by (�)�. It has been folklore that this corresponds to a call-by-name translation.The translation is as follows.6 bool� def= bool(� � �)� def= !������(� ^ �)� def= !��
!��The operational intuition is that objects of type !� are left unevaluated. Thus the trans-lation of a function type � � � to !������ indicates that arguments are passed in uneval-uated, viz. a call-by-name strategy. The translation can be given at the level of typingderivations as follows.j~x: � . b: boolj� def= ~x: !�� . discard ~x in b: boolj~x: � . 
�:�j� def= ~x: !�� . discard ~x in 
�� :��j~x: �; y:� . y:�j� def= ~x: !��; y: !�� . discard ~x in derelict(y):��j� . �y:�:e:� � � j� def= !�� . �y: !��:jej�: !������j~x: � . ef : � j� def= ~x: !�� . copy ~x as ~x0; ~x00in ((je[~x := ~x0]j�)(promote ~x00 for ~x in jf j�)): ��j~x: � . he; fi:� ^ � j� def= ~x: !�� . copy ~x as ~x0; ~x00in (promote ~x0 for ~x in jej�)
(promote ~x00 for ~x in jf j�): !��
!��j� . fst(e):�j� def= !�� . let jej� be x
y in (discard y in derelict(x)):��j� . snd(e): � j� def= !�� . let jej� be x
y in (discard x in derelict(y)): ��j~x: � . if e then f else g:�j� def= ~x: !�� . copy ~x as ~x0; ~x00in (if je[~x := ~x0]j� then jf [~x := ~x00]j� else jg[~x := ~x00]j�):��The way this translation interacts with substitution means that the j� j� translation doesnot preserve evaluation, viz. if e + c then it is not necessarily the case that jej� + jcj�. Acounterexample is the term (�x:�y:x)true, viz.�x:�y:x + �x:�y:x �y:true + �y:true(�x:�y:x)true + �y:trueand j(�x:�y:x)truej� def= (�x:�y:discard y in derelict(x))promote(true);j�y:truej� def= �y:discard y in true;where I have used the shorthand promote(M) for promote � for � inM . However�x:�y:discard y in derelict(x) + �x:�y:discard y in derelict(x)promote(true) + promote(true)�y:discard y in derelict(promote(true)) + �y:discard y in derelict(promote(true))(�x:�y:discard y in derelict(x))promote(true) + �y:discard y in derelict(promote(true))6In fact Girard translates products into additive products|this variant is considered at the end of thissection. 20



If attention is restricted to programs which evaluates to booleans then a similar resultdoes hold.Proposition 8. If e + b then jej� + b.There are maps between PCF and linear PCF in both directions. The maps are relatedin the following sense.Proposition 9. For all PCF-terms e, jj� . e:�j�js � � . e:�.Proof. By induction on the typing derivation � . e:�.However there is little interesting to say about the composition of the maps in the otherdirection.7 The j � js translation erases all the information concerning the exponential,which are then re-introduced in an entirely uniform way by the j � j� translation. Indeed,the composition need not even preserve the type of a term, for examplejj; . �x: bool:x: bool��booljsj� def= ; . �x: !bool:derelict(x): !bool��bool:In addition one might wonder whether the j � js translation preserves evaluation, viz.If M + v then jM js + jvjs;but a moment's thought shows that this is not true; the j � js translation does not evenpreserve values. For example the termpromote � for � in (�x:M)Nis a (linear) value and thus evaluates to itself, butjpromote � for � in (�x:M)N js def= (�x:jM js)jN jswhich contains a top-level redex. However, we can prove the converse to Proposition 8.Proposition 10. If jej� + b then e + b.There is now enough information to consider whether the call-by-name translation pre-serves and reects observational equivalence|these properties are commonly known asfull abstraction and adequacy respectively. Surprisingly full abstraction fails.Theorem 4. The call-by-name translation is not fully abstract, viz. there are PCF-termse and f such that � . e �gnd� f and !�� . jej� 6�gnd�� jf j�.Proof. In call-by-name PCF we have that � . e �gnd�^� hfst(e); snd(e)i, for all PCF-termse [20, Equation 25]. Consider the case when e � 
bool^bool, thusj
j� def= 
!bool
!bool; andjhfst(
); snd(
)ij� def= promote(let 
 be x
y in discard y in derelict(x))
promote(let 
 be x
y in discard x in derelict(y)):7This contrasts with the case for Ritter and Pitts [22] who consider translations between a fragment ofSML and an idealised �-calculus with references. There the translations are mutually inverse.21



Unfortunately these two terms can be distinguished by the boolean contextL[�!bool
!bool] def= let � be x
y in discard x in discard y in true:However we can prove that the call-by-name translation is adequate, the essence of whichis given in the following proposition.Proposition 11. If ; . jej� �gnd�� jf j� then ; . e �gnd� f .Proof. Form the set S def= f(e; f) j ; . jej� �gnd�� jf j�gand show that S � [S]. We consider the types of �.� � � bool. By assumption ;.jej� �gndbool jf j�. Assume that e + b then by Proposition 8,jej� + b and then by taking the identity (linear) context we can conclude jf j� + b.From Proposition 10, f + b and we are done.� � � � � � . We have that ; . jej� �gnd!������ jf j�. Take any context L[��� ] and call L0the context which results from replacing the hole ��� with the term �!������promote(jgj�),where g is an arbitrary PCF-term (of the appropriate type). ThusL[jegj�] + b () L[jej�promote(jgj�)] + b() L0[jej�] + b() L0[jf j�] + b() L[jf j�promote(jgj�)] + b() L[jfgj�] + b:� � � � ^ � . We have by assumption ; . jej� �gnd!��
!�� jf j�. Take any context L[��� ]and call L0 the context which results from replacing the hole ��� with the termlet �!��
!�� be x
y in discard y in derelict(x). ThusL[jfst(e)j�] + b () L[let jej� be x
y in discard y in derelict(x)] + b() L0[jej�] + b() L0[jf j�] + b() L[let jf j� be x
y in discard y in derelict(x)] + b() L[jfst(f)j�] + b:A similar argument holds for jsnd(e)j�.Corollary 3. The call-by-name translation is adequate.22



Discussion. Rather than translate PCF pairs into linear multiplicative pairs we couldextend linear PCF with additive pairs and change the translation to(� ^ �)� def= ��&��; andj� . he; fi:� ^ � j� def= !�� . hjej�; jf j�i:��&��j� . fst(e):�j� def= !�� . fst(jej�):��j� . snd(e): � j� def= !�� . snd(jej�): ��:In fact this was the original translation given by Girard. The counter-example to fullabstraction given above would then be translated asj
j� def= 
bool&bool, andjhfst(
); snd(
)ij� def= hfst(
); snd(
)i:These two (translated) terms are easily seen to be applicatively similar (after a suitablereworking of the de�nition). It is still an open question as to whether this modi�edtranslation is fully abstract.The reader will recall that at the end of x2 it was conjectured that the notion ofapplicative bisimularity and ground observation equivalence did not coincide for linearPCF (failure of operational extensionality). If this conjecture turns out to be false then itwill entail that full abstraction fails for both call-by-name translations.Lemma 11. If for all linear PCF-terms M and N , � . M �gnd� N i� � . M �app� N thenfull abstraction fails for the call-by-name translation.Proof. In call-by-name PCF we have [20, Equation 133]; . �x:
 �gndbool�bool 
but it is clear that j�x:
j� def= �x:discard x in 
 6�app 
 def= j
j�, and hence; . j�x:
j� 6�gnd!bool��bool j
j�:
5 A Linear SECD MachineIn this section I shall describe a simple implementation of linear PCF by a variant ofLandin's SECD machine. For the most part this machine has previously been describedby Abramsky [1] and implemented by Mackie [17]; although, as mentioned earlier, this wasfor a slightly di�erent calculus. At the very least this section demonstrates that despitesome of the syntactic complications of linear PCF, it can be quite easily implemented.The machine consists of four stacks: (S)tack, (E)nvironment, (C)ode and (D)ump. Inwhat follows I shall use SML list notation for the stacks; thus `::' for the cons operation,`[]' for the empty list, and `@' for the append operation.De�nition 8. 23



S;E;pushenv :: C;D �! env(E) :: S;E;C;Denv(v :: E) :: S;E0;hd :: C;D �! v :: S;E0; C;Denv(v :: E) :: S;E0;tl :: C;D �! env(E) :: S;E0; C;DS;E;true :: C;D �! true :: S;E;C;DS;E; false :: C;D �! false :: S;E;C;DS;E;bomb :: C;D �! S;E;bomb :: C;Dv :: S;E;push :: C;D �! S; v :: E;C;Ds; v :: E;pop :: C;D �! v :: S;E;C;Dv :: v0 :: S;E;tensor :: C;D �! tensor(v; v0) :: S;E;C;Dtensor(v; v0) :: S;E; split :: C;D �! v :: v0 :: S;E;C;DS;E;makefcl(C 0) :: C;D �! fcl(C 0; E) :: S;E;C;Dfcl(C 0; E0) :: S; v :: E;ap :: C;D �! []; v :: E0; C 0; (S;E;C) :: Dv :: S;E;ret :: C; (S0; E0; C 0) :: D �! v :: S0; E0; C 0;Dtrue :: S;E;cond(C 0; C 00) :: C;D �! []; E;C 0; (S;E;C) :: Dfalse :: S;E;cond(C 0; C 00) :: C;D �! []; E;C 00; (S;E;C) :: DS; [v1; : : : ; vn]@E;makeecl(n;C 0) :: C;D �! ecl(C 0; [v1; : : : ; vn]) :: S;E;C;Decl(C 0; E0) :: S;E;der :: C;D �! []; E0; C 0; (S;E;C) :: Decl(C 0; E0) :: S;E;disc :: C;D �! S;E;C;Decl(C 0; E0) :: S;E;dupl :: C;D �! ecl(C 0; E0) :: ecl(C 0; E0) :: S;E;C;DFigure 7: Transition Rules for the Linear SECD machine.� An instruction is of the formtrue false push pop bombtensor split makefcl(c) apret cond(c; c0) makeecl(n; c) derdisc dupl hd tlwhere n is a number and c; c0 are codes (lists of instructions).� A value is of the formtrue false tensor(v; v0)fcl(c; e) ecl(c; e)where v; v0 are values, c is a code and e is an environment (list of values).The stacks are then of the form� S: a list of values,� E: a list of values,� C: a list of instructions,� D: a list of (S,E,C)-triples.Computation steps are simply transition rules for each possible state of the machine. Theseare given in Figure 7.One can now de�ne a compilation from linear PCF-terms to SECD instructions. Thisis achieved by de�ning a function S(M;~x), whereM is a linear PCF-term and ~x is the listof free variables of M , which returns a list of instructions.24



S(x; l) def= [pushenv]@lookup(x; l)S(true; l) def= [true]S(false; l) def= [false]S(
; l) def= [bomb]S(M
N; l) def= S(M; l)@S(N; l)@[tensor]S(letM be x
y inN; l) def= S(M; l)@[split,push,push]@S(N; y :: x :: l)@[pop,pop]S(�x:M; l) def= [makefcl(S(M;x :: l)@[pop,ret])]S(MN; l) def= S(N; l)@[push]@S(M; l)@[ap]S(if M thenN else P; l) def= S(M; l)@[cond(S(N; l);S(P; l));ret]S(promote ~M for ~x inN; l) def= S(Mn; l)@[push]@ � � �@S(M1; l)@[push]@[makeecl(n;S(N; l)@[ret])]S(derelict(M); l) def= S(M; l)@[der]S(discardM inN; l) def= S(M; l)@[disc]@S(N; l)S(copyM as x; y inN; l) def= S(M; l)@[dupl,push,push]@S(N;x :: y :: l)@[pop,pop]where lookup(x; y :: l) = if x � ythen[hd]else[tl]@lookup(x; l)Following Abramsky [1], we can prove that this is a correct implementation of the opera-tional semantics of Figure 2 in the following sense.Theorem 5. IfM + v then 9c:([]; [];S(M; []); []) �!� ([c]; []; []; []) and ([]; [];S(v; []); []) �!�([c]; []; []; []).Remark. One might be tempted to `optimise' the compilation of the Weakening rule toS(discardM inN; l) def= S(N; l):Of course, with the presence of non-termination this would mean that the terminationproperties of the SECD machine would not match the operational semantics from Figure 2.For example, consider the term discard 
 in true;clearly discard 
 in true * butS(discard 
 in true; []) def= [true];which is a terminating program.
25



6 ConclusionsIn this paper I have developed the operational theory of a linear PCF: the typed lin-ear �-calculus extended with booleans, conditional and non-terminating constants.8 Ihave shown how to de�ne a notion of context and, using this, two variants of observa-tional equivalence. I then gave a co-inductive notion of program equivalence, applicative(bi)simularity, and showed that it coincided with one of the notions of observational equiv-alence. After recalling some of the details of an operational theory of a call-by-name PCF,I considered translations to and from linear PCF. I showed that the translation is adequatebut not fully abstract. I then addressed more practical concerns by demonstrating howLandin's SECD machine can be adapted to execute linear PCF-terms.One obvious outstanding piece of work is to give a co-inductive de�nition of programequivalence which does coincide with ground observational equivalence. I have also dodgedthe question of how to allow recursive de�nitions by opting instead for non-terminatingconstants. At the time of writing, there is still no real consensus for the correct form ofrecursion in the linear setting. Bra�uner [9] presents a comprehensive study of one proposal.Another possibility, currently being investigated, is the use of a form of trace operator [16].However, whatever form linear recursion takes, I would expect it to be relatively straight-forward to include it in this work. Another outstanding topic, currently being studied,is the call-by-value translation of PCF into linear PCF (which is a considerably morecomplicated translation).Benton and Wadler [4] have shown that both Girard translations are related to Moggi'stranslations of the �-calculus into the computational �-calculus. I have been unable to�nd any work considering full abstraction and adequacy for Moggi's calculus. One wouldhope that Benton and Wadler's work could be used to derive these results from those inthis paper. Maraist et al. [18] have also considered the Girard translations, but only forterm reduction and also for a formulation which does not include syntax for the rules ofWeakening and Contraction.My original motivation for this work was not only practical but theoretical. I intendto investigate to what extent notions of observation are useful in proof theory. Currenttechnology is quite weak: proofs are compared with respect to their cut normal forms(maybe modulo Kleene permutabilities). Is observational equivalence a useful notion?One possible test is to reconsider work by Schellinx [23] on optimal translations.Future applications of this work is to study operational aspects of both the classicallinear �-calculus [7] and the untyped linear �-calculus [8]. Another interesting exercisewould be to give a categorical explanation of the treatment of contexts in Appendix A.On a more practical level, it would be interesting to develop more fully the implementationside of this work. The SECD machine, whilst a standard implementation technique, is notterribly e�cient. Two possibilities are to develop a categorical abstract machine (whichwould be given by work on the categorical models of the linear �-calculus [6]) and todevelop a more low-level abstract machine which includes details of memory access.AcknowledgmentsI am grateful to Nick Benton, Andrew Gordon, Martin Hyland and Andrew Pitts for manyuseful discussions. Andrew Gordon and Valeria de Paiva o�ered useful comments on an8Just before this paper went to press I received the PhD thesis of Bra�uner [10], who also studies asimilar linear PCF but from a denotational perspective.26
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A Linear ContextsTo formalise the notion of placing terms into larger programs we de�ne the notion of acontext. A context is simply a term with designated place-holders, or holes, into whichother terms may be placed. An important feature is that this placement of terms for holesis permitted to capture free variables, pace substitution of terms for variables.For PCF a traditional treatment (e.g. [20, Page 13]) is �rst to extend the syntacticclass of terms to allow holes (here written `�') and add a new typing rule9�:�;� . �:�:For linear PCF we would add the rule �:� . �:�:However it is not hard to see that this is insu�cient. One can not even form the linearcontext �:� . �x:�:�:����:The solution (as is familiar with the linear setting) is to be more explicit. As explainedearlier, holes are place-holders into which open terms may be placed whose free variablesmay be captured, or bound. The important information here is the free variables. Con-sequently I propose to parameterise holes with these free variables. Thus the typing rulefor holes becomes �(~x: �):�; ~x: � . �(~x: �):�:I separate the holes and variables in the antecedent with a semi-colon but this is simplya matter of hygiene. The typing rules for contexts are given in Figure 8. The earlierexample is thus well-typed, viz.�(x:�):�;x:� . �(x:�):� (��I):�(x:�):� . �x:�: � (x:�):����The action of placing a term (actually, context) for a hole is then given by the ruleH; � . M :� H0; �(�):�;� . N : Placement:H;H0;� . N [M=�]: Thus one can only place a term, M , for the hole �(�) if its set of free variables is �. Theresult of this placement is then de�ned by induction on the structure of N . If a contextN has only one hole �, we often write it as L[�], or even L[��] and the result of placinganother context M for the hole as L[M ].It should be noted that there is nothing inherently linear about this treatment ofcontexts, indeed I suggest its use with any calculus. A number of other people havesuggested extensions to the notion of context; for example, Pitts [19] and Hashimoto andOhori [13].9The recording of the hole in the antecedent is often omitted.29



;;x:� . x:� ;; ; . b: bool ;; ; . 
�:��(~x: �):�; ~x: � . �(~x: �):�H; �; x:� .M : (��I)H; � . �x:�:M :��� H; � . M :��� H0;� . N :� (��E)H;H0; �;� . MN : H1; �1 . M1: !�1 � � � Hn; �n . Mn: !�n H0;x1: !�1; : : : ; xn: !�n . N : PromotionH1; : : : ;Hn;H0; �1; : : : ;�n . promote ~M for ~x inN : ! H; � . M : !� DerelictionH; � . derelict(M):�H; � . M : !� H0;� . N : WeakeningH;H0; �;� . discardM inN : H; � . M : !� H0;�; x: !�; y: !� . N : ContractionH;H0; �;� . copyM as x; y inN : H; � . M :� H0;� . N : (
I)H;H0; �;� . M
N :�
 H; � . M :�
 H0;�; x:�; y: . N :' (
E)H;H0; �;� . letM be x
y inN :'H; � . M : bool H0;� . N :� H0;� . P :� ConditionalH;H0; �;� . if M thenN else P :�Figure 8: Type Assignment for Linear Contexts.
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