Mutatis Mutandis:
Safe and Predictable Dynamic Software
Updating

GARETH STOYLE

University of Cambridge

MICHAEL HICKS

University of Maryland, College Park
GAVIN BIERMAN

Microsoft Research

PETER SEWELL

University of Cambridge

and

IULIAN NEAMTIU

University of Maryland, College Park

This article presents Proteus, a core calculus that models dynamic software updating, a service for
fixing bugs and adding features to a running program. Proteus permits a program’s type structure
to change dynamically but guarantees the updated program remains type-correct by ensuring a
property we call con-freeness. We show how con-freeness can be enforced dynamically, and how it
can be approximated via a novel static analysis. This analysis can be used to assess the implications
of a program’s structure on future updates in order to make update success more predictable. We
have implemented Proteus for C, and briefly discuss our implementation which we have tested on
several well-known programs.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Validation; D.3.3 [Programming Languages]: Formal Definitions and Theory—Semantics,
Syntax

General Terms: Design, Languages, Reliability, Theory, Verification

This is a revised version of Stoyle et al. [2005] presented at the 2005 ACM SIGPLAN Symposium
on Principles of Programming Languages.

P. Sewell’s work was supported by a Royal Society University Research Fellowship; G. Stoyle’s
work was supported by a Marconi EP-SRC CASE Studentship. The work was also supported by EC
FET-GC project IST-2001-33234 PEPITO, NSF Contract #0346989, and grant GR/T11715.
Author’s address: M. Hicks, University of Maryland, College Park, MD; email: mwh@cs.umd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 0164-0925/2007/08-ART22 $5.00 DOI 10.1145/1255450.1255455 http:/doi.acm.org/
10.1145/1255450.1255455

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

2 . G. Stoyle et al.

Additional Key Words and Phrases: Dynamic software updating, updateability analysis, type in-
ference, capability, Proteus
ACM Reference Format:

Stoyle, G., Hicks, M., Bierman, G., Sewell, P., and Neamtiu, I. 2007. Mutatis mutandis: Safe and
predictable dynamic software updating. ACM Trans. Program. Lang. Syst. 29, 4, Article 22 (August
2007), 70 pages. DOI = 10.1145/ 1255450.1255455 http://doi.acm. org/10.1145/1255450.1255455

1. INTRODUCTION

Dynamic software updating (DSU) is a technique by which a running program
can be updated with new code and data without interrupting its execution.
DSU is critical for nonstop systems such as air-traffic control systems, financial
transaction processors, enterprise applications, and networks, all of which must
provide continuous service but nonetheless must be updated to fix bugs and
add new features. DSU is also useful for avoiding the need to stop and start
a noncritical system (e.g., reboot a personal operating system) every time it
must be patched. In a large enterprise such reboots can be costly [Zorn 2005;
Oppenheimer et al. 2002].

Providing general-purpose DSU is particularly challenging because of the
competing concerns of flexibility and safety. On the one hand, the form of dy-
namic updates should be as unrestricted as possible since the purpose of DSU is
to fix bugs or add features not necessarily anticipated in the initial design. On
the other hand, supporting completely arbitrary updates (e.g., binary patches
to the existing program) makes reasoning about safety impossible, which is
unacceptable for mission-critical software.

In this article, we present PRoTEUS, a calculus for modeling dynamic updates
in imperative programs. PROTEUS carefully balances the concerns of safety and
flexiblity and adds assurances of predictability. PRoTEUS programs consist of
function and data definitions, together with definitions of named types. In the
scope of a named type declaration t = 7, the programmer can use the name t and
representation type t interchangeably but, as we shall see, the distinction lets
us control updates. Dynamic updates can add new types and new definitions and
can also provide replacements for existing ones where the type of a replacement
may be different from the original. Functions can be updated even while they
are on the call-stack: the current version will continue (or be returned to),
and the new version is activated on the next call. Permitting the update of
active functions is important for making programs more available to dynamic
updates [Armstrong and Virding 1991; Hicks 2001; Buck and Hollingsworth
2000]. We also support updating function pointers.

When updating a named type t from its old representation t to a new one 7/,
the user provides a type transformer function ¢ with type t — t’. This is used to
convert existing t values in the program to the new representation. To ensure
an intuitive semantics, we require that at no time can different parts of the pro-
gram expect different representations of a type t, a concept we call representa-
tion consistency. The alternative would allow new and old definitions of a type t
to be valid simultaneously. Then, we could copy values when transforming them

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 3

where only new code sees the copies [Gupta 1994; Hicks 2001] or else provide a
backward type transformer to convert new values back to an older representa-
tion should they reappear in old code [Duggan 2001]. While these approaches
are type-safe, the first permits old and new code to manipulate different copies
of the same logical data, which is likely to be disastrous in a language with side-
effects and the second may result in information loss when converting a value
backward and then forward again since most type changes add information (§2).

To ensure type safety and representation consistency, we must guarantee the
following property: after a dynamic update to some type t, no updated values v’
of type t will ever be manipulated concretely by code that relies on the old rep-
resentation. We call this property con-t-freeness (or simply con-freeness when
not referring to a particular type). The notion of con-freeness is easily extended
to functions and global variables—where a concrete usage is a function call
or dereference, respectively—to ensure that updates with types different than
the original pose no threat to type safety. The fact that we are only concerned
about subsequent concrete uses is important. If old code simply passes data
around without relying on its representation, then updating that data poses
no problem. Indeed, for our purposes, the notion of con-freeness generalizes
notions of encapsulation and type abstraction in object-oriented and functional
languages. This is because data can be used concretely or abstractly at any pro-
gram point (and neither use is denoted by syntax). Moreover, con-freeness is a
flow-sensitive property since a function might manipulate a t value concretely
at its outset but not for the remainder of its execution.

As a simple example of the need for con-freeness, imagine that the running
program is evaluating some function f and that function is just about to access
the second field of some record type t. At that moment, a dynamic update occurs
which changes t to have only a single field and correspondingly changes f to use
only that field. While the update is type-correct in itself (the new f is compatible
with the new t), it is not con-free at the current program point since the updated
type t is about to be manipulated concretely by code that expects the old repre-
sentation. The old f will attempt to access the second field of the t value after
the update (the new f will only execute the next time f is called). But this t value
will have been transformed by the user-provided type transformer function ¢;
to have but a single field, leading to a type error. The flexibility of updates is
partially to blame for this situation. If we were not allowed to change the def-
initions of types, or we were not allowed to change actively running code, we
would not have this problem. However, as we argue in Section 2, these features
are crucial to updating programs in practice so we must deal with them.

To enforce con-freeness, PROTEUS programs are automatically annotated with
explicit type coercions: abs; e converts e to type t (assuming e has the proper
concrete type t), and con; e does the reverse at points where t is used concretely.
Thus, when some type t is updated, we could dynamically analyze the active
program to check for the presence of coercions con, taking into account that
subsequent calls to updated functions will always be to their new versions.
If any con; occurrences are discovered, then the update is rejected. Once an
update is accepted, the occurrences of expressions abs; indicate where values
of type t exist in the program so that the proper type transformer can be applied.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

4 . G. Stoyle et al.

While illuminating theoretically, the con-free check as defined is problem-
atic for a practical implementation for two reasons. First, it is nontrivial to
implement since it must examine the entire runtime execution context of the
program, that is, the code, stack, and heap. Second, and more importantly, the
results of the check are unpredictable. It may be hard to tell whether an up-
date failure is transient, that is, the update is not valid for this program state
or permanent, that is, the update is invalid for all program states. This is be-
cause the dynamic check is with respect to a particular program state. Rather
one would prefer to reason about update behavior statically, covering all possi-
ble program states to (among other things) assess whether there are sufficient
update points.

Therefore, we have developed a novel static updateability analysis. We in-
troduce an update expression to label program points at which updates could
be applied. For each of these, we estimate those types t for which the program
may not be con-t-free. We annotate the update with those types and at runtime
ensure that any dynamic update at that point does not change them. This is
simpler than the con-free dynamic check and more predictable. For example,
we can automatically infer those points at which the program is con-free for all
types t, precluding dynamic failure for any well-formed update at those points.

We have built a compiler and runtime system to support dynamic updating of
C programs based on PrRoTEUS, and we have used it to dynamically update three
open source programs: OpenSSH’s sshd daemon, the Very Secure FTP daemon,
vsftpd, and the GNU zebra routing daemon. PrRoTEUS’s updating model is pow-
erful enough that we were able to construct and apply dynamic updates for
more than three years of releases for each program. Indeed, without the flex-
ibility to update active code, needed to update the main event loops, and to
change the program’s type structure, we would not have been able to update
these programs over such a long stretch. Based on a brief study of the evolution
of these and other software programs, we believe these needs are not atypical.
As such, the notion of con-freeness we present in this article is crucial to en-
suring that dynamic updates are both type-safe and representation-consistent.
The updateability analysis ensures that updates can be applied predictably.

This work focuses on updating a single-threaded process as opposed to multi-
threaded or distributed programs. To support these systems requires some level
of coordination. For example, to update a distributed system to use a new (non-
backwards-compatible) communication protocol would require coordination to
prevent an updated program from sending a confusing message to a not-as-yet-
updated one. As a step in this direction, we have sketched how we could adapt
our current work to support multithreaded programs by treating update as a
synchronization point between threads when an update is available (Section 6).
This makes our analysis sound, but could allow an update to be unduly delayed,
or worse, it could cause the system to deadlock. We are exploring these issues
in our current research.

In summary, this article makes the following contributions.

—We present ProTEUs, a simple and flexible calculus for reasoning
about type-safe, representation-consistent dynamic software updating in

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 5

single-threaded, imperative languages (Sections 3 and 4), with various ex-
tensions (Section 6). We motivate our DSU support in ProTEUS with a brief
study of the changes over time to some large C programs, taking these as
indicative of dynamic updates that we have to support (Section 2). Crucially,
ProTEUS permits updating active code and changing the type structure of
programs.

— We formally define the notion of con-freeness and prove that it is sufficient
to establish type safety in updated programs (Section 4.4). We believe this
notion is useful beyond DSU. For example, we have applied it to the problem
of ensuring that a dynamic update of a security policy does not impact the
security properties of a running program that uses it [Hicks et al. 2005].

—We present a novel updateability analysis that statically infers the types
for which a given update point is not con-free (Section 5). While space con-
straints preclude a full description, we present some preliminary experience
with our dynamic updating implementation that applies our analysis to C
programs (Section 5.4).

In Sections 8 and 9, we discuss related work and conclude. This is a revised and
extended version of a paper presented at the 2005 ACM SIGPLAN Symposium
on Principles of Programming Languages [Stoyle et al. 2005].

2. SOFTWARE EVOLUTION IN PRACTICE

The goal of a dynamic software updating system is to be able to modify a pro-
gram to fix bugs and add new features without shutting it down. For each dy-
namic update, modifications are collected into a dynamic patch that is applied
to the running system. There are a number of ways that dynamic patches could
be constructed. For example, if a bug is discovered, a special-purpose dynamic
patch could be constructed that fixes just that bug by replacing the offending
function or functions with new versions. More generally, a dynamic patch could
consist of all of the changes that occurred between two different releases of a
software system. In this case, a new version of the software could ship with
a dynamic patch to the prior version for those users who wish to dynamically
upgrade their running systems. This would permit online software evolution.
We would not expect users to dynamically upgrade their programs in perpe-
tuity, rather DSU would allow programs to continue to run until some other
nondynamically updateable part of the system, like the hardware, needed to be
changed, thus extending the availability of the system.

To enable online evolution, we must support the kinds of software changes
that typically occur between releases. To characterize these changes, we studied
how the source code changed over time in some long-running C programs. We
built a tool that parses two versions of a program, compares their abstract
syntax trees, and reports the differences [Neamtiu et al. 2005]. In particular,
it reports the definitions that are different between versions; that is, those
function definitions, type definitions, or global variable definitions that have
been added, deleted, or changed. For definitions that have changed, the tool
also reports changes in type structure. For example, it might report that a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

6 . G. Stoyle et al.

Total functions: [| Vsftpd (14 releases) | OpenSSH (27 releases) | Zebra (6 releases) |

Initial 384 56 767
Added 107 955 134
Deleted 16 162 44
Changed Body 332 2673 321
Changed Type 11 195 13

Fig. 1. Function evolution in Vsftpd, OpenSSH, and Zebra.

function has an additional argument or that a struct definition has two new
fields.

We used the tool to compare increasing versions of a few large C programs.
These include Linux, version 2.4.17 (Dec. 2001) to 2.4.21 (Jun. 2003), BIND,
versions 9.2.1 (May 2002) to 9.2.3 (Oct. 2003), Apache, version 1.2.6 (Feb. 1998)
to 1.3.29 (Oct. 2003), Vsftpd version 1.0.1 (Nov. 2001) to 2.0.3 (March 2005),
OpenSSH, version 1.2 (Oct. 1999) to 4.2 (Sept. 2005), and GNU Zebra, ver-
sion 0.92a (Aug. 2001) to 0.95a (Sept. 2005). These programs are in wide use.
Linux is now quite common; Apache, BIND and Vsftpd are the de-facto Web
server, name server and FTP server, respectively, in major Unix distributions;
the OpenSSH suite is the standard open-source release of the widely-used se-
cure shell protocols; and many Linux/BSD-based dedicated BGP routers are
built using Zebra or its spin-off, Quagga.

In what follows, we focus on Vsftpd, OpenSSH, and Zebra since we have used
them as test applications for our implementation (Section 7). We chose them
because each maintains state that should be preserved by an update to main-
tain service (the same is true for BIND and Linux). Stopping and restarting the
FTP daemon would abruptly end all the active file transfer sessions, leaving
the clients with incomplete transfers. Taking a machine’s SSH server down for
update would close all the SSH connections, hence terminating all the remote
shell sessions clients had on that particular machine. Terminating the zebra
daemon on a machine used as a router would disable the routing functional-
ity, and, upon restart, the daemon would need to relearn all the routes it had
amassed prior to termination. For these three programs, we analyzed versions
as far back as possible; older versions need older compilers and headers. The
changes followed a few key trends.

Functions. By far the most common form of version changes consist of added
functions or changes to existing functions which do not involve a changed type
signature. Function deletions and body changes which involved a changed type
signature occur significantly less often, but regularly. These trends are illus-
trated in Figure 1, which shows the evolution of functions in Vsftpd, OpenSSH,
and Zebra for the span we measured. The parenthesized numbers in the heading
indicate the number of individual releases measured. These trends are similar
for the shorter spans we measured for BIND and Linux as well.

Global Variables. The number of global variables tends to be fairly static,
adding a few and deleting a few with each change, but growing over time. For
example, the numbers of global variables for Vsftpd, OpenSSH, and Zebra grew

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 7

from 141 to 226, 51 to 264, and 235 to 280 respectively. In Vsftpd, deletions were
extremely rare with 8 in total across 14 releases, while at the other extreme,
a total of 82 variables were deleted for OpenSSH over the measured span of
27 releases. Global variables change their static initializers fairly often; for the
entire period we analyzed, there were 18 static initializer changes for Vsftpd,
63 for OpenSSH, and 11 for Zebra. However, global variable types change less
frequently: 1 case for Vsftpd, 29 for OpenSSH and 18 for Zebra.

Type Definitions. Data representations, which is to say type definitions, do
change between versions, though rarely. In C, types are defined with struct and
union declarations (aggregates), typedefs, and enums. Very often, the changes
are to aggregates and involve adding or removing a field. For example, moving
from Linux 2.4.20 to 2.4.21 resulted in 36 changes to struct definitions (out
of 1214 total) of which 21 were the addition or removal of fields, while the
remaining 15 were changes to the types of some fields. This ratio was similar
to that of the other programs we measured. Typedefs rarely changed.

Given this information, a DSU system must, at the least, support the addition
of new definitions and the replacement of existing definitions of the same type
since these changes comprise the majority of version changes. Implementing a
system that supports these changes is fairly straightforward. Indeed, Altekar
et al. [2005] found that many security patches satisfy these criteria, and thus
can be applied through a simple DSU system. However, to support online soft-
ware evolution, we must be able to change the types of definitions and to delete
definitions. Supporting these changes while preserving program type safety is
more challenging.

Our initial presentation of PROTEUS in the next section permits changes to
type definitions, and we sketch extensions to this system to support changes
to function and global variable types, and to support deleting definitions, in
Section 6. We have developed a prototype implementation that supports all of
these changes.

3. PROTEUS

In what follows, we define two core calculi—ProTEUS®™® and ProTEUS®°®—that
formalize our approach to dynamic software updating. In this section, we
present PROTEUSS™, the language used by programmers for writing update-
able programs. We define how dynamic updates are specified and show how the
timing of an update could violate type safety. Section 4 presents PROTEUS®®®, an
extension of PrRoTEUS"®, that makes the usage of named types manifest in pro-
grams by introducing type coercions; these are used to support the operational
semantics of dynamic updating and to ensure that the process is type-safe by
ensuring con-freeness. Section 5 presents PROTEUS?, an extension to PROTEUS®®®,
for which con-freeness can be determined statically.

3.1 ProTEUSS™ Syntax

ProTEUSS™® models a type-safe imperative language augmented with dynamic
updating; its syntax is given in Figure 2. Programs P are a series of top-level

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

8 . G. Stoyle et al.

Integers n € Int
Local variables z,y,z € IVar
Top-level identifiers x,y,z € XVar
Record labels 1 € Lab
References r € Ref
Type names t,s € NT
Variables Var = [Var W XVar & NT
Types T€Typ u= t|int|{li:71,...,1ln:7n} |7 ref
| T — T2
Expressions ecExp u=n integers
| =z variables
|z top-level identifiers
| r heap reference
| {li=e1,....1ln =en} records
| el projection
| e1e2 application
| letz:7=e1ines let bindings
| refe ref. creation
| e1:=e2 assignment
| le dereference
| if e1 = ez then e3 else e4 conditional
| update dynamic update
Values veVal u=z|n|{li=v1,...,ln=vn} |7 |abstv
Programs Pe€Prog = varz:7=vin P
| funzi(z:71):7 =e1
and zp(z :) : 7, = en in P
| typet=r7inP
| returne

Fig. 2. Syntax for PrRoTEUSS™®.

definitions followed by an expression return e. A fun z... defines a top-level
recursive function, and var z : ... defines a top-level mutable variable (i.e.,
it has type t ref). We allow the extension of function definitions to a mutually
recursive block of function definitions using the keyword and. A typet=1...
defines the type t. Top-level identifiers z must be unique within P, and are not
subject to a-conversion so they can be unambiguously updated at runtime. Ex-
pressions e are largely standard. We abuse notation and write multi-argument
functions

funf(x;:71,...,x,: W) T =e,

which are really functions that take a record argument, thus having type {x; :
T1, ..., X, & To} — T. We similarly sugar calls to such functions.

ProTEUSS™ also includes an update expression which permits a dynamic
update to take place if one is available. That is, at runtime a user signals that
an update is ready, and the next time update is reached in the program that
update is applied. The update expression is integer-valued; it returns 0 when
an update is available and successfully applied, and returns 1 if no update
is available or if an update is available but cannot be applied successfully.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 9

type handResult = int in
type sockhandler = {sock : sock, buf: buf, sflags : sflags} — handResult in

fun udp_read(sock : sock, buf: buf, sflags : sflags) : handResult = ... in
fun udp_write(sock : sock, buf : buf, sflags : sflags) : handResult = ... in

type req = {op : op, fd : int, buf : buf, rest : blob} in
type fdtype = File | Socket | Unknown in

fun dispatch (s : req) : handResult =

let ¢ : fdtype = decode (s.fd) in

let ul : int = update in

if (¢ = Socket) then
let & : sock = getsock (s.fd) in
let flags : sflags = decode_sockopargs (s.rest, s.op) in
let A : sockhandler = getsockhandler (s.fd, s.op) in
let u2 : int = update in
let res : handResult = & (&, s.buf, flags) in
let u3 : int = update in res

else if (¢t = File) then ...

else —1in

fun post (r : handResult) : int=... in

fun loop (:int) : int =
let req : req = getreq (i) in
let i : handResult = post (dispatch req) in
loop i in

return (loop 0)

Fig. 3. A simple kernel for files and socket I/O.

Providing update in the language makes issues of timing more manifest. At
one extreme, update could be inserted by the programmer in a few places, and
at another, the compiler could insert update at all program points, simulating
the situation in which a dynamic update could occur at any moment. We discuss
an algorithm for automatically inserting updates in Section 5.

The typing rules and operational semantics for the nonupdating part of
ProTEUSS™® are essentially standard, and they are considered in more detail
when considering compilation to PRoTEUS®®™ in Section 4.

Example. Figure 3 shows a simple kernel, which one might want to dynam-
ically update for handling read and write requests on files or sockets. Some
functions and type definitions have been elided for simplicity. Reading from
the bottom, the function loop is an infinite loop that repeatedly gets req objects
(e.g., system calls) and then dispatches them to an appropriate handler using
the dispatch function. This function first calls decode to determine whether a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

10 . G. Stoyle et al.

given file descriptor is a network channel or an open file (e.g., by looking in a
table).! If it is a network channel, dispatch calls getsock to get a sock object
based on the given file descriptor (e.g., indexed in an array). Next, it decodes
the remaining portion of the req to acquire the transmission flags. Finally, it
finds an appropriate sockhandler object to handle the request and calls that
handler. Handlers are needed to support different kinds of network channel,
for example, for datagram communications (UDP) and streaming connections
(TCP). Different handlers are implemented for each kind, and getsockhandler
chooses the right one. A similar set of operations and types would be in place for
files. After dispatch completes, its result is posted to the user, and the loop con-
tinues. The dispatch function defines three update points at which a dynamic
update is permitted to occur if one is available.

3.2 Specifying Dynamic Updates

A dynamic update is a specification to modify the running program with new
and replacement definitions. Formally, a dynamic update, upd, consists of four
partial maps, written as a record with the labels UN, UB, AN, and AB.

—UN (Updated Named types) is a map from type names to pairs of a type and
an expression. Each entry, t — (z, ¢), specifies a named type to be replaced
(1), its new representation type (z), and a type transformer function ¢ from
the old representation type to the new.

— AN (Added Named types) is a map from type names t to type environments
@, which are lists of type definitions. This is used to define new named types.
Each entry t — Q specifies a type t in the existing program, and the new
definitions are inserted just above t in the updated program.

—UB (Updated Bindings) is a map from top-level identifiers to pairs of a type
and a binding value b,, which is either a function, written as A(x).e, or avalue
v. These specify replacement fun and var definitions. Each entry z — (z, b,)
contains the binding to replace (z), the type of the new binding as it appears
in the source program (7), and the new binding (b,). For now, we require
updated bindings to have the same type of the definitions they replace. In
Section 6.1, we show how this restriction can be relaxed by extending our
technique for supporting changes to named types.

—AB (Added Bindings) is a map from top-level identifiers z to pairs of types
and binding values. These are used to specify new fun and var definitions.
All added functions are assumed to be mutually recursive for simplicity.

We consider how to extend specifications to support deletion of bindings, and
updating functions and data at new types in Section 6.

As an example, say we wish to modify socket handling in Figure 3 to in-
clude a cookie argument for tracking security information (this was done at
one point in Linux). This requires four changes: (1) we modify the definition
of sockhandler to add the additional argument; (2) we modify the sock type to

ITo aid readability, we have defined fdtype using a union type, which is not in the core language
we formalize, but it could have been defined as an integer.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 11

UN : sockhandler +—
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} — int, sockh_coer)
sock + ({daddr :int, ...}, sock_coer)
AN : sockhandler +— (cookie, int)
UB : dispatch —
(reqg — handResult,
A(s)....h(k, s.buf, flags, (security_info ())...)
AB: udpread
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} — int, A(x)....)
udp_write’
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} — int, A(x)....)
sockh_coer +— (({sock : sock, buf: buf, sflags : sflags} — int) —
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} — int),
A f).if f = udp_read then udp_read’ else if f = udp_write then udp_write’)
sock_coer > ...
security_info — (int — cookie, A(x)....)

Fig. 4. A sample update to the I/O kernel.

add new information (such as a destination address for which the cookie is
relevant); (3) we modify existing handlers, like udp_read, to add the new func-
tionality, and (4) we modify the dispatch routine to call the handler with the new
argument. We then must provide transformer functions to convert existing sock
and sockhandler objects.

The update is shown in Figure 4. The UN component specifies the new defini-
tions of sock and sockhandler, along with type transformer functions sock_coer
and sockh_coer, which are defined in AB. The AN component defines the new
type cookie = int, and directs that it should be inserted above the definition
of sockhandler (which refers to it). Next, UB specifies a replacement dispatch
function that calls the socket handler with the extra security cookie which is
acquired by calling a new function security_info.

The AB component specifies the definitions to add. First, it specifies new
handler functions udp_read’ and udp_write’ to be used in place of the existing
udp_read and udp_write functions. The reason they are defined here and not in
UB is that the new versions of these functions have a different type than the old
versions (they take an additional argument). So that code will properly call the
new versions from now on, the sockh_coer maps between the old ones and the
new ones. Thus, existing data structures that contain handler objects (such as
the table used by getsockhandler) will be updated to refer to the new versions. If
any code in the program called udp_read or udp_write directly, we could replace
them with stubd functions [Frieder and Segal 1991; Hicks 2001], forwarding calls
to the new version and filling in the added argument. In Section 6, we explain
how our approach can be easily extended to support updating bindings at new
types with the same safety guarantees making stubs unnecessary.

It is not necessary for programmers to write update specifications manually.
Rather, it is straightforward for a tool to examine the old and new versions of
a program to determine which bindings have changed and which have been

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

12 . G. Stoyle et al.

leti:int = post (
let u2 : int = update in
let res : handResult = udp_read{sock = vsock, buf = vreq.buf, sflags = vgfiags} in
let u3 : int = update in res

) in loop i

Fig. 5. Example active expression.

added [Hicks 2001]. Type transformers can be generated automatically [Hicks
2001] for simple changes but generally require a programmer’s attention.

3.3 Update Timing

Because update specifications permit type definitions to change, to preserve
type safety, an update must only be applied at certain times during a pro-
gram’s execution. For example, Figure 5 shows the expression fragment of our
example program after some evaluation steps. (The outer let i = ... binding
comes from loop, and the argument to post is the partially-evaluated dispatch
function; we are assuming a substitution-style semantics for function appli-
cation.) The let u2 = update... is in redex position, and suppose that the
update described in Section 3.2 is available, which updates sockhandler to have
an additional cookie argument, among other things. If this update were ap-
plied, then the user’s type transformer sockh_coer would be inserted to con-
vert udp_read, to be called next. Evaluating the transformer replaces udp_read
with udp_read’ yielding the expression udp_read'(vsock, Ureq-buf, Usiiags). But this
would be type-incorrect. The function udp_read’ expects four arguments (more
precisely, a record with four fields), but the existing call only passes three ar-
guments.

The problem is that at the time of the update the program is evaluating
the old version of dispatch which expects sockhandler values to take only three
arguments. That is, this point in the program is not con-t-free since it will
manipulate t values concretely. A value is used concretely when it is destructed,
for example, dereferencing a reference, calling a function, or extracting a field
from a record, because these operations rely on the type of the value. If this
type were to changed, the operations could be type-incorrect.

4. PROTEUS®o"

To prevent updates to named types from violating type safety, we define the
language ProTEUS®®™ which extends PROTEUSS® with explicit type coercions to
make manifest the concrete usage of named types. Ensuring proper update
timing then reduces to ensuring that, roughly speaking, no type coercions that
indicate a concrete usage for types to be updated appear in the active program.
Type coercions also are handy for implementing dynamic updates operationally.

In this section, we present the syntax of PRoTEUS®®™ and show how PrRoTEUSS*®
programs can be compiled to PROTEUS®®™ programs. Then we present the oper-
ational semantics of PRoTEUS®®", and define con-freeness as a predicate on the
running program’s state at the time of the update. We then prove that this
predicate is sufficient to ensure that updates preserve type safety.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 13

let dispatch(s : req) : handResult =

let t : fdtype = decode((con,eq s).fd) in

let ul: int = update in

if (conyqype t) = Socket then
let k : sock = getsock((coneq s).fd) in
let flags : sflags = decode_sockopargs((con,gq s).rest, (conq s).op) in
let h : sockhandler = getsockhandler((con,eq s).fd, (con,q s).op) in
let u2 : int = update in
let res : handResult = (congecknandgier h)(k, (COnyeq 8).buf, flags) in
let u3 : int = update in res

else if (conigype t) = File then ...

else (abshandresur —1)

Fig. 6. dispatch with explicit type coercions.

4.1 Syntax and Typing

Prior to evaluation, PROTEUSS'® programs (as well as program fragments appear-
ing in update specifications) are compiled to the language ProTEUS®°®, which
extends PrRoTEUSS' with type coercions:

e = ...|absie|con;e
v = ...|absiv

Given a type definition type t = t, the PrRoTEUSS™ typing rules effectively al-
low values of type t and type 7 to be used interchangeably as is typical. (We
present the PROTEUSS® typing rules when describing compilation to PRoTEUS®™
in Section 4.2.) For example, in Figure 3, the expression A (k, s.buf, flags) in
dispatch uses A, which has type sockhandler, as a function. In this case, we
say that the named type sockhandler is being used concretely. However, there
are also parts of the program that treat data of named type abstractly, that is,
they do not rely on its representation. For example, the getsockhandler function
simply returns a sockhandler value; that the value is a function is incidental.

In ProTEUS®®®, all uses of a named type definition t = ¢ must be explicit,
using type coercions: abs; e converts e to type t (assuming e has the proper
type 1), and con; e does the reverse. Figure 6 illustrates the dispatch function
from Figure 3 with these coercions inserted. As examples, we can see that
a handResult value is constructed in the last line from —1 via the coercion
(abshandresut —1). Conversely, to invoke h (in the expression for res), it must be
converted from type sockhandler via the coercion (conggckhandier h) (.. .).

Type coercions serve two purposes operationally. First, they are used to pre-
vent updates to some type t from occurring at a time when existing code still
relies on the old representation. In particular, the presence of con; clearly in-
dicates where the concrete representation of t is relied upon, and therefore
can be used as part of a static or dynamic analysis to avoid an invalid update
(Section 4.4).

Second, coercions are used to tag abstract data so it can be converted to a
new representation should its type be updated. In particular, all instances of
type t occurring in the program will have the form abs; e. Therefore, given a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

14 . G. Stoyle et al.

user-provided transformer function ¢; which converts from the old representa-
tion of t to the new, we can rewrite each instance at update-time to be abs; (c; e).
This leads to a natural call-by-value evaluation strategy for transformers in
conjunction with the rest of the program (Section 4.3).

The ProTEUS®®™ typing rules for coercions are simple:

' -e:t rty=r 'ke:t rt)=r
I' F conje: T I' - absie:t

4.2 Compiling ProTeus®' to ProTeus®e"

Compiling a PROTEUSS'® program to a PROTEUS®®™ program requires inserting
type coercions to make explicit the implicit uses of the type equality in the source
program. Our methodology is based on coercive subtyping [Breazu-Tannen et al.
1991]. As is usual for coercive subtyping systems, we define our translation
inductively over source language typing derivations. In particular, we define a
judgement I’ = P :t ~» P’ by which a PRoTEUSS™ program P is translated
to ProTEUS®™ program P’. (The typing environment I' is a finite mapping from
variables to types and from type names to types. As is usual, we will sometimes
write a mapping using a list notation, e.g., ' = x: 7,t = 7’.) Our primary aim
is that the translation be deterministic, so that where coercions are inserted
is intuitive to the programmer. Secondarily, we want the resulting ProTEUS®™
program to be efficient with a minimal number of inserted coercions and other
computational machinery.

The remainder of this section proceeds as follows. First, we show how ab-
straction and concretion of values having named type can be represented with
subtyping. Second, we show how to derive an algorithmic subtyping relation.
Finally, we show how to derive an algorithmic typing relation for expressions
and use this to present the full translation rules. The reader not interested in
the details of the translation can safely skip this section and proceed to the
operational semantics of PROTEUS®™ in Section 4.3.

4.2.1 Abstraction and Concretion as Subtyping. To properly insert cony
and abs; coercions in the source program P, we must identify where P uses
values of type t concretely and abstractly. We do this by defining a mostly stan-
dard subtyping judgement for PRoTEUS®™, written I' + 7 <: 7/, with two key
rules. First, given a value of type 7, it can be abstracted as having type t under
the assumption t = t:

Nt=t F 7 <:t
Conversely, a value of type t can be treated concretely as having type z:
Nt=t F t<:t.

These two rules, along with subtyping transitivity, allow a named type to be
treated as equal to its definition.

The basic compilation strategy is to relate a subtyping derivation to a coer-
cion context C using the judgementI' + 7 <: ¢’ ~» C. This context is applied
to the relevant program fragment e as part of the derivation " + e: 7 ~ €

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 15

using the expression subtyping rule:

F'ke:t ~ € 'z <:7 ~ C
I'Fe:17 ~ CléT]

Here, a coercion context C is defined by the following grammar:

C:=_|abs;C|con;C|letx:7=Cine|eC.

The syntax Cle] defines context application where e fills the hole (written _)
present in the context. For the abstraction and concretion subtyping rules, the
translation rules are:

Lt=1t + 7 <:t ~ abs;_

MNt=t +t<: 7 ~ con; _
To see how this works, here is an example translation derivation using these
rules, where ' =t =int — int,f: t:

F'f:t ~ f 't<:t ~ con_
r~f:int—int ~ conyf ~1:int ~ 1.
''fl:int ~ (com;f) 1

Notice how on the left-hand side of the derivation we apply coercion context
con; _ to f to get cony f. Standard coercive subtyping relates subtyping judge-
ments to functions rather than contexts so that this application would occur at
runtime rather than during compilation.

4.2.2 Making Subtyping Algorithmic. Unfortunately, the strategy just de-
scribed is not directly suitable for implementation. The problem is that nei-
ther the typing relation for expressions nor the subtyping relation are syntax-
directed, meaning that many derivations are possible. This is not a merely
theoretical concern: we can observe the difference between these derivations
due to the effect of inserted con; coercions on runtime updates.

For example, assuming I' =t = 7,x : 7, we could translate the ProTEUSS"®
term X using the following derivation:

'EXx:7t ~~ X

We could also use the following derivation which uses subsumption twice:

F'Ex:7 ~ X -7 <:t ~ abs;_

'-x:17 ~ abs; X t<:t ~ comy_

'-x:17 ~ con; (abs; X)

Because con; coercions may impede a proposed dynamic update to the type t,
an update to the first program may succeed while the second fails. Moreover,
because coercions perform computation at runtime, the second program is less
efficient than the first.

To remedy these problems, we make both the subtyping relation and the
typing relation deterministic. Ignoring contexts C for the moment, here is our

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

16 . G. Stoyle et al.

initial subtyping relation for PrRoTEUSS™®:

[REFL]
'HFt<:t
Nt=tkFt<:7 Nt=tF1t <t
[CON] [ABS]
Nt=trFt<:1 Nt=tF1 <t
Nt <:1q k-1 <:1,

! 2 [FUN]

b —»>n<itg—1
F'bn<ity -+ Thry<iy, k<n

— [REC]
Fl—{llitl,... ,lni‘L’n} <: {llt‘fi,... ,lk:‘(k}

We have made the standard first step of removing the transitivity rule and
embedding its action into the other rules (in this case, the abstraction and
concretion rules). Two other things are worthy of note. First, the [REFL] rule
imposes an invariance restriction on reference types (i.e., t ref <: ' ref if and
only if 7 and 7’ are identical). While such an invariance is standard, it usually
does not apply when considering named types as equal to their definition. For
example, if we had ' = t = int, we might expect that I - t ref <: int ref.
However, when subtyping is used to add coercions, this approach will not work;
there is no way to coerce a term having the former type to one having the latter.
We have not found this to be a problem in practice.

Second, we can see that the rules [CON] and [ABS] are not syntax-directed.
For example, consider the context I' =t =int,s =t,u = s,v = t. Here are two
different derivations of the judgement I' + u <: v, with the preferred one on
the left:

' -t<:t
' - t<:t ' Ht<:int
' ms<:v ' - s<:t
' mu<:v ' Hu<:t
' mu<:v

The problem with the right-most derivation is the pointless concretion/
abstraction of type t. As we explained previously, this will be compiled to a
coercion that will possibly inhibit future updates and add unnecessary compu-
tation.

The [CON] and [ABS] rules capture the cases of ¢ <: ¢/ where one or both
of and 7’ is a name. The essence of our solution to the previous problem is to
break down these cases into separate rules and also to avoid unnecessary con-
cretions/abstractions. We replace the [CON] and [ABS] rules with the following

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 17

four rules:
NotNameType(t') Nit=tkFt<:7
[CONCc]
Nt=trFt<: 7
NotNameType(t') NLt=tkF1t <t
[ABSc]
Nt=tF1 <:t
)=t Irs)=1 Height(t,T") > Height(s,T') Fkt<:s
[CONN]
'Ht<:s
)=t TI(s)=17 Height(s,T") > Heighi(t,T) FHt<:7
[ABSn]
Ht<:s

The predicate NotNameType(t) returns false if 7 is a name and true otherwise.
[CONCc] and [ABSc] deal with the case r <: t” where only one of r and 7’ is a
name. However, we still need to handle the case when they are both names, for
example, I',t = 7,t =7’ F t <: t. Should we unfold the name t, or t'? To break
this symmetry, we make use of a function Height, which is defined as follows:

Height(t, T)
Height(t,T")

1 if I'(1) = r and NotNameType(t)
1+h ifT'(t) =s and h = Height(s,T)

Given a typing context I' and name t, Height(t,I") returns the number of
unfoldings we need to make to the name until we get a type constructor. For
example, given ' =t =int,s =t,u=s,v =1tthen

Height(u,T') = 3,
Height(s,T') = 2,
Height(1,T') = 1, and
Height(v,T") = 2.

We can use this algorithmic subtyping relation to generate coercion contexts as
shown in Figure 7. As an example, we show how the derivation of u <: v from
earlier would be translated (assuming that ' =t=int,s=t,u=s,v=1).

- - [REFL®°¢T]
FEt <t Height(v, ") > Height(t, ")
: : [ABSNceer]
' Ht<:v~abs, _ Height(s,T") > Height(v,T)
- - [CONnCOSF]
I' s <: v~abs, cong _ Height(u,T") > Height(v,T")
[CONN®eeT]

I' - u <: v~ abs, cong con, _

It is relatively routine to show that while this system limits the number of
derivations, it still encodes the same subtyping relation.

THEOREM 4.1. We refer to the subtyping relation with [CON] and [ABS] as
e and the relation that replaces these with [CONn], [ABSn], [CONc], [ABSc]
as +¥%. Then T F“ 1 <: ' ifand only if T F%€ ¢t <: 7/,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

18 . G. Stoyle et al.

[REFL®®"]
TEr<iT~_
NotName Type(t") Nt=rkr<:7~C
[CONceeer]
It=7Ft<:7 ~ Clcon:]
NotName Type(') Tyt=7F7 <7~ C
[ABsccoer}
Iit=7F7 <t~ (abs; .)[C]
rt)y=7 I(s)=7 Height(t,I') > Height(s,T") 'Fr<:s~C
[CONncoer]
't <:s~ Clcon; |
Trt)=7 TI(s)=71 Height(s,T") > Height(t,T") FrFt<: ~C
[ABSncoer}
't <:s~ (abs: -)[C]
TF7 <11~ Cy T'F7 <:1h~Co
[FUNCOEF}
Mk —7m<i7 =1~ MNf:11—)M :7).Calf (Ci[z])] -
'tmn<irf~C -+ Trr<t~C2 k<n
[RECCOSF}

THE{ly:7m,. ln i} <s{luo7y,. . g i T}~
letz:{li:71,...,ln:m}=_in{l; =Ci[z.l1],...1n = Crlz.1,]}

Fig. 7. Coercion generation via the subtyping relation.

Proor. This is proved by relatively straightforward proof-theoretic
techniques. O

4.2.3 Algorithmic Expression Typing. The final step toward a determinis-
tic algorithm is to apply subtyping algorithmically within the typing relation.
The standard approach is to remove the subsumption rule and incorporate it
directly into the other rules, allowing subsumption only at the argument for
application and for the right-most expression of an assignment. However, in
the presence of named types, this approach is insufficient for maintaining a
tight correspondence with the nonalgorithmic relation. Consider an applica-
tion ey eg. The problem occurs when e; has a named type because subsumption
is not available to expand the definition to a function type. While we cannot
allow subsumption at both e; and e, since it would not be algorithmic, we only
require unfolding, a weaker form of subsumption, at e;.2 To this end, we intro-
duce an unfolding judgement I' + t < t that relates t and 7 if the definition

2The alert reader may have noticed that the subtype relation is in fact sufficient to get algorithmic
behavior at application, provided we drop the notion of applying subsumption to the arguments of
functions, and instead apply it to the function type. Although theoretically simpler, in practice, we
want to avoid coercing functions which is expensive. Moreover, we need the unfolding at projection
and dereference in any case, thus it seems a more general concept to apply unfolding at destruct
positions—points where the top-level structure of a value is deconstructed [Bierman et al. 2003b].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 19

' n:int ~ n

Iz)=r71
'Fz:i7~ 2
I'(z)=7

I'Fz:i7~ 2z

Tk oe:m ~ € (i € 1.n)
F'{li=e...;ln=e€n}:{li:71,...;In:m} ~ {li=¢€}, ... ,ln=¢l}

F'kFe:T~ € 'kt ra{li:m,...;ln:m}~ C
Ik el:m~ ClL

D'k e :7~ €] I'Foex:7]~ €
' 7r7dm 2 1m~ Cy F)—T{<:7'1->C1
I+ e1ex:72~ Cife]] Caled]

'k oep:7]~ €] k7 <imp~ C Fyz:71 b ez i1~ €
I'Fletz:m =eines: 7~ letz: 7 =Cle]]ine)

IT'Fe:T~ €
T + refe: 7 ref ~ ref ¢

'kFe:7"~ € I' - 7" <a7ref ~ C
T F le:7~ IC[e]]

Tk oe:7'~ € ' ex:7"~ €
T'F 7' <a7ref ~ C; 7" <7~ Co
T'F er:=e2:7~ Cile}] := Caleh)

I' - update : int ~ update

Fig. 8. Con/abs insertion for compiling PROTEUSS'® expressions.

t = 7 holds directly or transitively, inserting an explicit concretion every time
it unfolds a named type to its definition. The unfolding judgement is then used
whenever a specific type is required in the typing judgement, that is, in the ap-
plication, dereference, assignment, and projection rules. This relation is defined
as follows:

| i ARSI S

rt)=7 Tkt d1~C
I't< t~Clcon;]

The complete rules for the translation are given in Figures 8, 9, and 10. (The
normal typing rules for PROTEUSS™ can be read from these figures by simply
ignoring the ~» C parts.)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

20 . G. Stoyle et al.

' P:17 ~ P

I' - 7 OK Tit=7+F P:7~ P
' typet=7inP:7~ typet=rin P’

IM=I,z: 11 > 72 Mz b e:m/ ~ €
I -7 <im~ C It P:iT~ P
I'F funz(z:7):mm=einP:7 ~ funz(z:71): 72 = Cle/] in P’

L'k ot~ € 'k 7" <7~ C
Iz:7'ref - P: 7~ P/
' varz: 7 =vinP:7~ varz:7 =C[¢/] in P

kFe:T~ €

7
I' - returne: 7~ e

Fig. 9. Con/abs insertion for compiling PROTEUSS'® programs.

I' 7 OK
t € dom(T") r+r
[int TFt T F 7ref
'+ 7 i€ 1l.n 'Fn I'F m
TFA{l:7,.nln:mn} 'k 7m—m7

Fig. 10. Type well-formedness.

4.3 Operational Semantics

The operational semantics is defined using a single-step reduction relation be-
tween configurations, which are triples consisting of a type environment 2, a
heap H, and an expression e, as shown in Figure 11. We use evaluation contexts
to encode the (call-by-value) evaluation strategy.

The type environment Q2 defines a configuration’s named types. Each type in
dom(2) maps to a single representation t; some related approaches [Duggan
2001; Hicks 2001] would permit t to map to a set of representations indexed
by a version. We refer to our nonversioned approach as being representation
consistent since a running program has but one definition of a type at any given
time.

The heap H is a map from heap addresses p to pairs (w, b), where w is a
type tag and b is a binding. We use the heap to store both mutable references
created with ref and top-level bindings created with var and fun; therefore p
ranges over locations r and top-level identifiers z. For locations, the type tag w
is simply -, indicating the absence of a type, and for identifiers, for example, z,
it is the type t which appeared in the definition of z in the program. Type tags
are used to type check new and replacement definitions provided by a dynamic
update.

Normal configuration evaluation is defined by a relation between configura-
tions, written Q; H;e — Q;H’;e/, and is given in Figure 12. This relation
consists of a series of computations, the order of which is determined by eval-
uation contexts. All expressions e can be uniquely decomposed into E[e’] for

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 21

Heap (binding) expressions b € HExp = e| A(z).e

Heap (binding) values b, € HVal == v | A(z).e

Heaps H e Heap == 0|r+— (-,b),H |z~ (1,b),H
Type environment QeTEnv == 0|t—T1,Q

Configurations cfg € CFG = Q;H;e

Evaluation context E J{lh=v1,..., L =E,..., 1, =en}

El|Ee|vE|letz=Eine
refE|!E|E:=e|r:=E
con: E | abs; E

if E=etheneelsee

if v =FE then e elsee

Updates U € Upd {UN = un, AN = an, UB = ub, AB = ab}

Updated Named Types un € NT — Typ x XVar
Additional Named Types an € NT — TEnv
Additional Bindings ab € XVar — Typ x HVal
Updated Bindings ub € XVar — Typ x HVal

Fig. 11. Syntax for dynamic semantics of PRoTEUS®®™.

some evaluation context E and expression e’ so the choice of computation rule
is unambiguous. The computation rules are mostly standard; we will elaborate
on the interesting rules in the following. We use the notation e[v/x] to denote
the capture-avoiding substitution of v for x within e.

A program P is compiled into a configuration ; H;e = C(#; @; P) as shown in
the bottom of Figure 12. Type defintions type t = 7 in the program are added to
the configuration’s type environment Q2. Function definitionsfun f(x : t1) : 7 = e
are stored in the heap as lambda terms A(x).e indexed by their identifier f. The
operational rules will never permit these lambda terms from appearing in the
active expression. Finally, top-level identifier definitions var z : t = v are
stored in the heap as we would expect.

Next, we consider how our semantics expresses the interesting operations of
dynamic updating: (1) updating top-level identifiers z with new definitions and
(2) updating type definitions t to have a different representation.

Replacing Top-Level Identifiers. A top-level identifier z from the source pro-
gram is essentially a statically-allocated reference cell. As a result, at update
time we can change Z’s binding in the heap; afterwards any code that accesses
(dereferences) z will see the new version. However, our treatment of references
differs somewhat from the standard one to facilitate dynamic updates.

First, since all functions are defined at the top level, they are all references.
However, rather than give top-level functions the type (r; — 12) ref, we simply
give them type r; — 19, and perform the dereference as part of the (caLL) rule.
This has the pleasant side effect of rendering top-level functions immutable
during normal execution as is typical, while still allowing them to be dynami-
cally updated.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

22 . G. Stoyle et al.

|Computati0n: H;e — H';e!

H;{li =vi,...,ln=vp}.l; — H;v; (PrOJ)
H;con; (abs; v) — H;v (CONABS)
(H,z— (1, MN(z).e));zv — (H,z— (1,\(2).€)); e[v/z] (cALL)
H;letz:7=vine — H;elv/z] (LET)
Hirefv — (H,r+— (-,v));r (REF)
(H,pr (w,e)); Ip — (H,p— (w,e));p=e (DEREF)
(H,p— (w,€));p:=v — (H,p— (w,v));v (AssIGN)
H;if vl = v2 then el else e2 — Hjel (where vl = v2) (1F-T)
H;if vl = v2 then el else e2 — H;e2 (where vl # v2) (1F-F)
H;update — H;1 (NO-UPDATE)

|Conﬁgurati0n Evaluation: Q; H;e — Q/;H';e’

H;e — H';e!

Q; H;Ele] — Q; H';E[e]] (conG)

updateOK (upd, 2, H, E[0])

O H; E[update] 2% ¢/[Q]"P4; 0 H]"P4;u[E[0] ">
otherwise: Q; H; Elupdate] 2pd, E[1]

(UPDATE)

| Compilation: C(Q; H; P) = Q: H e ‘
C(S%; Hse) =0 Hse
C(Q; H;typet =7 in P) =C(Q,t=m7;H;P)
oy (funfi(z)i =e1... _
¢ <Q’ H; < and fp(z: ™) : 7, =en in P -
C(Q H,f1 = (1= 7/, Mx)er),...,fn = (T —= 7/, A(2).en); P)
C(; Hy;varz: 7 =wv in P) =C(; H,z— (1,v); P)

Fig. 12. Dynamic semantics for ProTEUS®".

Second, as we have explained already, top level bindings stored in the heap
are paired with their type 7 in order to be able to type check new and replace-
ment bindings. Some formulations of dynamic linking define a heap interface,
which maps variables z to types 7 [Hicks et al. 2000], but we find it more con-
venient to merge this interface into the heap itself.

Updating Data of Named Type. As mentioned in Section 4.2, PrRoTEUS®™
uses coercions to identify where data of a type t is being used abstractly and
concretely. The (conaBs) rule allows an abstract value abs; v to be used con-
cretely when it is provided to cony; this annihilates both coercions so that v can
be used directly.

At update time, given a type transformation function ¢ for an updated type
t, we rewrite each occurrence abs; e to be abs; (C e), using the U/[—]"*! trans-
formation which is explained next. Although only values can be stored in the
heap initially, heap values of the form abs; v will be rewritten to be abs; (c v),

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 23

which is no longer a value. Therefore, !r can potentially dereference an ex-
pression from the heap, and our (DEREF) rule evaluates the contents of the
reference, and then writes back the result before proceeding. Whether the co-
ercions are in the heap or the program, when they are executed is (for all in-
tents and purposes) unpredictable. Indeed in our implementation (Section 7),
we take a lazy approach to updating typed values, delaying the evaluation of
the coercion function until the value is actually used in the style of Duggan
[2001]. As a result, coercions should be written to act locally and avoid side-
effecting computation. One could imagine enforcing this, but we do not do so
here.

Update Semantics. When no dynamic update is available, an update ex-
pression simply evaluates normally to 1, by (No-UPDATE). An available dynamic
update upd is modeled with a labeled transition where upd labels the arrow.
Rule (uppaTE) specifies that if upd is well-formed (by updateOK(—), described
in the next section), the update evaluates to 0, and the program is updated by
transforming the current type environment 2, heap H, and expression e accord-
ing toU[—]"*¢, defined in Figure 13; otherwise the update expression evaluates
to 1. To ensure representation consistency, U/[—]"P? applies type transformation
functions to all abs; e expressions of a named type t that is being updated. When
transforming the heap, it replaces top-level identifier definitions with their new
versions and adds all of the new bindings. When transforming 2, it replaces
type definitions with their new versions, and inserts new definitions into spec-
ified places in the list. Also shown in the figure is the definition for updating
a typing context I'; this is used in the definition of updateOK(-), described in
the next two sections.

Typing. We define typing rules for the well-formedness of configurations
in Figure 14; these will be used in the proof of type soundness presented in
Section 4.5. The judgement + ;H;e : 7 indicates that a configuration is
well-formed. Configuration well-formedness is predicated on the existence of
some P, called the heap interface, that properly maps top-level identifiers z and
references r to types t. That is, a configuration is well-formed as long as there
exists some @ sufficient to type check the heap (Q;® + H) and to type check
the active expression. Note that we write Q, ® to denote the concatenation of
the heap interface and the configuration type environment which defines the I'
used to type check the active expression e.

The heap typing judgement establishes two facts: (1) each of the types in ®
accurately represents the types of the bindings found in H and (2) each of the
bindings in the heap type checks under ® and the current type environment .
Assuming the existence of a ® permits cycles in the reference graph.

The type environment must be consistent, which we establish with the
judgement Q F Q. This is particularly important when an update is applied
as we must ensure that the resulting type environment is valid. The rules in
the figure ensure this by requiring all types mentioned in other types to be
both defined and linearly orderable (nonrecursive). However, it is not hard to
treat types t as isorecursive since con; e and abs; e correspond precisely to the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

24 . G. Stoyle et al.

U[H]upd

Uz = (1,b), H]"Pd =

z = (/b)) U H]"
if upd.UB(z) = (7/,b")
7= (T,I/{[b]‘lpd),u[H}llpd
otherwise

Ulr = (-,b), H]"P = (r = (- UB]"P?)), U[H]"P?
U0]"P = upd. AB

U™ =n U™ =z U™ =r U =2

abs; (c Ule]"PY)
if upd.UN(t) = (7/,¢)

upd _
U[abs €] abs: I/{[e]“pd

otherwise
For remaining b containing subterms ey, ..., en: UB]"PY = b with U[e1]"PY .. . U[e,] P?
M[Q]upd
urt =0

upd.AN(t), Q" if t € dom(upd.AN)
Q otherwise
t = TI7M[Q]Upd
if upd. UN(t) = (7', -)
t = 7,U[Q]Pd
otherwise

Ult = r,0]"P9 = {

where Q' =

U[P)"P? = types(upd.AB)
Uz : 7, TP = & : 7,y [T]"Pd
Ulr - 7, TP = 7 . 7, u[r)uPd

z : heapType(7/, by), U[L]"PY if upd.UB(z) = (7, by)
z: 7, U[r]"Pd otherwise

;.
Uft =7, F]"pd _ { ;g)d.AN(t), I if t € dom(upd.AN)

Ulz:7,T]"Pd = {

otherwise
t =7/ U[l]"Pd

if upd. UN(t) = (7/,)
t = 7,u[r)Pd
otherwise

where IV =

Fig. 13. Dynamically updating a program: 2/[—]"P4.

mediating coercions fold; ¢ and unfold; e of isorecursive types [Gapeyev et al.
2000]. Therefore, all of our types could be considered implicitly recursive.

4.4 Update Safety

The conditions for ensuring that updates are type-safe are formally expressed
in the definition of the updateOK(—) predicate that is a precondition to the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 25

Configuration typing: - Q;H,e: 7

- H QPrHye: T
O H;e: T

FQ Q; ¢
'_

Heap typing: Q;® + H|

dom(®) = dom(H)
Vz— (1= 7 ANz)e)eH Q@ z:7he:7 ANP(z)=7—1
Vzi— (r,e) € H Q,®Fe:7 A ®(z) =7 ref
Vr— (,e)eH Q®Fe:7 AN ®(r)=1ref
O F H

Type Environment Well-formedness: Q + Q|

Qt=7+F Q Q + 7 OK
QFt=79

QF0

Fig. 14. ProTEUS®®™ configuration typing.

let i = post (
let u2 = update in
let res = (Consockhandler abssockhandler Udp—read)
{s0ck = Usock, buf = (€CONreq Vreq).buf, sflags = vsfiags } in
let u3 = update in res
) in loop i

Fig. 15. Example active expression.

(uppATE) rule in Figure 12. In particular, if updateOK(—) holds, then applying
the update will yield a type-correct program.

The definition of updateOK(—) has two components: it ensures (1) that the
update is compatible with the program’s definitions, and (2) that it is compatible
with the current state of the program, that is, the return e part and the heap
H. The former is a static property in the sense that the information to perform
it is available provided one has the original source and the updates previously
applied. The interesting part is the latter component since satisfying it depends
on the timing of the update.

To ensure that an update is well-timed, it must be applied at a program point
that is con-free. To understand what this means, consider again the example
from Section 3.3. Figure 15 illustrates the active expression in PROTEUS®®™ equiv-
alent to the PROTEUSS® epxression shown in Figure 5 of that section. Notice that
now the call to udp_read as a concrete usage of type sockhandler is made mani-
fest by type coercions. We can clearly see that this point in the program is not
con-t-free since it will manipulate t values concretely immediately following the
update. In general, we say a configuration Q; H;e is con-free for an update upd
if, for all named types t that the update will change, con; is not a subexpression
of (1) the active expression e or (2) any of the bindings in the heap that are not
replaced by the update. We write this as conFree[— |"P; the definition is given
in Figure 16. Part (2) is captured by the first rule in the figure: functions to be
replaced (i.e., those in upd.UB) are not checked. The existence of a con; in some

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

26 . G. Stoyle et al.

| updateOK (upd, 2, H, €) |

updateOK(upd, 2, H,e) =
ConFree[H]uPd/\
conFree[e]“pd/\
T = types(H)A
F U[Q]PIA
vt — (1,¢) € upd.UN. U[Q, TP c: Qt) — 7A
Vz i (7,by) € upd.UB. U[Q,T]"Pd F b, : 7A
heapType(r,by) = I'(z)A
Vz +— (7,by) € upd.AB. Z/I[Q,F]“pd F by :7 Az ¢ dom(H)

conFree[—]"Pd = tt | ff‘

conFree[z = (7, b), H]"P4

tt if z € dom(upd.UB)
conFree[b]"PY otherwise
conFree[r = (-,e), H]"PY = conFree[e]"P? A conFree[H |*P4

= conFree[H]"P4 A {

conFlree[n]upd =tt ConFlvee[ﬂU]upd =tt
upd _ J ff if t € dom(upd.UN)
conFree[cont €] - { tt otherwise

For remaining b containing subterms e, ..., en:
conFree[e]"P?d = A; conFree[e; |"P4

types(H) = ®

types(0)
types(z — (1 — 7/, A(z).e), H')
types(z— (7,¢), H')

0
z:7 — 7/ types(H’)
z: 7 ref, types(H')

| heapType(r, by) = tt | ff |

heapType(t1 — 72) = 71 — T2
heapType(T) = 7ref where 7 # 171 — T2

Fig. 16. updateOK(—) predicate for defining legal updates and supporting definitions.

upd ¢4 fajl as exemplified by

other part of the program P will cause conFree[P]
the rule for conFree[con; e |".

The conditions for update well-formedness in updateOK(—) aim to ensure
that type-safety is maintained following the addition or replacement of code
and types. The types(H) predicate extracts all of the type tags from H and
constructs a suitable I" for type checking the new or replacement bindings. Since
heap objects are stored with their declared type 7, if they are not functions in
I, then they are given type t ref. Next, the updated type environment 2/[2]"P4
is checked for well-formedness. Then, using the updated Q2 and I', we check
that the type transformer functions, replacement bindings, and new bindings
are all well-typed. These type-checks apply only to expressions contained in
the update—none of the existing code must be rechecked (though its types, as
stored in the heap, are needed to check the new code).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 27

A natural question is “how likely is it in practice that a given dynamic update
will occur at an update that is con-free?” This depends on the placement of the
update in the program text. If the update is at a program point for which there
will be a fairly shallow call stack (corresponding to a small active expression
e in configuration Q; H;e), then there is less possibility that some con; exists
that will prevent the update. The contents of the heap will not play a significant
role in update timing, assuming that the new update indeed replaces functions
that use a type whose definition has changed. For a program like our example
that is structured around a top-level event loop, placing update just prior to the
recursive call of that loop yields the fewest restrictions. It is the top-level loop
so there is no call stack, and, moreover, the current invocation of the function
that implements the loop has finished. An update at that point will be accepted
even if the loop function has changed because the next call to that function will
be to the newest version which is checked to be compatible with any changed
type definitions at update-time. All single-threaded, long-running programs we
have encountered have such update-friendly points in them [Hicks 2001].

4.5 Properties

Our main theorem is that PROTEUS®™ is type-safe.
THEOREM 4.2 (TYPE SOUNDNESS). Ift Q;H;e: 1, then either

(1) there exists Q', H', e’ such that Q;H;e — Q';H';e’ and - Q'; H';e' @t or
(i1) e is a value.

This theorem states that a well-typed program is either a value, or is able
to reduce (and remain well-typed). The most interesting case in proving type
preservation is the (Uppate) rule for which we must prove a lemma that well-
formed and well-timed updates lead to well-typed programs:

LEMMA 4.3 (U[—]~ PRESERVES TYPE SAFETY). Given + Q; H;e and an update,
upd, for which we have updateOK(upd, 2, H,e), then - U[Q]®Y U H "™,
Ule]™d : .

Proof sketches appear in Appendix A.2.

5. STATIC UPDATE SAFETY

The updateOK(—) predicate determines the legality of an update upd’s form
and its timing when applied to program P. Well-formedness is based only on
the substance of upd and the types of P’s definitions, that is, the bindings
z in its heap H and the type definitions t in its type environment . This
type information is invariant with P’s execution and so the well-formedness
of upd can be known in advance, before it is applied, by checking it against
the program text. In contrast, the well-timing of upd is determined by the
conFree[— |"*4 predicate, which relies on the program’s current state, which is
the active expression e and the bindings in the heap. Implementing this check
directly has two drawbacks.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

28 . G. Stoyle et al.

(1) It could be expensive. P’s active expression e models the stack and program
counter in an actual implementation and so to implement conFree[P |"P4
would require traversing the stack and code to look for concrete uses of
changed types.

(2) More importantly, it could fail if the update is applied at a bad time. While
an easy remedy is to delay the update until an acceptable update location
is reached, there is no assurance that such a location exists. For example,
if all update points in the program P immediately precede the expression
con; e, then any update that includes a change to t will always fail because
conFree[con; e " will fail for all upd. As this is due to the structure of
P, the programmer would like to learn of this fact before P is deployed to
ensure that future unanticipated changes to t may safely take place.

In this section, we present a way to statically infer for each update point in
the program those named types t for which the program may not be con-t-free at
that point. With this information, we can discover which if any update points
are con-free for all types, meaning that the update will accept any well-formed
update whatever it may be. This is the kind of guarantee enjoyed by standard
dynamic linking, which only adds bindings to the program, but does not re-
place them. In addition to supporting this kind of reasoning, static inference
also permits a simpler, more efficient implementation of updateOK(—) without
need of conFree[—]. We call our static inference an updateability analysis and
formulate it as a type and inference system. This section presents the type rules
and shows the analysis to be sound.

5.1 Capabilities

Our goal is to define and enforce a notion of con-freeness for a program, rather
than a program state. In other words, we wish to determine for a particular
update whether it will be acceptable to update some type t. An update to t
will be unacceptable if an occurrence of con; exists in any old code that could
be evaluated in the continuation of the update. If we can discover all possible
such occurrences of cont, we could annotate update with a list of those types
t and call this annotation A. Then (along with its well-formedness checks),
updateOK(—) could ascertain con-freeness by merely checking that for all t
upd.UN, t € A. This is substantially simpler than conFree[—].

We call this annotation A a capability since it serves as a bound on what
types may be used concretely in the continuation of an update. That is, roughly
speaking, any code following an update must type check using I" restricted to
those types listed in the capability. Since an update can change only types
not in the capability, we are certain that existing code will remain type-safe.
As a consequence, if we can type check our program containing only update
points with empty capabilities, we can be sure that no update will fail due to
bad timing.

5.2 Typing

We define a type system that tracks the capability at each program point
to ensure that updates are annotated soundly. To do this, we introduce a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 29

Capabilities A = {t1,...tn} |ANA
Updateability == U|N
Types 7 = | T wa -
Expressions e = | update®
Programs P = | fun z#2A (z: 7)) : 75 =ein P
Heap expressions b = e | A\>(z).e
Heap values b, = v | A2(x).e

Fig. 17. Extended syntax for PrRoTEUS®.

new target language, ProTEUS?, that differs from PrRoTEUS®®® in two ways: (1)
functions, function types, and update are annotated with capabilities and
(2) each function and function type is annotated with an updateability u,
which indicates whether a dynamic update may occur as a result of calling
the function. The syntax changes are shown in Figure 17. We must also adjust
compilation (Figure 12) in the case of functions to add the necessary anno-
tation on the generated binding and type (the and case is obvious and not
shown):

C(Q H;fun %% (x : 1) : v/ =ein P) = C(Q; H,f > (¢ ma ', A% (x).e); P).

Here, the A annotation on A*(x).e is used in the update-time safety check as we
show later. For the remainder of this section, we consider the type system for
ProTEUS?, covering judgements for expressions, programs, and configurations.

5.2.1 Expression Typing. The rules for typing expressions are given in
Figures 18 and 19, defining judgement A;I" -, e : 7;A’. Here, A is the ca-
pability before e is evaluated, and A’ is the capability afterward. Each rule is
actually a family of rules parameterized by an updateability j1: updateability
U indicates a dynamic update may be performed while evaluating the given
expression, while N indicates that no update is permitted. This is used to rule
out dynamic updates in undesirable contexts, as we explain in the next section.

Typing update and con; e. The capability A’ on updateA’ lists those types
that must not change due to a dynamic update. Since any other type could
change, the (A.EXPR.UPDATE) rule assumes that the capability can be at most
A’ following the update. The (A.ExXPR.CON) rule states that to concretely access
a value of type t, the type t must be defined in T, restricted to types listed in
capability A’.

Figure 20 shows the dispatch function from Figure 6 with capability and
updateability annotations added. In the figure, we put variables for these an-
notations with their solutions and constraints on their solutions to the right;
we explain this more fully in Section 5.4. We can see that the update in
let ul = update in ... is annotated with a capability {fdtype, req, sockhandler}
since these types are used by con expressions that could be evaluated follow-
ing that point within dispatch. By the same reasoning, the annotation on the u2
update is {req, sockhandler}, and the u3 update annotation can be empty. The
(A.EXPR.UPDATE) rule requires updateability U; updates cannot be performed in
a nonupdateable (N) context.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

30 . G. Stoyle et al.

Expression Typing: A;I'Fj, e: 7 A’

AT Ry nocintg A (A.EXPR.INT)
I(z) =
% (A.EXPR.VAR)
£ 12 .)
I'(z) =
1%5 (A.EXPR.XVAR)
) n il Ty
A;T,r:rref by r:7ref; A (A.EXPR.LOC)

AiiT e Tig1; Aiga t€1l.(n—1) n>0
Ao Ty {li=e1, ..., ln=en}:{li:71, ..., In: T} A

(A.EXPR.RECORD)

AThpe:{ly 7, oo, ln i 13 A
AT hyeld; s A

(A.EXPR.PROJ)

AT e :m %TQ;A’

A/;F |_“ eo: Tl;A” A/” g A//

(i=U)= (u=UAA" CA)
Ay erex: o, AT

(A.EXPR.APP)

ATy e Ay Ay Dlhye i A2
ATy e 75 Ag Ag;T by ex: 75 Ay
A;Tk, if e=¢ thenejelse ex : 7/; A3 N Ay

(A.EXPR.IF)

AT by e s A
AT,z by e o A
A;T'Fyletz:7=ep ines s A7

(A.EXPR.LET)

ATy e A
AT, ref e: 1 ref; A’

(A.EXPR.REF)

A;T by e Tref; A
ATy le: ;A

(A.EXPR.DEREF)

A;T by er T ref; AY
AT hyep A
AT hperi=ex: T A7

(A.EXPR.ASSIGN)

Fig. 18. Expression judgements for ProTEUs® (part I).

(A.EXPR.UPDATE) assumes that any update could result in an update at run-
time. However, we can make our analysis more precise by incorporating the
effects of a dynamic check. In particular, (A.ExXPR.IFUPDATE) checks a special case
of if with a guard update® = 0, which will be true only if an update success-
fully takes effect at runtime. Therefore, the input capability of e; is A’, while
the input capability of es is A, unchanged.

Function Calls. Function types have an annotation u; A’, where A’ is the
output capability of the function. If calling a function could result in an update,
the updateability u must be U. Thus, the dispatch function in Figure 20 has

type req il handResult.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 31

A'CA
AT Ry updateA/ sint; A

(A.EXPR.UPDATE)

A'CA AThyer i 7540 ATy ez 75 Ag
AT by if updateAl =0thenejelsees : 7/; A1 N Ay

(A.EXPR.IFUPDATE)

ATy ety A rt)=r te A
AT, conge: ;A (A.EXPR.CON)
ATy e A rt)=r ‘
AT F, abs;e:t; A/ (A.EXPR.ABS)
ATy et/ A -1 <:7 A" C A
ATF. e r A" (A.EXPR.SUB)
Lrpe:T;

Fig. 19. Expression judgements for ProTEUS? (part II).

let dispatch®¥1i%2(s : req) : handResult =

let t = decode((conreq s).fd) in

let ul = update?3 in

if (conggrype t) = Socket then
let k = getsock((conyeq s).fd) in
let flags =

decode_sockopargs((conreq s).rest, (Conreq s).op) in

let h = getsockhandler ((conreq s).fd, (conreq s).op) in
let u2 = update¥4 in
let res = (congockhandler) (k, (conyreq s).buf, flags) in
let u3 = update?s in res

p2 C 5

req € o1

p3 Cpr,e=U
fdtype € ¢3
req € 3

req € p3,req € @3

req € p3,req € p3

P4 C p3,e=U
sockhandler € p4,req € @4
p5 Cpg,e=U

else if (conggiype t) = File then ...
else (abshandResuIt 71)

fdtype € ¢3

e = U
p1 = {req, fdtype, sockhandler}
p2 =

where p3 = {req, fdtype, sockhandler}
pa = {req,sockhandler}
ps = 0

Fig. 20. dispatch (from Figure 6) in ProTEUS® with capability and updateability annotations.

In the (A.EXPR.UPDATE) rule, the output capability is bounded by the annota-
tion on the update; in the (a.ExPr.APP) rule, the caller’s output capability A"
is bounded by the callee’s output capability A’ for the same reason. This is
expressed in the conditional constraint (i = U) = (u = U...), which also indi-
cates the caller’s updateability © must allow the update. If the called function
cannot perform an update, then the caller’s capability and updateability need
not be restricted. We will take advantage of this fact in how we define type
transformer functions, described in the following.

A perhaps unintuitive effect of (A.ExPR.APP) is that a function f's output capa-
bility must mention those types used concretely by its callers following their
calls to f. To illustrate, say we modify the type of post in Figure 3 to be int — int
rather than handResult — int. As a result, loop would have to concretize the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

32 . G. Stoyle et al.

Subtyping: I' - 7 <: 72 |

I' F int <:int (A.SUB.INT)
I'(t) =
T (F)t<Tt (A.SUB.NT)

'+ mn<n Ik o7<:7)
Ay C AL (p2=U)= (11 =U)

A.SUB.FUN)
VAN DAY (
L+ MES T <: Ty H2is2 5
Prn<n teln (A.SUB.RECORD)
T {liim, .. dpcm}<s{li:ry, ..., ln:7)} .
Pk r<7 -7 <:7
(A.SUB.REF)

I' - 7/ ref <: 7 ref

Fig. 21. Subtyping judgement for PROTEUS™.

handResult returned by dispatch before passing it to post, resulting in the code
let i = post (conpangresut (dispatch req)) . ..

To type check the con would require the output capability of dispatch to include
handResult, which in turn would require that handResult appear in the capa-
bilities of each of the update points in dispatch, preventing handResult from
being updated.

Another unintuitive aspect of (A.EXPR.APP) is that to call a function, we would
expect that the caller’s capability must be compatible with (i.e., must be a su-
perset of) the function’s input capability, but this condition is not necessary (and
hence function types do not even mention the function’s input capability). In-
stead, the type system assumes that all calls will be to a function’s most recent
version, which is guaranteed at update time to be compatible with the program’s
type definitions (see Section 5.3). In effect, the type system approximates, for
a given update point, the concretions in code that an updating function could
return to, but not code it will later call, which is guaranteed to be safe. This is
critical to avoid unnecessary conservatism in the analysis.

Other Rules. Unlike con; e expressions, abs; e expressions place no con-
straint on the capability. This is because a dynamic update that changes the
definition of t from 7 to t’ requires a well-typed type transformer c to rewrite
abs; e to abs; (c(e)), which will always be well-typed assuming suitable restric-
tions on ¢ described in the next section.

The type system permits subtyping via the (A.ExpPr.SUB) rule which also per-
mits coarsening (making smaller) the output capability A (See Figure 21). In-
tuitively, this coarsening is always sound because it will put a stronger restric-
tion on limits imposed by prior updates. Allowing subtyping adds flexibility to
programs and to their updates. The interesting rule is (A.sUB.FUN) for function
types. Output capabilities are contravariant: if a caller expects a function’s out-
put capability to be A, it will be a conservative approximation if the function’s

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 33

Program Typing: I' - P: 7 |

Iit=7'"F P:71
I' - 7 OK

A.PROG.TYPE
I' - typet=7"inP: 7 (a-PROC)

, niAL HnsAy,
IM=T,z1:m1 — 7,...,2n.:T1 — T,

ATz omibpep i A t€1l.n I+ P:7
A A

funz’lll ! YNoe:m):m{ =e1...

?AnéA;L(

(A.PROG.FUN)

I - L
and z,,"

T:Tp):T) =epinP:T
P;Thyv:T50 Iz:7'ref - P:7

n A.PROG.VAR
I'-varz:7 =vinP: 71 ()

AT hye: A

T F returne: + (A.PR()G.EXPR)

Fig. 22. Program judgements for PROTEUS™.

output capability is actually larger. A function that performs no updates can be
a subtype of one that does, assuming they have compatible capabilities.

5.2.2 Program Typing. The rules for typing programs are given in
Figure 22, definingjudgementI" +~ P : 7. The (A.PROG.TYPE) rule adds a new type
definition to the global environment, and the (a.PROG.FUN) rule simply checks
the function’s body using the capabilities and updateability defined by its type.
Since v is a value and cannot effect an update, the (A.PROG.VAR) rule checks
it with an empty capability A and updateability N. Finally, the (A.PROG.EXPR)
rule type checks the body of the program using an arbitrary capability and
updateability U to allow updates.

5.2.83 Configuration Typing. Figure 23 shows the configuration typing
rules for ProTEUS®. These have the same structure as those for ProTEUS®®?
(Figure 14), but they mention capabilities and updateabilities. For functions,
we type check with the updateability indicated by the function’s type, while for
other bindings, we assume N.

5.3 Safety

Since we are approximating the conFree[—] check using static capabilities, we
can take advantage of this by refining the updateOK(—) predicate for (UPDATE);
this is shown in Figure 24 (contrast with the original definition in Figure 16).
The two timing-related changes are highlighted by the boxes labeled (a) and
(b). First, A, taken from update®, replaces e as the last argument. This is used
in part (a) to syntactically check that no types mentioned in A are changed
by the update. Part (a) also refers to bindOK|[I"]** to ensure that all top-level
bindings in the heap that use types in upd.UN concretely as indicated by their
input capability are also replaced. This allows the type system to assume that
calling a function is always safe, and need not impact its capability. Together,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

34 . G. Stoyle et al.

Configuration typing: - Q;H,e: 7

FQ Q0P - H
A;QPFye:T; A
F Qs H;e: T

(A.TYPE.CONFIG)

|Heap typing: Q;® F H|

dom(®) = dom(H)

AT N
VZH(T%T/,)\A(I).G)GH. AQ Pz :ThH e T A A @(Z):T%T/
Vz (r,e) € H. 0;Q,®bne:7;0 A ®(z) =7 ref
Vri— (e) € H 0;Q®Fye:T;0 A ®(r) =7 ref

Q¢ - H

(A.TYPE.HEAP)

IType Environment Well-formedness: Q F Q |

Qt=7F Q F 7 OK
QFt=7¢0

QF 0 (A.TENV.EMPTY) (A.TENV.TYPE)

Fig. 23. Proreus® configuration typing.

updateOK(upd, Q, H,A) =
I' = types(H)A

(a)
dom(A) N dom(upd.UN) = @ A bindOK[H]"P4 | "A

F UQ"PIA
Vt > (7,¢) € upd.UN. A/, A",

(b)
0;U[Q, TP by c: Q(t) 0 A
Vz — (7,by) € upd.UB. U[Q,T]"PT F b, : 7A

N:A: A
83

(c)
’L{[Q]“pd F heapType(r, by) <: I'(z) ‘ A
¥z — (1,by) € upd.AB. U[Q,T]"PT + by, : 7 Az ¢ dom(H)

‘ bindOK[H "9 = t¢ | £

bindOK[0]"P? = tt

A upd
bindOK{z (11 B5 1, A (z).e),H'} = bindOK[H']"PIA

(dom(upd.UN) N A # 0) = z € dom(upd.UB)

bindOK[z — (7,b), H' |"P? = bindOK[H' |["P A 7 £ 7 2 1

bindOK|[7 — (-, b)’H’]“Pd — bindOK[H’]“pd

Fig. 24. Precondition for update® operational rule.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 35

these two checks are analogous to the con-free dynamic check to ensure proper
timing.3

Type transformers provided for updated types must not when inserted vio-
late assumptions made by the updateability analysis. In particular, each abs; e
appearing in the program type checks with some capability prior to an update,
that is, A;T +, abs; e : 7; A'. If type t is updated and has transformer c, we
require A;T" -, abs; (C e) : 7; A'. Since abs; e expressions could be anywhere
at update time, and could require a different capability A to type check, condi-
tion (b) conservatively mandates that transformers ¢ must check in an empty
capability, and may not perform updates (c’s type must have updateability N).
These conditions are sufficient to ensure type correctness. Otherwise, a trans-
former function c is like any other function. For example, if it uses some type
t concretely, it will have to be updated if t is updated. The ramifications of this
fact are explored in Section 6.

Finally, we allow bindings to be updated at subtypes as indicated by condition
(c). This is crucial for functions because, as they evolve over time, it is likely
that their capabilities will change depending on what functions they call (or are
called by) or what types they manipulate. Fortunately, we can always update
an existing function with a function that causes no updates. In particular, say
function f has type t oy t, where t = int and t' = int. Suppose we add a new
type t” = int and want to change f to be the following:

funf(x :t):t' =
let y = cony "1 in
let z = con; x in (absy z) + ¥

The expected type of this function would be t L t, but it could just as well be

given type t i t', which is a subtype of the original, and thus an acceptable
replacement. Replacements that contain update or that call functions that
contain update are more rigid in their capabilities.

5.4 Inference

The type rules were designed so that type inference is straightforward, using
constraints. In particular, we simply extend the definition of capability A to
include variables ¢ and updateability i to include variables . Then we take
a normal PrRoOTEUS®™ program and decorate it with fresh variables on each
function definition, function type, and update expression in the program. We
also adjust the rules to use an algorithmic treatment of subtyping, eliminat-
ing the separate (A.ExPR.SUB) rule and adding subtyping preconditions to the
(A.EXPR.APP) and (A.EXPR.ASSIGN) rules as is standard. This allows the judgement
to be syntax-directed.

As aresult of these changes, conditions imposed on capability variables by the
typing and subtyping rules become simple set and term constraints [Heintze

3Note that the con-free check is compatible with the analysis and therefore could simply be tried
as an alternative if the static check fails.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

36 . G. Stoyle et al.

1992]. Call the set of generated constraints S. A solution to S consists of a
substitution o, which is a map from variables ¢ to capabilities {tj,...,1,}, and
from variables ¢ to updateabilities either U or N. The constraints can be solved
efficiently with standard techniques in time O (n?) in the worst case, where n is
the number of variables ¢ or set constants {-} mentioned in the constraints. The
constraints have the following forms (shown with the rules that induce them):

(1) T F 171 <: 72 (A.EXPR.SUB)

2) e=U (A.EXPR.UPDATE)

3) (4 =U) = C (A.EXPR.APP), (A.EXPR.SUB)
4) pC A (A.EXPR.UPDATE), (A.EXPR.APP)
B)teA (A.EXPR.CON)

For updateabilities, we want the greatest solution, that is, we want to allow as
many functions as possible to perform updates (with an unannotated program,
this will vacuously be the case). For the capabilities, we are interested in the
least solution in which we minimize the set to substitute for ¢ since it will permit
more dynamic updates. For update”, a minimal ¢ imposes fewer restrictions
on the types that may be updated at that point. For functions 2% ¢, the
smaller ¢’ imposes fewer constraints on subtypes which in turn permits more
possible function replacements.

Here is one way to solve the constraints (which closely follows our implemen-
tation). First, we simplify the subtyping constraints (1) following the subtyping
rules. For example, say we have the constraint

r rlh—’wit{<:1282’—¢§ré
We remove this constraint from S and replace it with constraints, following
(A.SUB.FUN):

' ov<imy

-1 <it

Py S ¥}

(e2=U)=(e1=U)
We continue until only simple subtyping constraints remain, for example,
' + int <:int, and then remove these from S (such constraints will always be
satisfied by a program that type checks). Next, we find the greatest solution for
updateability variables ¢ appearing in constraints (2) and (3). That is, we make
as many of the variables have updateability U as possible to allow for greater
flexibility in future updates. As we discharge the implication constraints (2),
additional constraints C are added to S. Finally, the constraints that remain
in S are only subset constraints concerning capabilities (i.e., forms (4) and (5)),
which are easily solved.

The right side of Figure 20 shows the constraints of forms (2), (4), and (5) that
are generated from the dispatch function (we elide the subtyping and function
call constraints for simplicity). Following the previous algorithm, we arrive at
the solution at the bottom of the figure.

When using inference for later versions of a program, we must introduce
subtyping constraints between an old definition’s (solved) type and the new

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 37

version’s to-be-inferred one. This ensures that the new definition will be a suit-
able dynamic replacement for the old one.

Inferring update Points. Using the inference system, we can take a pro-
gram that is devoid of update expressions and infer places to insert them
that are con-free for all types. Define a source-to-source rewriting function
rewrite : P — P’ that inserts update’ at various locations throughout the
program. Then we perform inference and remove all occurrences of update’
for which ¢ is not ¢ (call these universal update points as they do not restrict
the types that may be updated). In the simplest case, the rewriting function
could insert update’ just before a function is about to return. Adding more
points implies greater availability but longer analysis times and more runtime
overhead. Intuitively, this approach will converge because the annotations ¢ on
update points are unaffected by those on other update points; rather they are
only impacted by occurrences of con in their continuations.

5.5 Properties

The two important properties of the updateability analysis are soundness and
predictability. As with the dynamic system, soundness is proved syntactically
via preservation and progress lemmas. The former is stated as follows:

LeEmMA 5.1 (PRESERVATION). If+ Q; H;e : 1, then
(1) if 2 H;e —> Q;H';e' thentQ;H';e' @ t
(i) if Q; H;e g Qs H';e thent Q' ;H';e' @ t

The proof of part (1) of Preservation is mostly standard. However, the proof of
part (2) is more challenging and reduces to proving the following lemma which
states that valid updates preserve typing.

LeMMA 5.2 (UPDATE ProGRAM SaFETY). If + Q; H;E[update®] : t and
updateOK(upd, 2, H, A) then + Z/I[Q]“pd;u[H]"pd;L{[E[O]]upd T

A core element of this proof is that we must show that by changing the named
types listed in upd.UN, we will not invalidate code in the existing program. We
do this by proving the following lemma.

LemMMA 5.3 (UPDATE CAPABILITY WEAKENING). If A;T +, E[updateA”] C T A
then A";T +,]E[updateA”] Ty AL

This states that for any expression that has updateN as its redex, we can type
check that whole expression using capability A”. In turn, this implies that the
existing program could only use the types listed in A” concretely, and therefore
it should be safe to update the other types in the program.

Another important element of the Update Program Safety Lemma is that
the insertion of type transformers will preserve type safety. This must take
into account that an inserted transformer will not have an adverse effect on
the capability. The following lemma states that as long as a given expression e
will not perform an update, it is always safe to increase its capability. Since type

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

38 . G. Stoyle et al.

transformer functions may not perform updates and are required to have an
empty capability, this lemma allows them to be inserted at arbitrary program
points.

LEMMA 5.4 (CAPABILITY STRENGTHENING). If A;T by e : 7; A, then for all A"
we have AUA";T Fye:t; AVUA".

Proofs of these properties can be found in Appendix A.1.

6. EXTENSIONS

This section presents how PrRoTEUS? can be extended with three features to
improve its expressiveness: (1) permitting replacement bindings at changed
types, (2) supporting binding deletion, and (3) extending ProTEUS to support
multiple threads.

6.1 Replacing Bindings at New Types

Both ProTEUS®®™ and ProTEUS? only permit replacement bindings having types
compatible with the original, for example, condition (¢) of updateOK(—) in
Figure 24 at best allows replacements to be subtypes of the original. However,
as described in Section 2, it is not uncommon for bindings to change type, for
instance, for a later version of a function to have an additional parameter. Given
the type compatibility restriction, a simple way to effect type changes to func-
tions is to add the new version at a new name, and then define a stub function
to replace the old version [Frieder and Segal 1991; Hicks 2001]. The stub func-
tion has the same type as the original but calls the new version at the new
type, for example, by generating default values for added parameters. While
expedient, the stub approach has two drawbacks. First, a transformation from
the old type to the new may be inefficient or impossible; transformations will
occur with each call to the function but only when the old call contains sufficient
information to generate the new one. Second, there is no way to generate a stub
for a nonfunction that has changed type.

To solve these problems, we can extend our notion of con-freeness to con-
sider concrete uses of top-level term bindings and not just concrete uses of
named types. Top-level bindings are either global variables having type t ref
or functions having type r — 1/, and their concrete uses are dereference and
assignment for the former, and application for the latter. For example, if at the
time of update a call to function f occurs in either the active expression e or
within a function not being replaced, then the program would not be consid-
ered con-free with respect to f. This means that f should only be updated at a
compatible type. On the other hand, if f is not called by the active expression
(or in any function not being replaced) then it will be safe to update f at a new
type as part of a well-formed update.

It is straightforward to extend ProTEUS® to capture this extended notion of
con-freeness statically. In particular, we augment types t ref and t BE
to include a set L of identifiers z; this set contains those top-level variables
that may be given this type. In addition, we allow capabilities A to contain
both named types and top-level identifiers. For simplicity, we will just consider

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 39

. WAL
functions in the following discussion that have augmented types t '—> t’. The
constructor for such a type is a function definition:

ISHYHESY] I Ans(zn)
F/:F,ZlZfl —1) {,...,Znifn jpa nf;l

AT x b, e 1 Al tel.n '+ P:1 ,
(A.PROG.FUN’)

n1;A134]
fun z, a)it =er...

In;AnA

r+ , i
and z, "xiT):iT,=e,in Pt

This rule differs from the one in Figure 22 only in the structure of the arrow
types in I'". The arrow type of each function z; contains z; in its L set. The
destructor rule is application:

AThHyer:ny ﬂﬁf To; A/
AT b eg T3 A A" C AN LcA
(=U)=(u=UAA"CA)

AT F,epes: o A7 (A.EXPR.APPU’)
4 12 . >

This rule differs from the one in Figure 18 in that the set L must be included
in the output capability A”, indicating that any update prior to this call must
not update those functions appearing in L. Finally, subtyping permits the set
L on an arrow to be smaller in the subtype:

'k <1y ME 1<t

Ag C Ay LicL, (e =U) = (u1 =U) ,
(A.SUB.FUN’)

'+n mityle T <ITy #atals 7y
As an example, consider the typing of the call to the socket handler as part
of the dispatch function shown in Figure 6:

let u2 : int = update’ in
let res : handResult = (congocknangier Dk, (conyeq s).buf, flags) in e

We might type this fragment in the following context:

r=..,

sockhandler = {sock : sock, buf : buf, sflags : sflags} v

udp_read : {sock : sock, buf : buf, sflags : sflags} ~ *%5**¥ handResult,

udp_write : {sock : sock, buf : buf, sflags : sflags} ~ =" handResult,

k : sock,
flags : sflags,
h : sockhandler, ...

;¥;{upd_read,udp_write,... }
— handResult,

In such a context, the subexpression congecnandier # Will have type {sock : sock,

buf : buf, sflags : sflags} Uiilupd-read ydp-write,--) - ndResult by the (A.EXPR.CON)
rule so that applying (A.EXPR.APP’) requires that {upd_read, udp_write, ...} be
included in the current capability. This constraint will propagate backward so
that applying (A.EXPR.UPDATE) requires {upd_read, udp_write, ...} C ¢. As ¢ is the
annotation on the update, updates to upd_read and udp_write at that point will
be prevented if they have different types than the originals.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

40 . G. Stoyle et al.

Note that one way to effectively allow variables to change type without this
extension would be to give each a distinct named type. Since named type defini-
tions can change, this would effectively allow the types of variables to change.
However, this approach does not quite work because one cannot directly as-
cribe a named type to a function. The best one can do is define a variable as
having a named type and assign to it a function having that named type’s def-
inition. Of course, a compiler could automatically perform this transformation
and generate the attendant transformer functions when variables are updated.
The drawback in doing so is that it introduces extra implementation complexity
and extra runtime overhead since each function call or variable would require
a con coercion. Therefore, in our implementation, we take the approach pre-
sented here.

6.2 Binding Deletion

While most changes we have observed in source programs are due to added or
replaced definitions, occasionally definitions are deleted. Assuming that DSU
is meant to prolong a program’s running time for perhaps a few years, we could
choose to ignore deleted functions because, in many cases, the dead code will
not take up much memory. However, an excessive number of dead functions
could hamper dynamic updates since update well-formedness dictates that if
some type tis updated, any function f that concretely manipulates t must also be
updated. Therefore, even if some function f has been removed from the program
sources, a future update to t would necessitate updating f. But how does one
update a function that is no longer of use? This issue also arises with old type
transformer functions.

To support deletion, we augment updates upd to contain a component DB—a
list of top-level identifiers to delete. To preserve type safety, we can only apply
such an update if the deleted bindings will never be used again by the updated
program. Ensuring this condition is surprisingly similar to permitting a type
change. In particular, the deletion of an identifier z is only permitted if the
program is con-free with respect to z, which is implemented just as described
previously.

We have to be a bit careful how we implement this check. In particular, while
the program could well be con-free with respect to some function f to delete, it
might be executing f at the time of the update. Since the operational semantics
models application by substitution, this is a nonissue since the active expres-
sion is separate from the definition of f in the heap. This would not be the case
in an actual implementation, however, so we would need to delay the deletion
of f until it is no longer executing (which could be established, e.g., by a kind
of reference counting). Because the program was (and is) con-free with respect
to f, it will never be called after this point so the code can be safely deleted.

6.3 Threads

Many nonstop systems are written in a multithreaded programming style so
we would like our approach to work for these systems as well. We define the
syntax fork e to mean that e should be executed in a separate thread. We adjust

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 41

the operational semantics so that configurations consist of a tuple of thread
expressions e1, ..., e,, a heap H, and a type environment Q2. The definition of
(dynamic) con-freeness in this setting is the same as in the single-threaded case
(Figure 16) but considers all expressions e;. (Note that we would have to pause
all threads at the time of the update to perform this check dynamically.)

Unfortunately, it is easy to see that our updateability analysis does not
soundly approximate con-freeness in the multithreaded case. In particular, ca-
pabilities mention the definitions with respect to which the current thread is not
con-free but say nothing about the restrictions due to the concurrent activities
of other threads.

A simple way to address this problem is to treat each update” as a syn-
chronization barrier. When each thread ¢ has synchronized at some update®’,
the update may proceed as long as the update has not changed the type of any
definition in (J,;;, A;. This ensures that the update is con-free with respect to
all threads rather than just one.

Implementing this semantics could be done as follows. First, we can give
fork the following type rule:

AT Ferty A
A;T - forke :int; A

Notice that the input capability of the child matches that of the parent, that is, to
preserve any restrictions imposed by past updates, while the output capability
of the parent is indifferent from that of the child. This is because the child will
perform updates asynchronously so statically limiting the parent’s capability
is unnecessary.

Second, we modify the dynamic semantics of update” to barrier-
synchronize. That is, for each thread that reaches update”, ifupdateOK(. .. , A)
holds, then the thread pauses until all other threads have similarly paused.
Then the update takes place and execution resumes on the modified program.
As a degenerate case, if no types are updated (and no variables have changed
type), there is no need to synchronize.

We believe this is a promising starting point for supporting multithreaded
programs, but there are still other problems to solve. The main problem is that
using blocking synchronization to ensure safety may compromise the liveness
of the system. In particular, depending on the program, it may take a while for
each thread to reach a suitable update point so some threads will not be doing
useful work while they wait. At the extreme, pausing a thread at an update
could induce deadlock if the thread holds mutual exclusion locks that prevent
other threads from reaching suitable update points.

Nevertheless, we believe our current framework puts us in a good position to
solve these problems, for two reasons. First, by using update to make explicit
when a dynamic update might occur, we can statically reason about its poten-
tial to induce deadlock by adapting existing techniques [Foster et al. 2002; Xie
and Aiken 2005; Ball and Rajamani 2002]. Second, our notion of con-freeness
permits identifying safe update points at fairly fine grain, creating more op-
portunities for updating and thus reducing potential waiting time. We plan to
consider these issues carefully in future work.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

42 . G. Stoyle et al.

program;”® program;’®
]] () user
patchi’, patchi ,

/ uc ; : uc :
— Y — Y
program{”" patch{”,

. /

' 1
program?™ ' patchi™, E

I

o]

Fig. 25. Dynamic update methodology.

7. PRELIMINARY IMPLEMENTATION

Following the formal development of PrRoTEUS presented here, we have been
implementing a compiler and runtime system for dynamically updating C pro-
grams. Though a full discussion of the implementation and its evaluation is
beyond the scope of this article, this section nonetheless presents an overview
of our approach and briefly describes our experience dynamically updating
three of the open source programs mentioned in Section 2: the Very Secure
FTP daemon, vsftpd, OpenSSH’s sshd daemon, and the zebra routing daemon
from the GNU Zebra routing package. Our intent is to provide some evidence
that ProTEUSs does indeed represent the necessary core of a system by which
real-world programs can be safely and flexibly updated on the fly. Full details
of our implementation and experience, including performance measurements,
are presented elsewhere [Neamtiu et al. 2006].

An overview of the update process is presented in Figure 25. Given a C pro-
gram program;*, our update compiler (UC) transforms it into an updateable
C program, program;*, which is then compiled into a dynamically updateable
executable, program;”®. When a new version, programy®™, becomes available,
our patch generator (PG) generates a dynamic patch patch; .95, which is then
passed to UC to generate an updateable patch patch;_ 2™, and finally com-
piled into a shared library patch;_."™. patch;_2"™ can now be linked into

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 43
program;"™s address space so that the runtime system can fix up the running
program to start using the new and replacement code and data. Both the update
compiler and the patch generator use CIL (C Intermediate Language) [Necula
et al. 2002] for C code parsing and source-to-source transformation.

The update compiler makes a program updateable via a source-to-source
translation of the program. Following prior work (e.g., Hicks [2001], Orso et al.
[2002], Soules et al. [2003], and others), functions are made updateable by
introducing a level of indirection at each direct call site. At update time, the
target of each indirect call is modified to point to the new version of the function,
thus ensuring that each call to the function is to the newest version while
existing versions may continue to run until they exit. Function pointers are
treated a bit differently to ensure this invariant. Whenever the program uses a
function f’s address as data, the compiler introduces a wrapper function, fwrap
to be used instead. This wrapper simply contains an (indirected) call to f.

To implement updates to values of a named type t, uses of such values are
compiled to use the explicit type coercions con; and abs;, following the rules
presented in Section 4.2. Values are compiled specially to be updateable (es-
sentially using a level of indirection), and coercions are merely small functions
that convert between this representation and the concrete representation ex-
pected by the program. Whenever a con; is called, the necessary sequence of
type transformers is invoked if the value is not up-to-date. Thus data transfor-
mation for named types is lazy, happening during program execution, rather
than eager, happening at update time. Duggan [2001] also proposes lazy dy-
namic updates to types using type transformers, but our work is the first work
that explores the implementation of such primitives.

Once type coercions have been inserted, the update compiler performs the
updateability analysis outlined in Section 5.4, including the extension to func-
tions noted in Section 6.1. During this analysis, the compiler can insert calls to
update which is merely a call into the runtime system, but so far we have just
inserted one or two calls to update manually at quiescent program points, fol-
lowing Hicks [2001]. The analysis then infers those types that are not con-free
at these update points, and the list is passed to the call to update to check
well-timedness of an available update at runtime.

While this might be the end of the story for a type-safe, high-level language,
C’s weak type system and low level of abstraction create additional challenges.
To ensure that compiling for updateability does not break otherwise correct
programs, we must account for the & operator, unsafe casts, use of void* for
polymorphism, physical subtyping, and other low-level language features. In
some cases, we augmented the analysis to be more precise; for example we model
some safe uses of void* and most uses of & as part of the updateability analysis.
In other cases, low-level features render types or functions nonupdateable; for
example casting an integer to a pointer to a named type t would cause the
analysis to deem t forever nonupdateable.

A dynamic patch patch;_ "™ implements a dynamic update (Section 3.2)
from program; ™ to programy®. Starting from the two sources program;* and
programg®, the patch generator (PG) generates a C program patch;_, 9% with
the new and updated bindings and types (the UN, UB, AN and AB maps from

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

44 . G. Stoyle et al.

Section 3.2). AN and AB are straightforward to generate, and they are written
directly to patchi_9*°. Constructing UN and UB is a bit more complicated
because writing converting functions for types (type transformers) and global
variables (state transformers) cannot be fully automated. Instead, we partially
automate this process through a type-directed comparison of the old and new
types, following Hicks [2001]. Since these state and type transformers might
require user intervention, they are written into a file patch;_»® that the user
can inspect and modify before being passed to later stages. patch; 2% and
patchi_ o' are transformed by UC into an updateable program patch;_,»°® and
finally compiled into a binary patch;_,o?™ that will be linked into the running
system program; ™,

We updated vsftpd from version 1.1.0 to 2.0.3, for a total of 13 releases, the
OpenSSH daemon, from version 3.5 to 4.2, for a total of 11 releases and zebra
from version 0.92a to 0.95a, for a total of 6 releases. This represents the last
three years in the lifespan of Vsftpd and OpenSSH and the last four years of
Zebra. Vsftpd grew from roughly 10K to 17K LOC, OpenSSH grew from 47K
to 58K LOC, and Zebra grew from 41K to 45K LOC. We started with the oldest
version of each program and generated a dynamic patch for each new release.
With these patches, we can start running the oldest version of the program,
and then successively patch it up to the most recent version. While testing
the patches, we performed updates on the programs while they were actively
serving requests. We also ran the relevant regression tests on the updated
versions to make sure they supported all of the added functionality.

The updateability analysis was helpful for ensuring that updates were per-
formed at an appropriate time. For all the three programs, the quiescent update
points that we picked manually were ratified by the analysis as having an empty
capability, hence being con-free. The analysis also was very helpful for ensur-
ing con-freeness with respect to accessing global variables and calling functions
whose types did change over the lifetime of the two programs (see Section 2 for
more detail). While in principle the static updateability analysis is more conser-
vative than the dynamic con-free check, this was not a problem in practice; all
of the bindings deemed not con-free by the analysis would have been deemed
so by the dynamic check as well. The analysis itself was fairly efficient. On
average, the entire compilation process was on the order of 10 seconds per-
patch for vsftpd, 70 seconds for OpenSSH daemon and 50 seconds for zebra.
We intend to update some additional programs and more carefully evaluate our
implementation as future work.

8. RELATED WORK

The main challenge in developing a dynamic software updating system is bal-
ancing the tension between safety and flexibility. Rather than survey the en-
tirety of related work in this area (a reasonably thorough survey can be found
in Hicks [2001]; updated in Hicks and Nettles [2005]), here we consider how
systems that aim to provide type safety balance this goal with flexibility.

The simplest approach to ensuring type safety is to only permit replacement
bindings at the same (or compatible) type as the original. This idea can be

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 45

implemented directly by the compiler and runtime system as in Orso et al.
[2002], Drossopoulou and Eisenbach [2003], Hjalmtysson and Gray [1998], and
the K42 operating system [Soules et al. 2003; Baumann et al. 2005], among
others; or it can be programmed directly using dynamic linking as proposed
by Appel [1994] and Peterson et al. [1997]. In earlier work, we formalized
this approach using dynamic binding, considering different evaluation strate-
gies [Bierman et al. 2003b], and later added versioned identifiers for more
precision [Bierman et al. 2003a]. In essence, this definition of well-formedness
trivially ensures that all updates are well-timed. However, as we showed in
Section 2, over time, software systems do tend to change their type structure
and so restricting updates to this form prevents natural online evolution. It is
nonetheless useful in some situations such as simple security patches [Altekar
et al. 2005].

Dynamic ML [Gilmore et al. 1997] supports updating modules defining ab-
stract types t. The internal representation type of such a module is permitted
to change, while the external interface must remain the same (or be a subtype).
Since by definition clients of such a module must use values of type t abstractly,
the module can be updated if none of its functions are on the call-stack (i.e., it
is inactive). This approach thus extends the natural reusability benefits (due
to representation independence [Mitchell 1986]) of abstract types to a dynamic
setting. Our use of abs; and con; coercions generalizes this idea to nonabstract
named types. This allows our conFree[—]~ check to be more precise, and thus
more permissive in allowing safe updates, than Dynamic MLs activeness check.
As examples, we could discover points within an abstract module at which it
could be safely updated, and we can permit the module within which an infinite
loop is executing to be updated. We have found the latter case particularly im-
portant in practice. Dynamic ML has no static notion of proper update timing
as we do with our updateability analysis. Moreover, as far as we can tell, there
has never been formal proof that Dynamic MLs activeness check is sufficient
to ensure type safety (though this seems plausible).

Dynamic ML’s approach is a functional language analogue of object-oriented
approaches to DSU such as Hjalmtysson and Gray [1998] and the K42 operating
system [Soules et al. 2003; Baumann et al. 2005], which require interface com-
patibility between versions of objects, while allowing internal representations
to change. However, these systems do not provide the same strong encapsu-
lation guarantees as abstract types in ML since programmers may leak the
internal state of an object. If the program contains pointers into the internal
representation of objects at the time those objects are updated, the pointers
may no longer be type correct. While the K42 designers cite the need for encap-
sulation, they provide no way to enforce it.

Duggan [2001] supports changing the representation of named types which
use constructs fold and unfold to create and destruct values of named type,
similar to our abs; and con;. However, rather than require representation con-
sistency in which programs have at most one definition of a type at a time,
Duggan proposes allowing multiple versions of types to coexist. As such, pro-
grammers must provide transformer functions that go both ways, from the old
to the new representation and from the new version back to the old. Occurrences

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

46 . G. Stoyle et al.

of unfold will dynamically compare the expected version of the t value with its
actual version and apply some composition of forward or backward transform-
ers to convert the value. This approach ensures well-formed updates are always
well-timed. However, programs are harder to reason about. One might wonder:
will the program still behave properly when converting a t value forward for
new code, backward for old code, and then forward again? Moreover, it may not
always be possible to write backward transformers since updated types often
contain more information than their older versions (Section 2). Finally, Duggan
does not permit functions and global variables that are not defined as named
types to be replaced with bindings having different types.

Hicks’ earlier DSU approach [Hicks 2001] permits the types of arbitrary
bindings to change, but at the cost of representation consistency. Type safety
is preserved by copying data when transforming it to the new representation;
in effect, for any bindings whose type has changed, old code uses the old value,
while new code uses the new one. For functions, stubs (Section 3.2) can be used
to direct calls having the old type to those having the new type, but there is no
such facility for data. For named types, a representation change causes a new
name to be generated by the compiler to be seen by the runtime system, and
it is up to the programmer to manually copy and transform the data at update
time. This limits transformation to data that is reachable from global variables;
stack-allocated data cannot be changed in general. In constrast, Proteus is
representation-consistent so there is no possibility of having two parts of the
program operating on two copies of the same logical data or calling two versions
of the same function. Moreover, Proteus can update named types wherever they
might be allocated and is not limited to data reachable from global variables.

Boyapati et al. [2003] and the K42 operating system [Soules et al. 2003;
Baumann et al. 2005] ensure well-timed updates to objects in a multi-threaded
setting. Both systems rely on object encapsulation to guarantee that no active
code depends on an object’s representation when the object is updated (Boyapati
et al. guarantee proper encapsulation exists while K42 assumes it). In Boyapati
et al. [2003], proper timing is enforced by programmer-defined database-style
transactions: if an update occurs at an inopportune time, they abort the current
transaction, perform the update, and then restart the transaction. In K42, an
object to be updated is made quiescent by blocking new threads from using it
and waiting until all current threads that could be using it have terminated.
Our approach uses the more general notion of con-freeness rather than en-
capsulation. Transactions are approximated by automatically or programmer-
inserted update points but without the benefit of rollback. Compared to K42,
our approach to safety in multithreaded programs is preemptive rather than
reactive. When an update is pending, update points act as a barrier, while
in K42, threads are allowed to proceed unless they might interfere with the
update. However, their approach may have difficulty scaling to multi-object up-
dates or those in which types have changed since there may be no easy way to
recover if an interfering action is detected. We plan to explore multithreaded,
dynamically updateable programs more thoroughly in future work.

Our approach focuses on updating single processes. To support updat-
ing processes in a distributed system would require coordination when the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 47

communication protocol is changed in a nonbackward-compatible manner. The
most recent work on this problem is that of Ajmani [Ajmani 2004; Ajmani et al.
2006]. They model distributed systems as processes communicating via remote
procedure calls. In this light, a change in protocol amounts to a change in a
remote function’s type or usage pattern. They define conditions under which
older versions of a system might simulate newer versions and vice versa to re-
lax synchronization constraints. This idea might apply to our proposed idea of
coordinating updates to multithreaded programs.

While our con-freeness property and its relation to type-safe dynamic updat-
ing is new, others have considered other properties of dynamic updates. Gupta
[1994] developed a high-level formal framework in which he proved that the
problem of update validity is, in general, undecidable. He defines validity to
mean that following a valid update, the existing program will eventually tran-
sition to the legal states of the new program. Bloom [1983] and Bloom and Day
[1993] explore the limitations of dynamic updates in a somewhat information-
theoretic sense. That is, some dynamic updates are not possible simply because
the existing program state does not contain the information to construct data
structures needed by the new code.

The general formulation of our updateability analysis using capabilities is
similar to other capability type systems [Walker et al. 2000; Walker 2000;
Grossman et al. 2002]. For example, capabilities in the Calculus of Capabil-
ities [Walker et al. 2000] statically prevent a runtime dereference of a dangling
pointer by approximating the runtime heap. Our capabilities prevent runtime
access to a value whose representation might have changed by approximating
the current set of legal types.

9. CONCLUSIONS

In this article, we have presented PrRoTEUS, a simple calculus for modeling type-
safe dynamic updates in imperative languages. To ensure that updates are
type-safe in the presence of changes to named types, PROTEUS exploits the idea
of con-t-freeness: a given update point is con-t-free if the program will never
use a value of type t concretely at its old representation from then on. We
have shown that con-freeness can be checked dynamically, and automatically
inferred statically using our novel updateability analysis.

In the short term, we plan to continue our implementation of PROTEUS in the
context of single-threaded C, to explore its feasibility for existing nonstop ser-
vices. Our next step will be to consider the addition of threads, and ultimately
move to operating systems. We also plan to explore reasoning techniques for
other useful properties, such as update availability. Currently we can discover
functions for which an update is never possible; conversely, we wish to under-
stand how often an update is possible for some function which depends more
on runtime behavior. In the longer term, we wish to adapt our techniques to
functional and object-oriented languages. On the one hand, these languages
will be easier to reason about due to their strong abstraction and encapsulation
properties. On the other hand, advanced features such as closures and objects
are more challenging to update.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

48 . G. Stoyle et al.

We have also starting applying our updateability analysis to the related
problem of ensuring that a dynamic update of a security policy does not impact
the security properties of a running program that uses it [Hicks et al. 2005].
We are working to scale up this basic insight to provide soundness guarantees
for distributed secure systems for which policies change over time.

A. PROOF APPENDIXES

A.1 Proof of Type Soundness for Proteus®

In this section, we give a proof of type soundness for Proteus®. The proof is
based on standard techniques for proving syntactic type soundness. Proving
soundness for the system guarantees that our inferred update points are safe
and consequently any update judged suitable by updateOK() at runtime will
not invalidate the type of the program.

Before we begin the proof, we discuss the réle of update capability weakening
(Lemma A.13), a key lemma. Update capability weakening shows that the A
annotation on updates is faithful to our intended meaning, that is, given an
update point update” in redex position in some larger expression, the only
types used concretely following the update are contained in A. More formally, if

AT H]E[updateA] Ty A,
then
A;T F E[update®] : 7; A",

Most of the work to establish this fact is done in proving a generalized
E-inversion lemma (Lemma A.12), from which Update Capability Weakening
easily follows.

Definition A.1 (Typing Contexts). A context I' is a finite partial function
with the following entries:

z : 7 types of external identifiers
z: 7 ref types of references

x : 7 types of local identifers

t = 7 named type definitions

We write ® for typing contexts containing only external identifiers and refer-
ences and 2 for those containing only named type definitions.

We first note some standard Inversion, Canonical Forms, and Weakening
lemmas.

LeEMMA A.2 (INVERSION — EXPRESSIONS).
) If AT F, i = er,...,1 = e} @ (i @ 71,..., Lt)5 Ap, then
Ay, ..., 1, AL, A AL D Ay, such that Vi € 1.n, we have T’ - 1) <: 1

» “no n—1°

/ . e e A
and A;_;T =, e 15 AL

(2) If Ag;T -y e1 ez 125 A, then 31y, Ay, Ag, A, v such that Ag;T Foei:m1 By
To; A1 and Aq; T |_M eg :11; Ao and A’ C Az/\([l =U= (,LL =UAA'C A,))

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 49

LEMmA A.3 (INVERSION — SUBTYPING).

H1;A1 Ho3Ag
(1) If t <: 11 — 14, then Az, Ag, 12, T, such that 1 = 1o — 1,

2) If t <:{ly:11,...,1n 1 1), then 37y, ..., 1, such that t = {1y : 7y, ..., L, i 7).
LeEMMmA A.4 (CanNoNicAL Forwms).

(1) Ifvis a value of type int, then for somen € N, v = n.

(2) If v is a value of type t, then for some value v', v = abs; .

(3) Ifvis avalue of type {1 : 11, ..., 1, : 1.}, then Jvy, ..., v, such that v = {l; =
U1, ..., 1, =v,).

(4) If v is a value of type t ref, then v = p, where p ranges over references and
external identifiers.

(5) If v is a value of type 11 e 79, then 3z. v = z.

LEmMma A5 (WEAKENING). If AT Hye:t;Asand T C TV, then ATV e
T, Ao

We now establish some basic facts about capabilities.

—If an update is judged safe for one update point, then it is also safe for any
other restricted update point.

—If an expression does not perform an update, it does not consume any of its
capability. By consume we mean that its precapability is equal to its post-
capability.

—Ifa term type checks given one capability, it type checks in a larger capability.

—Values type with any pre and postcapability (as long as pre is as least as
permissive as post)

LemmA A.6 (UppATEOK CapaBILITY WEAKENING). If updateOK(upd, @2, H, A)
and A’ C A, then updateOK(upd, 2, H, A').

Proor. The only clause in updateOK() that depends on A is dom(A) N
dom(upd.UN) = ¢, and the validity is unaffected by the shrinking of A. O

LEMMA A.7 (CAPABILITY STRENGTHENING).

1) If A;T Ene:T;Ag, then VA3. A{UA3; T Fye:T; AU As.
(11) IfAl;F l—ﬂ e: ‘[;Az, then VA3. A U A3;F l—# e:T, Ao.

Proor. We first prove (i) by induction on the typing derivation of e. Note
that the (A.EXPR.UPDATE) case cannot occur as the annotation on the turnstyle is
U not N. We give the application case:

case (A.EXPR.APP) :
Assume

A;TEyer: Ty 5y To; A/

A/; F '_N 62 : .[1; A// A/// g A//

ﬁi,u [L=U=>AW§A/
A;T Fneres:to; A”

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

50 . G. Stoyle et al.

prove
aA (a)
AUA3; T Fyer:11 — 19, AU A3
ANUAg T Fyes i A”UAY A7 UA; € AU A
[)“ < M(d) /1 =U =— A”U As C A/(e)
AUAsz;T Fyepeg: to; A" U A3
(a) and (b) hold by induction. (c) holds if A” € A”, which holds by assump-
tion. (d) holds by assumption. If ;i = N, then (e) holds trivially. It cannot be

the case that & = U because then the annotation on the turnstyle for the
typing of e; e must be U contradicting our assumption.

case (A.EXPR.UPDATE) :
This is trivially true as type checking update requires U annotation on the
turnstyle.

The rest of the cases are similar.
(i1) can be proved by a similar induction on the typing derivation ofe. O

Lemma A.8 (VALUE TYPING). If Ay;T by v i T;Ag, then YA, A, ' such that
Ay C Al it holds that AT v T; AL

Proor. Proceed by induction of the typing derivation of v. First note that
none of the rules A.EXPR.VAR,REFCELL,PROJ, APPU,IF, LET, REF DEREF, ASSIGN, UPDATE,
CON or IF-UPDATE can the expression be a value.

case (A.EXPR.INT) :
By (A.EXPR.INT) Ay T, n @ int; Aj. By Capability Strengthening Lemma,
A};T =, ncint; Aj as required.

case (A.EXPR.XVAR) :
Similar to (A.EXPR.INT) case.

case (A.EXPR.RECORD) :
By Lemma A.4 (Canonical Forms), each element of the record must be a
value in order for the record to be a value. The result follows by induction
on each of the elements of the record and use of the (A.EXPR.RECORD) rule.
case (A.EXPR.ABS) :
By Lemma A.4 (Canonical Forms), of values abs; is a value only ife is a
value, thus suppose e = v for some v, then the result follows by induction
on the typing derivation of v and use of the (A.EXPR.ABS) rule.
case (A.EXPR.SUB) :
By straight-forward application of the IH. O

LEmMma A9 (SuBsTiTUTION). If AT, x: vk e:t;Asand Ag;T v t'; Ag,
then Ay;T Felv/x] i t; A

Proor. This property follows by induction on the typing derivation of e using
the Value Typing Lemma as appropriate. 0O

LemMma A.10 (DErvaTIONS HAVE WELL-FORMED TYPES). If A;T,Q,P +, e :
T; Ao, then Q1

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 51

LEmMA A.11 (TyPING WEAKENS CAPABILITY). If Ay;T F, e @ t;Ag, then Ag C
Aq

Proor. By an easy induction on typing derivations. Note that the axioms
enforce equality of capabilities; UPDATE, IF and IF-UPDATE rules allow weakening of
capabilities; and the remainder act inductively with respect to capabilities. O

The following E-inversion lemma describes the constraints on the capabilities
of an expression if it is to be placed in a given evaluation context (continuation).
The lemma essentially tells us that, given an expression E[e] which is checkable
in capability A, we can substitute any term e’ for e that is checkable in capability
A, provided its postcapability is at least that of the postcapability of e, that is,
we have to ensure that the computation has enough capability left to execute
the continuation.

The reader may be surprised that the precapability of ¢’ (which is also the
precapability of E[e’]) is not constrained in any way. Intuitively this is justified
by the fact that capabilities are flow-sensitive, and that the expression Ele’]
represents an expression e’ with continuation E. Thus, the execution of, and
therefore the calculation of, capabilities for, E[e’] proceeds first by considering
¢/, and then by considering E. Provided that, after ¢’ is considered, there is
enough capability left over to satisfy E, then the capability we started out with
is irrelevant.

This lemma is a key component in proving Update Capability Weakening
(Lemma A.13).

LEmma A.12 (E-InversioN). If A;T b, Ele] : 7; A/, then there exists A DA
and 1’ such that

(i) AT et A’
(i) foralle’,A,A” D A and T' DT, if A;T’ F.e': t'; A" then A; T’ F. Ele'] :
T; A

Proor. Proceed by induction on the expression typing derivation of Ele]. In
each case, E may be _ or a compound context. In the case where E can be a
compound context, we don’t consider the _ case as this holds trivially.

case (A.EXPR.VAR) :
In this case, E = e =x and A’ = A.
Assume A;T,x : 7, x : 7; A and choose the existentially quantified vari-
able A = A. (i) holds by assumption.
To prove (ii) assume A” D A (¥), " D T, x : T and that for some A, A; T’ Fu
e’ : t; A" (*%). To complete, we are required to show A; T k. e’ :7; A, which
follows from (*) and (**) using (A.EXPR.SUB) type rule.

case (A.EXPR.INT—XVAR—UPDATE) :
These cases all follow in a similar way to the (A.EXPR.VAR) case.

case (A.EXPR.RECORD) :
E={i =uv,...,; = Elel,...,1, = e,}. By assumption (where A =

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

52 . G. Stoyle et al.

Ao, A = A):
Ag; v it A
Ai_;TH, Elel : s A
AT ey it Ay
Ay Ty li=vg,..., i =FElel,...; 1, =e} i {litt1, ..., Lt} Ay

Prove that for some A’ D A, (i) and (ii) hold.

(i) By induction on the typing derivation of Ele], we have that, for some
A" 2 A, it holds that Ag;T +, e : 7/; A’. By Typing Weakens Capability
Lemma, A; D A,, therefore A’ D A, as required.

(ii) Assume A;T" +, ¢’ : 7/; A” holds for some A, A” 2 A’ and I'" 2 I'. Note
that by Value Typing Lemma and Weakening, we have A; I +,, v iTs A
for1 < j <i—1.Prove

~

MEyvrim AL
I, Ele']:g; A
AT en T Ay
A;F’I—M li=vy,....L=FEl],...,1,=e): {li:71, ..., L, : tu}; Ay

A;
A;

By induction, we have A;T" k. E'le’] : t; A;. The reset of the premises
follow from the assumptions using Weakening.
case (A.EXPR.APP) :
There are two possibilities for the form of E: v E’ and E’ e. We just consider
the first as the second is similar.
Assume E =v E' and

A;T I—Mv:rlu’—% To; A

A/; F '_;,4,]E/[e] : Tl; A// A/// g A//

pP=pn p=U= A"CAf
AT HyvEe] :to; A"

Show that (i) and (ii) hold for some ’ and A’ O A",
(i) By IH there exists a A’ D A” such that A;T F,e:t; A’. From the
assumptions, we can deduce A’ O A” as required.
(i1) By the typing judgement for v, Value Typing Lemma and Weakening,
for some I'" O T', we have
A ;A A~
AT I—Mv:rlutg;A (1)
Thus, it suffices to prove

LA A~
;v — 195 A

A;T
AT H Elel ;A" A" C A
p=pu p=U= A"CAy
AT Fov Ele] : ro; A"
The typing for v holds by 1 and the judgement for E'[e'] by IH. Finally,
the subset constraints hold directly by assumptions.
case (A.EXPR.CON) :

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 53

E = con; . Assume

ATy Ele] t; A7 r=r te A
A;T +, con; E'le] : 7; A

(i) follows by IH. To prove (ii), assume that for some arbitrarye’, A, A” > A’
and DT

AT/ e it A
and prove
AT H, BT : A T'h=1 ted
AT F, coni E'le] : 7; A

The first premise of which follows by induction and the second and third
directly from the assumptions.

case (A.EXPR.IF) :
There are two cases for the form of E: if v = E’ then ejelse e; and if E' =
e then e;else e;. We consider only the first as the second is similar.
Assume E = if E' = ¢, then e;else e; and

AT HL 0T A AT H Ele] 15 A9
Ag;T e 1175 A3 Ag;T e T/5 Ay
A;T H, ifv =FE'le] thenejelsees : 1'; AN Ay’

where A3 N Ay = A’. Prove (i) and (i1) hold. (i) holds by induction on the
typing derivation of E'[e] and use of Weakening, Capability Strengthening,
and Typing Weakens Capability Lemmas. To prove (ii), assume for arbitrary
e,A,A” > Aand I" DT that A; T’ Foe :t); A” holds and show

AT FoveiT; AW AT F. E'le] : t; A2(B)
Ag; T er: 7 A3(C) Ag; T eg:T); A4(D)

A;T'F, ifv =F'[¢'] thenejelsees : T} A3 N Ay

(A) holds by assumptions, Value Typing Lemma and Weakening. (B) holds
by induction on the typing derivation of E[e], while (C) and (D) hold straight
from the assumptions by use of Weakening.

case (A.EXPR.PROJ-ABS-REF-DEREF-ASSIGN-LET-IFUPDATE-SUB) :
These cases follow by simple inductive arguments similar to those pre-
sented using Value Typing Lemma and Weakening Lemma. O

The following Update Capability Weakening Lemma is used in the proof of
Update Program Safety. It states that given an expression where the next redex
is an update, this expression is checkable with the capability annotated on the
update. Put another way, the capability annotated on the update is a sufficient
capability for the execution of the continuation. If this is true, then the only
types concreted by old code in the continuation are those not updated at this
update point.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

54 . G. Stoyle et al.

LEmMmA A.13 (UppATE CapABILITY WEAKENING). If A;T +,]E[updateN]
T; N, then A";T F, E[updateA”] cTy AL

Proor. Assume A;T +, E[updateAN] TTy A
By E-Inversion Lemn}a, for some A’: A;T Fu updateA” CTy AL
By update type rule A’ = A” and A” C A.
Thus: A”;T +, update® : 7; A",
By E-Inversion: A”;T F, E[updateA/] :7; A, as required. O

LEmMA A.14 (Heap ExTENsION). IfF Qand Q;® - H and 3;Q2, ® -y v @ 1;0
and !l ¢ dom(H), then Q;®,l : tref- H,l — (-,v)

Proor. By definition of heap typing. O

LeEmMMA A.15 (UpDATE EXPRESSION SAFETY). If = Q and Q;® + H and
A1;Q,P,T e :1; Ayand updateOK(upd, 2, H, A1), then A; U2, D, rjued .
Ule]"™ : 7; Ay

Proor. Proceed by induction on the derivation of A;Q, &, ', e:t; A"

case (A.EXPR.INT) :
By assumption, A;Q,®,I' -, n : int;A’. Since U™ = n, we have
AU, §, [l . Un]"™ : int; A’ follows from (A.EXPR.INT).
case (A.EXPR.VAR) :
By assumption, A;Q,®,T,x : v +, x : 1;A’. Since U] = x
and U[Q, d, T, x: 7] = Y[Q, ®, T x : 7, the result follows from
(A.EXPR.VAR).
case (A.EXPR.XVAR) :
By assumption, A; 2, ®, ', z: v; A’. Thus &(z) = r and by (a) z € dom(H).
By definition of 2/[—]"Pd on expressions, we have U[z]"P? = z.
There are three ways in which ¢[$2, ®, ['|"P4(z) = ¢/ can arise:
case z € dom(upd.AB) :
As z € dom(H) and by updateOK the domain of the heap and upd.AB
are disjoint, we can conclude z ¢ upd.AB, therefore this case cannot
occur.
case Z € dom(upd.UB) :
Let upd.UB(z2) = (¢/, b,).
By definition of U[—]"9, we have U[®]"P4(z) = heapType(z’, b,).
By updateOK assumption U2, types(H)]uPd F heapType(r/, b,) <: 7.
By Weakening U[$2, ®]**! - heapType(t/, b,) <: 7.
The result follows by use of (A.EXPR.SUB) type rule.
case Z ¢ dom(upd.UB) :
By definition of U[—]"P? on contexts U[P]™*4(z) = 7, thus A;U[Q, D,
rjwd |-, z: 7; A/, as required.
case (A.EXPR.REFERENCE) :
Similar to the var case.

case (A.EXPR.ABS) &

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 55

By assumption,

AQ, O, TH et A [Q,Pl) =1
A;Q2, 9, T, absie:t; A

Consider the form of upd.UN:

caset ¢ dom(upd.UN) :
By definition, we have U[Q, ®, T1"4(t) = r and U[abs; e]"™ = abs;
Ule]". The desired result follows by induction and (A.EXPR.ABS).

case upd.UN() = (¢”,0) :
Observe U[abs; e]upd = abs; (c U[e]"P?). Using (a.EXPR.ABS) and (A.EXPR.
APP), we are required to prove:

d N:A, (@)
AUIRL, @, T et/ — ;A

A;U[Q’ (D7 F]upd |_”, U[e]upd . 7,'/; A/(b)
AU, @, F]upd F.C u[e]upd T A
A;UIQ, @, TP -, abs; (c U[e]"P?) : t; A/

[Q, ®, TI(t) = /¢

(b) holds by induction. To prove (a):

U, types(H)]upd FnCit— > T30 By updateOK() assumption
A;U[K, types(H), F]upd FnC:tT iy 7/; A By Cap. Strengthening Lemma
AUIQ, D, T -y c: T N;—Aﬁ /s A By Ctx. Weakening Lemma

Where the last step is valid because ©; ® -~ H and so types(H) C ®.
By case split @ = (t = 7, Q') for some Q'.

By definition of U[] U[t = 7, 2, ®, T]"* =t = r", u[, @, T]"*, thus (¢)
holds.
case (A.EXPR.CON) :
Assume
te A Q) =1 AQ, P, T et A @)
A;Q, P, T H, conte: ;A
updateOK(upd, 2, H, A) 3)

Suffices to show that the leaves of this derivation hold:

te A y@im =< AU, o, I -, Ulel ™ st A7

A;UR, D, TP -, cony U[e]™d : 75 A

(a) holds by assumptions. (c) holds by induction. Now show (b). Note that
by (3) A Ndom(upd.UN) = @, so by assumption t ¢ upd.UN.

Q=t=1,Q for some @', by 3
dom(A’") Ndom(upd.UN) = ¢ by 3
Ult =1, 21" = (t = 7, U[QT™)) ast¢ upd.UN

case (A.EXPR.RECORD) &

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

56 . G. Stoyle et al.

By assumption (where A = Ag, A’ = A,):
AR, O, Ty et Tig1; A iel.(n-1) n>0
Ap;Q2, &, TH, {li=e1, ..., ln=ex}:{li:t1, ..., L i} An
By typing weakens capability A;_; € A; for i € 1.n. By the fact that

updateOK(—) is preserved under weakening of capability, and induction,
Wwe can prove:

A Q, @, T by, Ulei]™ : 115 A
For each i € 0..n — 1. Finally, the result follows using (A.EQ.RECORD).
case (A.EXPR.SUB) :
Assume
AQ, D, T, e:t; A -7 <t A C A
AQ, T et A

Prove
AU, @, T, U™ i o; A7 UIQ, &, T - <iz A C A
AU, D, TP -, Ule]"Pd : 75 A

The typing judgement on e holds by induction and the subset constraint
holds by assumption. We are left to show the subtype assertion. By as-
sumption, Q, ®, T 7’ <: . Furthermore, this judgement’s only constraint
on 2, ®, T is that the free type names in 7 and ¢’ are in the domain of
Q, @, I. It is easily proven that the domain of ¢/[2, ®, I'|"*! is a conserva-
tive extension of the domain of 2, ®, I'. Thus the subtype judgement holds.

case (A.EXPR.UPDATE) :
Update checks to be int in any environment.

case (A.EXPR.(APP—PROJ—LET—REF—DEREF—ASSIGN—IF—IF-UPDATE)) :
All follow by a simple inductive argument. O

The next Lemma, Heap Update Safety, tells us that given a typeable heap
and a valid update, applying that update to the heap leaves the heap well typed
in the updated environment.

LEmMA A.16 (Heap UPDATE SAFETY). If + Q and ;& + H and
updateOK(upd, 2, H, A), then U[Q]"™; U [D]™? + (/[H]™P4
Proor. First note that from Q;® +~ H, we can deduce that for all p €
dom(H), 7, e:
(a) dom(®) = dom(H)
(b) if p =z and H(z) = (1,e),then Q, ® e : 7t and ®(z) = t ref
(¢) ifp=zand H(z) =(t,Mx).e),then Q,® F A(x).e :Tand ®(z) =1
(d) if p =r and H(r) = (-, e), then there exists a r such that Q,® e : t and
®d(r) =1 ref
So assume (a)-(d) and also:

FQ 4)
updateOK(upd, Q, H, A) (5)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 57

Via the same expansion we are required to prove for all p € dom@U[H]"™?), 7, e
that

i) dom@U[®]"*Y) = dom U/ [H]"PY)
(i) if p = z and U[H]"™(2) = (t, e), then U[Q, P]" | e : T and U[P]"™P(2) =
T ref
(i) if p = z and U[H]™(2) = (7, A(x).e), then U[Q, P]"! - A(x)e : t and
U[P]™(2) = ¢
@(iv) if p = r and U[H]"™(r) = (-, e), then there exists t such that ¢/[Q,] -
e : t and U[P]"™(r) = T ref

hold. (a) implies (i) by inspection of the definition of /[] on contexts and
heaps. We are left to show (i1)—(iv).

Observe that types(H) C ® because of (b) and (c).

Now consider the form of an arbitrary entry in U/ [H]"**%:

caser — (,e):
In this case, (i) and (iii) hold trivially because the domain is a reference.
To prove (iv) for U[H]"P(r) = (-, e), we show that, for some 7

BUQ, DI e ;0

6

UIQ, O™ e T ©)

U[P]™(r) = T ref (7

By the action of /[—]"P9 on heaps, there exists ane’ such thatr — (-,¢’) € H

and e = L{[e/]uPd.

By (d), there exists a v’ such that

QdFe 1 (8)

®(r) = v’ ref 9)

By Update Expression Safety Lemma, U/[Q; ®]"Pd e’ : 7/,

Take t = ¢’ to show (8) and (9).

By definition of U/[—]" on heaps U[®]"™(r) = 7’ ref holds, which proves
9).

By UpdateOK Capability Weakening Lemma updateOK(upd, 2, ©, #).

By Update Expression Safety Lemma:

upd |

BUQ, D1 by U] 1 50

We obtain (8) by application of (A.BIND.EXPR).
casez+— (1,b):
In this case (iv) holds trivially and we are left to show (ii) and (iii).
case (ii) :
Assume U[H]"(z) = (1, e) and prove

BURQ, DI Fye: ;0
U, O™ e 1
U[P]™(2) = T ref (11)

(10)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

58 . G. Stoyle et al.

By definition of U/[—]" on heaps, there are three ways to generate
elements of /[H]"4.
case z € dom(H) and upd.UB(z = (t,e) :
As (a) holds by assumption and z € dom(H) by case split, we have
z € dom(®). Thus for some 7/, ®(z) = 7'.
By definition of U/[—]"*? on contexts U[®]"P4(z) = 7 ref, which
proves 11.
Byou|e, types(H)]upd Fe:r.
By context weakening U[$2, ®]"? I e : 7, which proves (10).
case z € dom(H) and z ¢ dom(upd.UB) :
By the definition of 2/[—]"* on heaps there must exist & such that
Uz (o,), H]"™ =z — (r,u[p']"™), u[H']™.
Asb=U [b/]uPd and this is an expression by fact we are in (ii)
case split, ' must also be an expression. Thus by (b) Q,®+b': 7
and ®(z) = t ref. Then by inversion @; 2, ® -y &' : 7; ¥ holds.
By Update Expression Safety Lemma

BUIR, D™y U[B]™ : 130
which proves (10).
As z ¢ dom(upd.UB), by the definition of /[—]"P? on contexts, we
have U[Q, ¥, z: 7 ref]upd =z:7ref,U[Q, Q/]uPd, which proves
(11).
case z ¢ dom(H) :
In this case, it must hold that z € dom(upd.AB).
By assumption U[H]"%(z) = (t,e) (where e is in fact a value)
therefore upd.AB(z) = (, e).
By (9)

UQ, PP e T

which proves (10).
By inspection of the action of /[—]"P4 on contexts, we see that

UIQ, ®]"P(z) = types(upd.AB)(z) = 7 ref

which proves (11), as required.
case (iii) :
Assume

UH™(Z) = (1 LG g 79, A2 (x).e),

that is, that b = A\?(x).e andr = 11 A 79. Prove

UK, ©1% F UM @)e | 25 1, (12)
U, "2 = 5 (13)

By definition of 2/[—]" on heaps, there are three ways to generate
elements of U/[H]".

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 59

case z € dom(H) and z € dom(upd.UB):
By case split, there exists x,e, 11, 10,4/, A1, Ag such that

upd.UB(2) = (1; Wi 79, A%1(x).e).

U[R, types(HN]™ F 1%1(x)e 11 2% 1y by (9)
ule, types(()H)]upd F A% (x)e @7 2 1, by weakening

which proves (12). Finally, by (a), z € dom(®), so by definition of

U[—]"* on contexts: U[P]™P(z) = 7 #ite 19 which proves (13).
case z € dom(H) and z ¢ dom(upd.UB) :

By case split and definition of /[—]"P4 on heaps, there exists b, H’'

such that U[z — (r,8), H]™ =z (-, u[s']"), u[H']"™ and

H=zw (1,b), H'.

Because b’ is a function by case split, then by the definition of

U[—1"* on bindings, Z/l[b/]uPd is a function, say &' = A%(x).e’

By (¢) and typing rules

A Q, Ok, e it A

QoA (x)e 1 B 7

A
where 1 = 11 — 19.

Required to prove (12) and (13).
By (9), bindOK][types(H) |. By case split, z ¢ dom(upd.UB). By
last two facts, dom(upd.UN) N A = @. It follows by the previous
fact (9) that updateOK(upd, 2, H, A).
By Update Expression Safety Lemma A;U/[Q, ®]**¢ F, U [e]Pd
79; A’. Therefore, by use of (A.BIND.FUN), (12) holds.
By the definition of U[—]" on contexts, it follows that
U[P]"*(z) = r making (13) holds, as required.

case z ¢ dom(H) :
The result follows similarly to this subcase in case (ii). O

LeEmMA A.17 (UpPDATE PROGRAM SAFETY). If

1) Py Q;H;E[updateA] : 7, and
(i) updateOK(upd, @, H, A),

then UA]"™ + U] UH]* U[E[0]]"™ : «

Proor. Assume

FQ QOFH
A;Q, Dy]E[updateA] Ty A

3 (14)
¢+ Q; H;E[lupdate”] : t

updateOK(upd, Q, H, A) (15)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

60 . G. Stoyle et al.

It suffices to prove the hypotheses for this deduction:

Ut et o -y Hped®
N ~ 7upd ©
mumwﬂ¢wuu@mmhmﬂ]p:uw

~ qupd
U] - L{[Q]upd;U[H]“pd;u[IE[updateA]] .

Choose ® = U[®]"PY; then (a) follows from the definition of updateOK. (b)
follows from Update Heap Safety Lemma.
By Update Capability Weakening Lemma and (14),

AT, Q, @ Hy]E[updateA] (T A,
therefore (c) follows from Update Expression Safety Lemma. O

The nonupdate Expression Safety Lemma establishes that the typing re-
lation is closed under reduction. One thing to stress is that we only require
closure; the capabilities do not become more restrictive, indeed they can grow
at function calls, which explains A} 2 A; and A, 2 Ay in the existentially
quantified variables.

LEMMA A.18 (NON-UPDATE EXPRESSION SAFETY). If + Q and Q;® + H and
A Q, 0 et T;A2 and H;e — H';e/, then 30" 2 @, A} D A1, A, D Ay
such that

1) ;@' +-H', and
(i) AR, e T A
Proor. Proceed by induction on the derivation of A; I, Q, ® F, e : 75 As.

case (A.EXPR.VAR) :

Expressions are closed w.r.t local variables, so this cannot occur.
case (A.EXPR.XVAR-INT-REFERENCE) :

These are values, so that cannot reduce.
case (A.TYPE.APPU) :

Assume

Qo+-H (16)

WY
AR, P et EEN Tg; Ao
Ag;Q,q)l—M ey : 11; Ag Ay C Ag
p=p p=U= AsCA

A1;Q, P, e1eg:12; Ay 17

H;eieo — H';e (18)

Required to prove that there exists ® 2> ®, A| 2 Ay, A; 2 Aj such that (i)
and (ii) hold. The only possible expression reduction of (18) is (caLL). In this
case,

(H,z+ (1,2 2x)e)),zv - (H, 2z 12(x).e),elv/x]

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 61
Take H' = H and Q' = Q then (i) holds by (16).
Now prove (ii) by showing
AUALT Fyelv/x] @ to; Ay (19)

By (17), wehave Ag; 2, ® , v : 71; Az and by applying Value Typing Lemma
2;Q2,PF,v:11;0. By (16) A;Q, ®,x : 71 Fj e @ 1o; A'. Then by Substitution
Lemma,

A; Q@ by elv/x] oy A (20)

From typing of the LHS of the application

QP 2z B T9; Ag (21)

It is clear that (20) must be derived either directly from the axiom
(A.TYPE.XVAR) or by (possibly repeated use of) subsumption terminated by
(a.ryPEXVAR). It is easy to check that <: is transitive allowing us to con-
clude that Q - ®(z) <: 1y i 79. By Subtype Inversion Lemma there exists
13, T4, i/, A5 such that

;A ;A
QFp = <SS (22)
and thus
T1 <: T3 T4 <iT1 A C As a<i (23)

By use of subsumption on (20), using facts from (23)
A;Q, @ by elv/x] :to; A (24)

To show (19) we case on the value of i'.

case i/ =U:
By (23), i = U. Thus by precondition of app rule u = U and Ay C
A’. By these derived facts, (24), Capability Strengthening Lemma, and
subsumption rule, we have the result.

case 1 =N:
By (23), it can be either U or N. If it is U, we proceed as we did in the
previous case, so suppose i = N. In this case, 1 is unconstrained so case
onits value. If © = U, then proceed asin i’ = U case. If u = N, the result
follows by Capability Strengthening Lemma and use of subsumption.

case (A.EXPR.CON) :
Assume

A;Q, Pk, e it Ay te Ay [Q,P]) =1

A1;Q, P, conge i T; Ay (25)

Qo+ H (26)

The only possible expression reduction of con; e’ is (coNaBs). In this case,
e’ = abs; v for some value v, and the result of the reduction is v. By inversion,
A;Q2, P, v T; Ag as required.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

62 . G. Stoyle et al.

case (A.EXPR.PROJ) ¢

Assume
Ap;Q,Pkype:flyit, ..., Lit) A @7)
ANo; 2, P, el;:ti; A1
Qe+-H (28)
The only possible expression reduction is (PRoJ). Assume
Ai_1;R2, DT A 1€0..n n>0
Ap; Q,OFHli=vq, ..., L,=v,): {1711, ..., L i tu}; An (29)

A Q,OFHli=vq, ..., Ly=v,)L st Ay
The result of the reduction is v;. Choose ® = &, then (i) holds by (28).
By Typing Weakens Capability Lemma, we have A; € A;4; for i € 0..n.
Therefore,
Ag; 2, P Fu; @ 1; A; by Capability Strengthening
ANo; 2, P Fuv; i1 Ay by (A.EXPR.SUB)
as required to show (ii).
case (A.EXPR.LET) :
Assume
A1; Q, [l_//, ey : 'Ci; Ag
Ag; 2, P, x 11, e2: 12; A

ApQ, Ok, letx:t=ejiney: 19; A3 (30)

The only possible expression reduction is (LET). In this case, e; is equal to
some value. (i) holds by assumption and we are left to show (ii), where
e =egley/x].
0,2, P, er:1;0 by Value Typing Lemma
Ag; 2, D egler/x]te; Asg by Substitution Lemma
A1; 2, D Fegler/x]te; As by Capability Strengthening Lemma
case (A.EXPR.RECORD) :
No expression reductions apply.
case (A.EXPR.UPDATE) :
The case is trivially true as the expression cannot do a nonupdate reduction.
case (A.EXPR.SUB) :
Follows directly by application of TH.
case (A.EXPR.REF) :
Assume - Q and Q;® - H and H,refe” — H',e’ and
AQ O et A
A;Q2, D+, refe: tref, A

The only reduction rule applicable here is ref. This implies, for some value
v and location r ¢ dom(H), thate” =v and H' = H,r > v.
Required to prove

i) Q;&,r:tref-H,r — (-.,v)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 63

(i) A;Q, P, r:treft,r:cref, A
(i) follows from Heap Extension Lemma. (ii) is deducible from (A.EXPR.LOC)
and (A.EXPR.SUB).
case (A.EXPR.(IF—DEREF—ASSIGN—ABS—IF-UPDATE)) ¢
These cases follow similarly. O

LeEvMA A.19 (NONUPDATE PROGRAM SAFETY). If - @, Q;® + H, A;;Q,® +
Ele] : 7; A and Q; H;Ele] — Q; H';Ele’], then there exists ®' 2 ®,A] 2 A
and Ay 2 Ag such that

1) ;@' - H.
(i) A};Q, P Ele]:t; A

Proor. By E-Inversion Lemma, we have, for some 7’ and A’ D A, that
A;Q, et A
By inversion of derivation of program reduction, Q; H;e — Q; H';e'.
By Nonupdate Expression Safety Lemma, there exists & > ®, A} 2 A; and
A" > A’ such that A};Q, ® e’ : t/; A’ and Q; @ - H. The latter proves (i).
By weakening A1; 2, &' - Ele] : t/; Aq.
By E-Inversion Lemma A’; Q, ' - Ele] : 7/; Ag, which proves (ii) as required. O

LeEmmA A.20 (PRESERVATION). If @+ Q;H;e : 1, then

() if Q;H;e — Q;H';e/, then @+ Q; H';e' : 7.
(i) if Q; H;e ed Q' H';e,then 9 Q' H ;e : t.
Proor. Suppose @ - Q; H;e : t and consider the form of the transition:

case Q;H;e — Q; H ;e :
(i) holds by Nonupdate Program Safety Lemma. (ii) trivially holds.

upd
case Q; H;e — Q';H';e' :

This transition must be by the update rule, therefore e = E[update”] for
some E and A; and either

(a) updateOK(upd, 2, H, A) Q' =U[Q]™ H' =U[H]"™ ¢ = U[E[0]]"
(b) e’ =E[1]

In the former case, ¥ -+ Q'; H';e' : T by Update Program Safety Lemma. In
the latter case, E[1] can be typed by E-inversion Lemma. In either case, (ii)
is confirmed. (i) holds trivially. O

LEmma A.21 (ProGrEsS). If - Qand Q;® + H and A1;Q2,P F, e @ 15 Aq,
then either

(1) there exists Q', H', e’ such that Q; H;e — Q';H';e/, or
(i1) e is a value.

Proor. Proceed by induction on the derivation of A;Q2, ® -, e : 7; Ag.

case (A.EXPR.INT}XVAR}JLOC) ¢
All values.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

64 . G. Stoyle et al.

case (A.EXPR.VAR) :

Cannot occur because the context is closed under local variables.
case (A.EXPR.APP) :

Assume

FQ (31

Qo+ H (32)

A (@)

A;Q2, P, e1: 11 —> T2; A2

AQ;Q,(DFV_ ey : T1; As Ayg C Ag

p=p (A=U) = Ay CA
Al;Q, ['_M e1 ey . ‘L'Q;A4

By IH one of (i)—(iii) holds for e;:
case (1) holds for e; :
(i) holds for e; es by cong rule.
case (iii) holds for e; :
By IH there are three cases to consider for e;:
case (i) holds for e :
(i) holds for e eg by cong rule
case (ii1) holds for ey :

(33)

e1=12 by Canonical Forms Lemma
AR, O, 21 55 195 Ay By ()

Thus ®(z) = r; “—A> 19 and H(z) = A*(x).e by (32). Therefore, the
(cALL) reduction rule matches and (a) holds for e; es.
case (A.EXPR.SUB) :
Follows directly by induction on the sub derivation.
case (A.EXPR.ABS) :
Assume
AQ O et A r)y=r-
A;Q, D, absie :t; A

By IH there are three cases to consider:
case (i) holds fore :
By cong reduction rule (i) holds.
case (iii) holds for e :
e is a value by case split, thus abs; is also a value (by inspection of
values)
case (A.EXPR.UPDATE) :
update® is not a value, so (i) must hold. There are two possible reductions
for update, but both result in an integer. By Typing Weakens Capability
and the Value Typing Lemmas an integer can be made to type check in the
same updateability and capability environments as update®.

The rest of the cases are similar. O

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 65

THEOREM A.22 (TypE SoUNDNESS). If0F, Q;H;e : t, then either

(i) there exists Q', H', e’ such that Q;; He — Q';H';e’ and 0+, Q'; H';e' 1 T, or
(i1) e is a value.

Proor. Suppose ¥+, Q; H;e : 7, then by progress one of the following hold:
(a) there exists Q', H', e’ such that Q; H;e — Q'; H';e/, or
(b) e is a value.

Suppose (a) holds, then by preservation ¢ -, Q’; H';e’ : v and (i) holds. Suppose
(c) holds, then (iii) holds. O

A.2 Proof of Type Soundness for Proteus

The proof of soundness for Proteus follows an almost identical structure to the
proof for Proteus®. In this section, we give a sketch of the proof, paying partic-
ular attention when it differs from that of the corresponding Proteus® proof.

We state the three main theorems whose proofs can be easily reconstructed
by following the structure of those in Proteus?®.

LemmA A.23 (PrRoGRESS). If Qand Q; @+ H and Q, ® e : 1, then either

(1) there exists Q', H', e’ such that Q; H;e — Q'; H';e/, or
(i1) e is a value.

LeEmMA A.24 (PRESERVATION). If 0+ Q;H;e : t then,
(1) if 2 H;e - Q;H';e/, then 9= Q; H';e' : 1,
(1) if Q; H;e Ei Qs H';e then 9= Q' H ;e : 1.
THEOREM A.25 (TYPE SOUNDNESS). If 0+ Q; H;e : t, then either

(1) there exists Q', H',e' such that Q;; He — Q';H';e' and 9 - Q'; H';e' . t, or
(i1) e is a value.

Proteus’ type system is a simplification of that of Proteus®. To obtain Pro-
teus, the capabilities are removed, along with the subtype relation and the sub-
sumption rule. Subtyping can be removed as its only function was to provide
subtype-polymorphic behavior for the capabilities on function arrows, which do
not exist in the dynamic system.

We first give some properties of conFree[| and updateOK(), the proofs for
which are simple inductions on the syntax of terms.

LEMMA A.26 (conFree[—] CONGRUENCE). Foranyupdand e, if conFree[e]**4

holds, then for any subterm e of e we have conFree[e/]upd. We say that
conFree[— P4 is congruent to the syntax of expressions.

Lemma A.27 (updateOK(—) CONGRUENCE). For any upd, 2, H and e, if
updateOK(upd, 2, H,e) holds, then for any subterm e/, of e we have
updateOK(upd, 2, H, ¢'). We say that updateOK(—upd, 2, H, —) is a congruent
to the syntax of expressions.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

66 . G. Stoyle et al.

The only change to the dynamic semantics is in the definition of updateOK.
We now give the cases of proofs that depend on updateOK.

LeEmMA A.28 (UppATE EXPRESSION SAFETY). If + Q and Q;® + H and
Q, ®,T -, e : T and updateOK(upd, 2, H, e), then U[Q, ®, TP -, U[e]™ : ¢

Proor. The proof is by induction on the typing derivation of e in a similar
way to the Proteus®proof. We give the cases for concretization, abstraction,
and top-level variables variables.

case (EXPR.XVAR) :
By assumption Q, ®, "'+ z: . Thus ®(z) = r and by (a) z € dom(H).
By definition of 2/[—]"Pd on expressions, we have U[z]"™? = z.
There are three ways in which ¢[$2, ®, ['|"P4(z) = ¢/ can arise:
case z € dom(upd.AB) :
As 7z € dom(H) and by updateOK the domain of the heap and upd.AB
are disjoint, we can conclude z ¢ upd.AB, therefore this case cannot
occur.
case z € dom(upd.UB) :
Let upd.UB(z2) = (1/, b,).
By definition of /[—]"*4, we have U[®]"P(z) = heapType(’, by).
By updateOK assumption r = heapType(z’, b,).
By (A.EXPR.XVAR) U[S2, ®]"P |- z : 7, as required.
case z ¢ dom(upd.UB) :
By definition of 2/[—]"* on contexts U[®]"P4(z) = 7, thus /[, ®, I']™*4 |-
Z: 1, as required.
case (EXPR.ABS) :
By assumption,
Q,o,TkFe:t [Q, Pl =1
Q, 0, T absie:t
Consider the form of upd.UN:
case t ¢ dom(upd.UN) :
By definition, we have U[Q, ®, "%t = t and U[abs; e]uPd =
abs; U[e]"*d. The desired result follows by induction and (A.EXPR.ABS).
case upd.UN() = (¢”,¢) :

Observe U[abs; e]upd = abs; (¢ U[e]"™). Using (A.EXPR.ABS) and
(A.EXPR.APP), We are required to prove:

U, &, I F e ¢/ — o7

UlQ, @, 1 - yfe)re : /%
U, D, T Fcidle]™ : 7" [Q,d, M) =19
U[Q, ©, T - abs; (c U[e]™?) : t
(b) holds by induction. To prove (a):

u [Q, types(H)]upd Fc:t— 1 By updateOK() assumption
U[Q, types(H), F]upd Fc: 1t — v By Cap. Strengthening Lemma
UL, o, ™ et —> ¢/ By Ctx. Weakening Lemma

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 67

Where the last step is valid because ©; ® - H and so types(H) C ®.
By case split @ = (t = 7, Q') for some Q'.

By definition of U[] U[t = 7, 2, ®, T]"* =t = r", u[«, @, T]"*, thus (¢)

holds.
case (EXPR.CON) ¢
Assume
Q=1 Q,d,TFe:t
QO,'Feonte: 1t (34)
updateOK(upd, 2, H, con; e) (35)

Suffices to show that the leaves of this derivation hold:

U™ =¥ U, d, T]™ - Ufe]d : {7
UQ, @, T - cony Ule]™ : ¢
]upd

By updateOK assumption: conFree[con; e , thus by definition of con-
Free, t ¢ dom(upd.UN). It follows by definition of /[—]"P that (a) holds.
By Confree Congruence Lemma, conFree[e]"*. It can now be shown by
application of IH that (b) holds. O

Lemma A.29 (Heap UpDATE SAFETY). If + Q and ;& + H and
updateOK(upd, , H,) then U[Q]™; U []"Pd - ¢/ [H ™4

Proor. First note that from Q;® + H, we can deduce that for all p €
dom(H)z, e
(a) dom(®) = dom(H).
(b) if p =z and H(z) = (z,e), then Q, ® +e : 7 and ®(z) = 7 ref.
(¢) if p=zand H(z) = (t, Mx).e),then Q, ®d - A(x).e : T and ®(z) = .
(d) if p =r and H(r) = (., e), then there exists a t such that Q,® e : r and
®(r) = 7 ref.
So assume (a)-(d) and also
FQ (36)
updateOK(upd, Q, H, A) 37)
Via the same expansion, we are required to prove for all p €
domU[H]™?), 7, e that
(i) dom@[®]"PY) = dom(U/[H]"*Y),
(i) if p = z and U[H]™(2) = (1, e), then U[Q, P]™ I e : 7 and U[P]"™P(2) =
7 ref,
(iii) if p = z and U[H]™Y(2) = (7, AM(x).e), then U[Q, P]™! - A(x)e : 7 and
UP]P(2) = 7,
(iv) if p = r and U[H]"™(r) = (-, e), then there exists t such that ¢/[Q2, ®]"P? -
e : 7 and U[P]™4(r) = T ref.

hold. (a) implies (i) by inspection of the definition of I/[] on contexts and
heaps. We are left to show (i1)—(iv).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

68 . G. Stoyle et al.

Observe that types(H) C ® because of (b) and (c).

Now consider the form of an arbitrary entry in ¢/[H]*:

caser — (,e):
This case is dealt with as in the Proteus®case.
casez— (1,b):
In this case, (iv) holds trivially and we are left to show (ii) and (iii).
case (ii) :
This case is dealt with as in the Proteus®case as it only relies on
properties of updateOK common between the two definitions.
case (iii) :
Assume

UTH]"™M(2) = (11 — 1, Mx).e),
that is, that b = A(x).e and t = 11 — 2. Prove

UIR, 1" - Urx)e] 1 — 1 (38)
UL, @12 =11 - 1 (39)

By definition of U/[—]" on heaps, there are three ways to generate
elements of U/[H]".
case z € dom(H) and z € dom(upd.UB) :
This case is dealt with as in the Proteus®case as it only relies on
properties of updateOK common between the two definitions.
case z € dom(H) and z ¢ dom(upd.UB) :
By case split and definition of /[—]"P on heaps, there exists &', H’'
such that U[z — (z,), H]"™ =z — (r,u[6']"™), u[H']"™ and
H=zw (1,b), H.
Because b’ is a function by case split, then by the definition of
U[—]1"4 on bindings, [b’]uPd is a function, say b = A(x).e’
By (c) and typing rules

Qo€ 11
QOFAx)e 1T — 1o

where 1 = 11 — 19.
Required to prove (38) and (39).
By (37) conFree[H |"4, therefore conFree[e |"*4. By UpdateOK
Congruence Lemma, updateOK(upd, @2, H, e).
By Update Expression Safety Lemma 1/[$2, ®]"P4 . Ule]"™ : 1o,
Therefore, by use of (A.BIND.FUN), (38) holds.
By the definition of U[—]"! on contexts, it follows that
U[P]™(z) = 7, making (39) hold, as required.

case z ¢ dom(H) :
The result follows similarly to this subcase in case (ii). O

LeEmMa A.30 (U[—]" PresERVES TYPE SAFETY). Given - Q; H;e and an up-
date, upd, for which we have updateOK(upd, Q, H,e), then v U[Q]"PY;
UTH ™ Y[e]™d : 7.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

Mutatis Mutandis: Safe and Predictable Dynamic Software Updating . 69

Proor. Follows (Heap Update Safety) and (Update Expression Safety) and
an application of the configuration typing rule. O

ACKNOWLEDGMENTS

We thank Nikhil Swamy, Manuel Oriol, Mike Furr, and the anonymous referees
for helpful comments on drafts of this article.

REFERENCES

Agmant, S. 2004. Automatic software upgrades for distributed systems. Ph.D. thesis, Laboratory
of Computer Science, the Massachussetts Institute of Technology.

Agmang, S., Liskov, B., AND SHRIRA, L. 2006. Modular software upgrades for distributed systems.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP).

ALTEKAR, G., BAGRAK, 1., BUrsTEIN, P., AND ScHuLTZ, A. 2005. OPUS: Online patches and updates
for security. In Proceedings of the Fourteenth USENIX Security Symposium. Baltimore, MD,
287-302.

ArpEL, A. 1994. Hot-Sliding in ML. Unpublished manuscript.

ARMSTRONG, J. L. AND VIrDING, R. 1991. Erlang—An experimental telephony switching language.
In the 13th International Switching Symposium. Stockholm, Sweden.

Barr, T. anp Rajamani, S. K. 2002. The SLAM project: Debugging system software via static
analysis. In Proceedings of the 29th ACM Symposium on Principles of Programming Languages
(POPL). Portland, OR, 1-3.

BaumANN, A., HEISER, G., APPAVOO, J., S1ivA, D. D., KRIEGER, O., WISNIEWSKI, R. W., AND KERR, J. 2005.
Providing dynamic update in an operating system. In Proceedings of the USENIX Annual Tech-
nical Conference.

BierMmAN, G., Hicks, M., SEWELL, P., AND STovLE, G. 2003a. Formalizing dynamic software updating.
In Proceedings of (USEO03) the 2nd International Workshop on Unanticipated Software Evolution
Warsaw, Poland.

BiermaN, G., Hicks, M., SEWELL, P., StovLE, G., AND WansBrouGH, K. 2003b. Dynamic rebinding for
marshalling and update with destruct-time A. In Proceedings of the ACM International Conference
on Functional Programming (ICFP).

Broom, T. 1983. Dynamic module replacement in a distributed programming system. Ph.D. the-
sis, Laboratory for Computer Science, The Massachussets Institute of Technology.

Broom, T. anp Day, M. 1993. Reconfiguration and module replacement in Argus: Theory and
practice. Soft. Engin. J. 8, 2 (March), 102-108.

Bovararti, C., Liskov, B., SHRIRA, L., Mo#, C.-H., aAND RicumaAN, S. 2003. Lazy modular upgrades in
persistent object stores. In Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

Breazu-TaNNEN, V., CoquanD, T., GUNTER, C., AND SceEDrOV, A. 1991. Inheritance as implicit coer-
cion. Inform. computat. 93, 1, 172-221.

Buck, B. anp HoLLiNGswoRTH, J. K. 2000. An API for runtime code patching. J. High Perform.
Comput. Appl. 14, 4, 317-329.

Drossopourou, S. anD E1seneace, S. 2003. Flexible, source level dynamic linking and re-linking.
In Proceedings of the ECOOP 2003 Workshop on Formal Techniques for Java Programs.

Duccan, D. 2001. Type-based hot swapping of running modules. In Proceedings of the ACM
International Conference on Functional Programming (ICFP).

FostERr, J. S., TEraUCHI, T., AND AIKEN, A. 2002. Flow-sensitive type qualifiers. In Proceedings of
the ACM Conference on Programming Languages Design and Implementation (PLDI). Berlin,
Germany, 1-12.

FRIEDER, O. AND SEGAL, M. E. 1991. On dynamically updating a computer program: From concept
to prototype. J. Syst. Softw. 14, 2 (Sept.) 111-128.

GAPEYEV, V., LEVIN, M., AND PI1ERCE, B. C. 2000. Recursive subtyping revealed. In Proceedings of
the ACM International Conference on Functional Programming (ICFP).

GILMORE, S., KirLi, D., aAND WarLron, C. 1997. Dynamic ML without dynamic types. Tech. rep.
ECS-LFCS-97-378, LFCS, University of Edinburgh.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

70 . G. Stoyle et al.

GrossMAN, D., MorrisetT, G., Jim, T., Hicks, M., Wang, Y., AND CHENEY, J. 2002. Region-based mem-
ory management in Cyclone. In Proceedings of the ACM Conference on Programming Languages
Design and Implementation (PLDI).

GupTa, D. 1994. Online software version change. Ph.D. thesis, Department of Computer Science
and Engineering, Indian Institute of Technology, Kanpur, India.

Heintze, N. 1992. Set-based program analysis. Ph.D. thesis, Department of Computer Science,
Carnegie Mellon University.

Hicks, M. anD NETTLES, S. M. 2005. Dynamic software updating. ACM Trans. Program. Lang.
Syst. 27, 6 (Nov.).

Hicks, M., TsE, S., Hicks, B., AND ZDANCEWIC, S. 2005. Dynamic updating of information-flow poli-
cies. In Proceedings of the International Workshop on Foundations of Computer Security (FCS).

Hicks, M., WEIRICH, S., AND CRrARY, K. 2000. Safe and flexible dynamic linking of native code. In
Proceedings of the ACM SIGPLAN Workshop on Types in Compilation (TIC). Lecture Notes in
Computer Science, R. Harper, Ed. vol. 2071. Springer-Verlag.

Hicks, M. W. 2001. Dynamic software updating. Ph.D. thesis, Department of Computer and
Information Science, The University of Pennsylvania.

Hiiumtysson, G. AND Gray, R. 1998. Dynamic C++ classes, a lightweight mechanism to update
code in a running program. In Proceedings of the USENIX Annual Technical Conference.

MrrcHELL, J. C. 1986. Representation independence and data abstraction. In Proceedings of the
ACM Symposium on Principles of Programming Languages (POPL). 263-276.

Neawmry, 1., FosTeR, dJ. S., anp Hicks, M. 2005. Understanding source code evolution using ab-
stract syntax tree matching. In Proceedings of the International Workshop on Mining Software
Repositories (MSR).

NEeawmTiy, 1., Hicks, M., SToYLE, G., AND ORIOL, M. 2006. Practical dynamic software updating for C.
In Proceedings of the ACM Conference on Programming Languages Design and Implementation
(PLDI). 72-83.

NEecura, G. C., McPraxg, S., RaruL, S. P, anD WEmMER, W. 2002. CIL: Intermediate language and
tools for analysis and transformation of C programs. Lecture Notes in Computer Science vol.
2304, 213-228.

OPPENHEIMER, D., BROWN, A., BEcK, J., HETTENA, D., KURODA, J., TREUHAFT, N., PATTERSON, D. A., AND
Yerick, K. 2002. Roc-1: Hardware support for recovery-oriented computing. IEEE Trans. Com-
put. 51, 2, 100-107.

Orso, A., Rao, A, anp HarroLp, M. 2002. A technique for dynamic updating of Java software. In
Proceedings of the IEEE International Conference on Software Maintenance (ICSM).

PETERSON, J., HUDAK, P., AND LiNG, G. S. 1997. Principled dynamic code improvement. Tech. rep.
YALEU/DCS/RR-1135, Department of Computer Science, Yale University.

SouLEs, C., Appavoo, J., Hur, K., WisniEwskl, R. W., Stiva, D. D., GANGER, G. R., KRIEGER, O., STUMM, M.,
AUSLANDER, M., OsTROWSKI, M., ROSENBURG, B., AND XENIDIS, J. 2003. System support for online
reconfiguration. In Proceedings of the USENIX Annual Technical Conference.

StoviE, G., Hicks, M., BiIErMAN, G., SEWELL, P., AND NEAMTIU, I. 2005. Mutatis Mutandis: Safe and
predictable dynamic software updating. In Proceedings of POPL 2005: The 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL'05). Long Beach, CA, 183—
194.

WaLkER, D. 2000. A type system for expressive security policies. In Proceedings of the ACM
Symposium on Principles of Programming Languages (POPL). 254-2617.

WALKER, D., CRARY, K., AND MORRISETT, G. 2000. Typed memory management via static capabilities.
ACM Trans. Program. Lang. Syst. 22, 4, 701-771.

XiE, Y. AND AIKEN, A. 2005. Scalable Error Detection using Boolean Satisfiability. In Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL). 351-363.

ZorN,B. 2005. Personal communication, based on experience with Microsoft Windows customers.

Received January 2006; revised October 2006; accepted October 2006

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 22, Publication date: August 2007.

