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Abstract

This paper considers a typed A-calculus for classical linear logic. I shall give an
explanation of a multiple-conclusion formulation for classical logic due to Parigot
and compare it to more traditional treatments by Prawitz and others. I shall use
Parigot’s method to devise a natural deduction formulation of classical linear logic. I
shall also demonstrate a somewhat hidden connexion with the continuation-passing
paradigm which gives a new computational interpretation of Parigot’s techniques
and possibly a new style of continuation programming.

1 Introduction

Recently there has been renewed interest in classical logic, or rather in the
constructive content of classical proofs. This appears to have links with, on
the theoretical side, game theory and on the practical side, certain extensions
to functional programming languages. Intuitionistic linear logic (ILL) can be
seen as a foundation of functional programming languages and so it would
seem interesting to consider extensions of it to classical linear logic (CLL). In
particular as it has been suggested that CLL has strong links with concurrent
computation.

2 Parigot’s Method

Gentzen’s natural deduction is a very suitable deduction system for intuition-
istic logic (IL) but seems less so for classical logic? (CL). One could say that
classical logic is a logic of symmetry whereas natural deduction is by its very
nature an asymmetric system. To that extent Gentzen’s alternative system,
the sequent calculus, seems better suited as the system for CL.

The Curry-Howard correspondence allows us to annotate natural deduc-
tions with terms. For IL this yields the typed A-calculus. For sequent calculus
it is not entirely clear what the appropriate annotations are. In fact there are

1 “One may doubt that this is the proper way of analysing classical inferences.” [12, Pages
244-5].
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a number of choices and there is no real consensus on the best. It might seem
prudent to revisit natural deduction, where the question of syntax is settled,
and see if we might be able to produce a more symmetric system.

Shoesmith and Smiley [13] made an early attempt at this by defining a
multiple-conclusion natural deduction system but unfortunately this was quite
complicated. More recently Parigot [10] has introduced a variant of multiple-
conclusion natural deduction which seems better suited for handling CL. I
hope to provide an alternative explanation of his method and, in a later sec-
tion, to utilise it to produce a formulation of CLL.

3 From Intuitionistic Logic to Classical Logic

Traditionally IL can be presented in a sequent calculus formulation where
sequents have the form I' + . Thus from many assumptions (which are to
be thought of as being conjoined) one deduces 1. To extend this to CL we
allow the conclusion to contain many formulae (which are to be thought of as
being disjoined).
In the natural deduction system, deductions take the form of (inverted)
trees, viz.
L
Y
which is clearly well suited when we have just one conclusion. Extending this
to allow for many conclusions seems to imply a graph-like structure. Alterna-
tively we might consider simulating the multiple conclusions by storing them
as a disjunction of formulae, which can then be treated as a single formulae.
Consider the implication-right rule of CL
Lo —1,A
— (ORr).
F'~¢Dy,A
If we consider simulating this in natural deduction, we have for the premiss

ré

(VAa) v
and clearly we wish to introduce an implication, but only over the formula .
The implication introduction rule will only allow

r 4]

(V&vw
oV Y

What is needed is the ability to abstract over just one of the conclusions. This
seems to be precisely what we can not do in IL. Indeed the axiom

ImpD: (¢ D (6 V¢)) D ((¢ D) V)
is a sufficient addition to IL to give CL. Rather than continue with this
2
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‘simulation’ of CL, traditional proof theory considers new rules to add to the
system to yield CL. For example, Prawitz [11] suggests either adding axioms
of the form

¢V P

or a rule

=]

1

— RAA.

¢
Parigot’s system can be thought of as continuing with the simulation approach
and adding what is sufficient to make that method work. Thus we continue
with considering the many conclusions as a whole, but now where at most one
of them will be distinguished as being ‘active’. The others are ‘passive’ which
is signified by being labelled (I shall label the active formula with a bullet).
Thus deductions are of the form

r

P 1
where ¢ is the active formula and the ; are passive. [ shall write ¥ to
represent a multiset of passive formulae. To handle the example alluded to
earlier, the system is extended with rules which enable active and passive roles
to be swapped. To facilitate this, two new rules are introduced

L L
¢o ' 3 and d}a' b))
Freeze Unfreeze.
P, % P, %

It is important to realise that neither an active formula, ¢, nor a passive
formula, 1, respectively, need to be present for these rules to be applied; or, in
other words, we can consider the rules able to perform an implicit Weakening
if necessary.? (Of course, when we come to the linear calculus, this will not
be the case.) This enables us to handle the earlier example, as follows

(D), A, X"

Parigot’s system (which he calls the Ap-calculus) is given below, where for
compactness I have presented the deductions in a sequent-style and added a

2 This is clarified if Parigot’s system is presented with explicit structural rules.
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term syntax.

Dz:pvz:¢®, 2

T,z o Mg, 5 ToM:(¢D$)*,S T N:g*, S
Lo dx:p.M: (¢ D)*, 2 - > MN:y*, %

(De)

> M:¢*, % > M: ¢, %
Freeze Unfreeze
' > freeze? (M): ¢, % [ > unfreeze? (M): ¢*, %

Thus judgements are of the form ['>AM: ¢*, Y where I" denotes a set of formulae
labelled with variable names, written z:1¢ and ¥ denotes a set of (passive)
formulae labelled with ‘passification variables’, which we write as ¥®. To
demonstrate the full power of Parigot’s system, below is a derivation of the
famous Peirce’s law.

P> x: P°
z: ¢ > freeze? (z): p°

Freeze

Unfreeze (1)
x: (;Sbunfreezeﬁ(freeze (2):¢°, %

y: (DY) Doy (p DY) Do° PAT: P. unfreezeﬁ (freeze? (x)): ¢ D 9°, (j)a
y: (¢ DY) D v y(Aa: (j).unfreezeﬁ (freeze? ())): 4%, ¢
y: (¢ D) D p v freeze? (y(Ax: ¢. unfreezeﬁ (freeze? (z)))): ¢

(De)

Freeze (2)

Unfreeze

y: (¢ D 1) D ¢ > unfreeze? (freeze? (y(\z: ¢. unfreeze; Y (freeze? (z))))): ¢°
D)
pAy: (¢ D ¥) D p.unfreeze? (freeze? (y(Az: ¢. unfreezeﬁ (freeze? (2))))): ((¢ D ) D ¢) D ¢°

The reader familiar with the sequent calculus formulation of CL will spot
where Parigot’s formulation mimics the sequent proof. More specifically the
application of the Unfreeze rule, marked (1), corresponds to the Weakening-Right
rule and the application of the Freeze rule marked (2), corresponds to the
Contraction-Right rule.

3.1 Reduction Rules

There are two (-rules corresponding to introduction-elimination pairs, along
with a commuting conversion for the Unfreeze rule.
(Az:p.M)N ~»g Mz := N]
unfreeze? (freeze? (M)) ~»5 M
(unfreeze®>¥ (M))N ~+. unfreeze? (M |[freeze?>¥ (P) « freeze? (PN)))

In the last commuting conversion rule, I have used the notation M[N <« P]
to denote the term M where (inductively) all occurrences of the subterm N
have been replaced by the term P.

Parigot has (impressively) shown the following results for this reduction
system.
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Theorem 3.1
(i) The Ap-calculus is strongly normalising; and
(ii) The Au-calculus is confluent.
It is folklore that the sequent calculus formulation of CL has the undesir-

able feature of several disastrous critical pairs. A simple example of this is the
following derivation [8, Page 151].

1 2
' -A ' -A
—— Weakeningp —— Weakening,
' —A¢ Lo —A
Cut
' -A

Given the usual process of local cut-elimination, it is not clear whether to
reduce this proof to 7 or to my. It is interesting to note that this example
translates to the following application of substitution in Parigot’s formulation

[re] [z := [m1]]
where z is not a free variable of [ms], and so by the definition of substitution,
this is equal to

[2].-
Thus Parigot’s formulation automatically avoids critical pairs essentially by
its syntactic form for the structural rules.
Another important property of Parigot’s formulation is that ¢ and ¢+
are not forced to be equal by the proof theory. Of course we have the derived
rules

gD Loag DL > M:¢
(De)
gD LoaM: L
(D7)
Fodei¢g D LaM:(¢pDL)DL
and
Y
Freeze
z: ¢ > freezed (x): L°, ¢* (51)
oz
IeM:(pDL)DL >z freezef(z): ¢ D L*, ¢° (D¢)
o€
IS M(Am.freezefi(m)): L% 9"
Unfreeze.

I > unfreeze® (M (\z.freeze? (x))): ¢
Composing the first with the second gives
unfreeze ((Azx.zM)(Ax.freeze (x))) ~» 5 unfreeze(( Az .freeze(z)) M)
~»g unfreeze(freeze (M))
~rg M,
but composing the second with the first yields
Ay.y(unfreeze (M (A\z.freeze(z)))
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which is in (head) normal form.?

3.2 Normal Forms

Before I consider a linear version of Parigot’s system, it seems prudent to
highlight a slightly tricky area: that of normal forms. Parigot takes the opinion
that the Unfreeze rule can act as a barrier between an introduction-elimination
pair and so adds a commuting conversion to remove it. This has both a familiar
and unfamiliar feel to it. We are used to this notion of commuting conversions
to permit [-reductions from the writings of Prawitz. However in this case, it
introduces a new, unfamiliar, form of substitution, teztual substitution, where
whole subterms are replaced.

One could take these ideas further. Prawitz, as mentioned earlier, suggests
adding the rule

]

1
— RA4
¢

to IL to get a formulation of CL. However, he notes that applications of this
rule can be restricted to cases where ¢ is atomic. This is achieved by both
factoring formulae through the de Morgan dualities (thus eliminating certain
problematic connectives) and by transformation. For example, an application
of the above rule where ¢ = ¢ D v is transformed to

(¢ D Y] [¢]
(De)
P [—¢]
1

~(¢29)

(De¢)

(O1)

1
Z RAA
(2

PO
where clearly the size of the formula used in the application of the RAA rule
has been reduced. Prawitz suggests transforming all applications of this rule
until they involve only atomic formulae. However the use of the de Morgan
dualities is vital here; Prawitz [11, Footnote 1, Page 50] mentions that this
technique does not extend to all the connectives (the problematic one being
the disjunction).

Ong [9] suggests a similar strategy for Parigot’s system by rewriting appli-
cations of Unfreeze until they are of atomic type, although he advocates it to
ensure confluence when considering n-reduction. Given that this technique re-
quires the use of the de Morgan dualities when considering all the connectives,

(DI),

3 This property enables Ong [9] to define a categorical model. It is well known that a CCC
with an isomorphism A+ = A collapses to a boolean algebra.

6
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I shall not consider it here.

4 From Intuitionistic Linear Logic to Classical Linear
Logic

I shall extend the natural deduction formulation of ILL from my thesis [3]
(which has appeared in other places e.g. [2]) using Parigot’s techniques as
explained in the previous section. The resulting system is given below.

> x:Pp*
D,z:p> M:4p*, 2 L'> M: (¢p—o1))®, 2 A>N:¢*, %
Do Az . M: (p—oth)®, S [, A> MN:¢*, 3,5 ~e)

Lo M:¢®, % A N:¢*, %
[NA> MRN: (1)), 2, %

(®1)

I'> M: (¢p@v)*, 2 Az yp> N:6* Y

(®¢)
['Avlet M be z®yin N:6°, %, %

F11>M1:!¢I,Zl A1[>P1:!((!01—O J_)—O J_).,Tl
Lo Mgy, 5, Ap > Py ((logy— L)— 1), T,
111, Tl > Nip®, (log—o L) oo (lo,—o L)@m

pa— — —— Promotion
I, A > promote M|P for Z|ain N:1¢* X, T

> M:14°, %
I > derelict(M): ¢°, 2

Dereliction

I'>M: 9%, % A> N:yp* Y
I', A discard M in N:4°, %, %

Weakening

o M:16°%  Ax:lgy:lgps N:ig®, S

Contraction
' A>copy M asx,yin N:¢*, 3, %'

D> M:¢°, %
L5 unit?(M): L, ¢% %

(L)

o M: 1% ¢% %

i
[ > deunit? (M): ¢°*, % (Le)

7
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A few observations need to be made before continuing. In this formulation
the par unit, L, must be introduced. The other classical connectives become
defined as follows

¢t pol,

76 < (1)L, and

$B8 ¢ L ((pH)o(ph))".

It is interesting that, I, the tensor unit now becomes a defined formula, the
details are given below. Applications of the 17 rule are restricted such that the
upper active formula, ¢, is not equal to L. The ¢ rule is similarly restricted.
A further property of this formulation is that the Promotion rule is not the
same as that for ILL. It seems that rather the ILL formulation is a particular
instance of the full classical formulation.
However the formulation is sound and complete in the following sense.

Theorem 4.1 ¢ is provable in CLL if and only if there is a term M such
that >M: ¢°.

It is worth discussing further the nature of negation in this system. Con-
sider the formula ¢*+—o¢. In the standard presentation of proof nets this
is just the identity function as all formulae are factored by the equivalences
for negation; in particular, ¢~+ = ¢. In systems based on Parigot’s method
this will not be the case, the formula is ((p— L)—o L)—o¢. In some senses
one could say that negation retains here a more constructive nature. This
does not seem that unreasonable, however. By analogy consider the formulae
dA(pVo)and (p A1)V (¢ Ao). In both CL and IL these are equivalent
and, for example, in a cartesian closed category (with coproducts) they are
isomorphic. However we wouldn’t necessarily expect to collapse them. Indeed
in the simply typed A-calculus, there are distinct functions which map from
one to the other (as they represent distinct datatypes!).

4.1 Reduction Rules

We have the 3-rules for the linear A-calculus, suitably extended for the Promotion
rule, as well as the (-rule for the new unit L. In addition, I shall give the
commuting conversions, as per the discussion in §3.2.

(Az:¢p.M) N ~g Mz := N]
let M®N bez®yin P ~»g Pl := M,y := N|
derelict(promote M |P for Z|d in N) ~g N [z;:=M;
unit?? °*(R) < derelict(P})R]
discard (promote M|P for Z|@in N)in R ~+5 discard M, P in R
8
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copy (promote M |P for Z|@in N) asy,zin R ~>g COpy M as @', 2" in
copy Pas Uj’, w” in
R [y := promote «/|w' for Z|d in N,

% := promote #'|w" for Z|& in N

deunit? (unit? (M)) ~5 M
(deunit ¥ (M))N ~. deunit’ (M unlt‘b_ow(P) < unit¥(PN)))

let deunitﬁ®1/’( M) bez®yin N ~». deunit, (M P) < unit? (let P be z®y in N)))

= unltd’(derellct(P))])

copy (deunit'?(M)) as z,y in N ~s. deunit’ (M[unit'?(P

S (M]

o (MTun
derelict(deunit'? (M) ~. deumtg(M[umt (P

g( [ < unit? o(copy Pasz,yin N)])

o (M]

discard (deunit'¥ (M)) in N ~». deunit’ (M[unit'?(P) < unit’ (discard P in N)])

It is important to realise that the discussion earlier concerning the restrictions
of the L-rules is relevant in the formulation of the commuting conversions.
For example, a special case of the first commuting conversion is

(deunit? °+(M))N ~», M[unit? °+(P) < PN].

A vital property of this formulation is the so-called subject reduction property.

Theorem 4.2 IfI'> M:¢*, X and M ~3,. N then I'> N:¢®, ¥

I conjecture that the properties of strong normalisation and confluence
hold for this linear system.

My original motivation in devising this formulation was to study syntac-
tically the process of cut elimination for CLL. This will be given in detail in
the full version of this paper [5]. For now I shall show how the laws for the
tensor unit, I, can be derived.

First the introduction rule can be derived as

Lozl

(—o1)
pAz: L il —o L

and the elimination rule as

A N:¢*, 5
: - (L1)
D> M:(L—1)"% A unit? (N): L®, 4%, % )
—o¢g
L, A> M(unit?(N)): L®, ¢%, %, % )
£).

T, A > deunit? (M (unit? (N))): ¢*, 2, ¥/
The (-rule then holds as follows.
let * be + in N % deunit? ((\z.z)(unit? (N)))
~+ g deunit? (unit? (N))

’\/)ﬂN
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The commuting conversions associated with the (Ig) rule [3, Figure 3.7] also
translate correctly; below I give two examples.

(let M be + in N)P % (deunit? ¥ (M (unit? °¥(N))))P
~¢ deunit? (M (unit? (N P)))

' let M be * in (NP)

derelict(let M be + in N) % derelict(deunit'?(M (unit'¢(N))))

~re deunitﬁ(M(unitg(derelict(N))))

' let M be  in derelict(V)

5 A Continuation-Passing Interpretation

In §3 Parigot’s formulation was motivated in terms of proof theory, but a
worthwhile question is whether there is a more convincing computer science
explanation. Consider again the L7 rule,

> M:¢® %
— . (Lz).
[>unith(M): L°, 9% %
A key to understanding this rule is to give a computational explanation of the
passive formulae. To do so I shall rewrite it as the following

L' M:¢*, X%
IokM:1°% kip— L, X
Here x is to be thought of as a continuation variable. A judgement "1 >
M: ¢, K: ¥ consists of a term, M, with (typed) free variables, Z, and (typed)

free continuation variables, £. (Hence ¥ is now a multiset of continuation
variables.) The L¢ rule can similarly be rewritten as

e M:1° kip— L, %
['> throwg(M): ¢*, X

Catch.

Throw.

In standard work in continuation-passing, e.g. [6], the non-local behaviour
of evaluation is reflected by writing the reduction rules in context. Thus
closed terms are evaluated in a context of the current environment. For this
formulation there is an additional context which contains a multiset of labelled
terms (the continuations). For example given a term

pM:¢* k10— L,... Kpiop—o L,
we need a multiset of continuations & = [Mj,...,M,]. Evaluation is then
written as

E[M]E = M’

where E is the current environment. The important evaluation rules are then
ET [k N|[xkM]E = E[NM]E,
Ethrow”(M)]|E = € T [k: E|[M]id;
10
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where id is the identity continuation and & f [k: N] denotes the extension
of the continuation multiset & with k: N. Thus Throw captures the current
environment and places it in the continuation multiset, labelled with x. The
Catch catches a continuation® from the multiset and replaces the continuation
variable with the caught term.

The rather confusing formulation of the Promotion rule from §4 becomes
slightly clearer with this continuation interpretation. The rule is rewritten as

F1DM1:!¢I,21 A1[>P1:!((!O'1—O J_)—O J_).,Tl
Iy My 5, Ay > P l((loy,— L)— 1)*, T,
2111,y il > Nap®  ky: (log—o L)— L ... Ky (logy—0 L)—o L
', A > promote M|]3 for Z|K in N:1¢°, T
Thus the promoted term can be seen not only as a sort of closure for the
free variables, as is the case for ILL, but also for the continuation variables;
where we build in substitution for both classes of variable. As this closure can

be freely duplicated and discarded, the continuation terms, P;, must be of a
non-linear type.

Promotion.

Of course this interpretation applies to CL in a similar way. In comparison
to other works where authors have used continuation-passing work to explain
classical logic (e.g. [1]), this interpretation is essentially in the other direction,
viz. using classical logic to suggest a continuation-passing technique. The ad-
vantage here is that a quite complicated programming feature is given directly
by a proof theory. Filinski [7] has suggested that linear versions of conven-
tional continuation-passing ideas are of some use, and I would hope that these
advantages apply to this system.

6 Conclusions and Future Work

In this paper I have demonstrated how Parigot’s techniques can be applied
to the linear case to yield a classical linear A-calculus. I hope to have at
least shed some light on its relationship with more traditional treatments of
classical logic in natural deduction. I would claim that the resulting program-
ming language is of more use than one based on proof nets. As mentioned
earlier, proof nets rely on equivalent datatypes being considered equal—this
would present an unusual programming paradigm where, for example, the
type inference mechanism would have to be adapted to factor all types by
the various equivalences. In the classical linear A-calculus there are explicit
coercion terms.

In particular I would promote the computational interpretation suggested
in §5 for both the linear and non-linear calculus. Although tentative, it
promises a new programming language facility: multiple-continuation-passing,
which unlike most proposals has an exact correspondence with a proof theory.
This alone makes it worthy of further study.

4 Linearity guarantees that the continuation exists.

11
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A semantic study would also be desirable. Ong has proposed a categorical
semantics and a class of game-theoretic models for CL based on Parigot’s sys-
tem. It would be interesting to see if a similar extension of linear categories [4]
would produce some sort of x-autonomous category.
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