
Electronic Notes in Theoretical Computer Science 3 (1996)URL: http://www.elsevier.nl/locate/entcs/volume3.html 13 pagesTowards a Classical Linear �-calculus(Preliminary Report)G.M. BiermanGonville and Caius College,Cambridge, United Kingdom.AbstractThis paper considers a typed �-calculus for classical linear logic. I shall give anexplanation of a multiple-conclusion formulation for classical logic due to Parigotand compare it to more traditional treatments by Prawitz and others. I shall useParigot's method to devise a natural deduction formulation of classical linear logic. Ishall also demonstrate a somewhat hidden connexion with the continuation-passingparadigm which gives a new computational interpretation of Parigot's techniquesand possibly a new style of continuation programming.1 IntroductionRecently there has been renewed interest in classical logic, or rather in theconstructive content of classical proofs. This appears to have links with, onthe theoretical side, game theory and on the practical side, certain extensionsto functional programming languages. Intuitionistic linear logic (ILL) can beseen as a foundation of functional programming languages and so it wouldseem interesting to consider extensions of it to classical linear logic (CLL). Inparticular as it has been suggested that CLL has strong links with concurrentcomputation.2 Parigot's MethodGentzen's natural deduction is a very suitable deduction system for intuition-istic logic (IL) but seems less so for classical logic 1 (CL). One could say thatclassical logic is a logic of symmetry whereas natural deduction is by its verynature an asymmetric system. To that extent Gentzen's alternative system,the sequent calculus, seems better suited as the system for CL.The Curry-Howard correspondence allows us to annotate natural deduc-tions with terms. For IL this yields the typed �-calculus. For sequent calculusit is not entirely clear what the appropriate annotations are. In fact there are1 \One may doubt that this is the proper way of analysing classical inferences." [12, Pages244-5]. c
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biermana number of choices and there is no real consensus on the best. It might seemprudent to revisit natural deduction, where the question of syntax is settled,and see if we might be able to produce a more symmetric system.Shoesmith and Smiley [13] made an early attempt at this by de�ning amultiple-conclusion natural deduction system but unfortunately this was quitecomplicated. More recently Parigot [10] has introduced a variant of multiple-conclusion natural deduction which seems better suited for handling CL. Ihope to provide an alternative explanation of his method and, in a later sec-tion, to utilise it to produce a formulation of CLL.3 From Intuitionistic Logic to Classical LogicTraditionally IL can be presented in a sequent calculus formulation wheresequents have the form � �  . Thus from many assumptions (which are tobe thought of as being conjoined) one deduces  . To extend this to CL weallow the conclusion to contain many formulae (which are to be thought of asbeing disjoined).In the natural deduction system, deductions take the form of (inverted)trees, viz.���� which is clearly well suited when we have just one conclusion. Extending thisto allow for many conclusions seems to imply a graph-like structure. Alterna-tively we might consider simulating the multiple conclusions by storing themas a disjunction of formulae, which can then be treated as a single formulae.Consider the implication-right rule of CL�; � �  ;� (�R):� � � �  ;�If we consider simulating this in natural deduction, we have for the premiss� ����(_�) _  and clearly we wish to introduce an implication, but only over the formula  .The implication introduction rule will only allow� [�]���(_�) _  (�I):� � ((_�) _  )What is needed is the ability to abstract over just one of the conclusions. Thisseems to be precisely what we can not do in IL. Indeed the axiomImpD: (� � (� _  )) � ((� � �) _  )is a su�cient addition to IL to give CL. Rather than continue with this2



bierman`simulation' of CL, traditional proof theory considers new rules to add to thesystem to yield CL. For example, Prawitz [11] suggests either adding axiomsof the form� _ :�or a rule[:�]���? RAA:�Parigot's system can be thought of as continuing with the simulation approachand adding what is su�cient to make that method work. Thus we continuewith considering the many conclusions as a whole, but now where at most oneof them will be distinguished as being `active'. The others are `passive' whichis signi�ed by being labelled (I shall label the active formula with a bullet).Thus deductions are of the form������;  �n1 ; : : : ;  �nnwhere � is the active formula and the  i are passive. I shall write � torepresent a multiset of passive formulae. To handle the example alluded toearlier, the system is extended with rules which enable active and passive rôlesto be swapped. To facilitate this, two new rules are introduced������;� Freeze��;� and ���� �;� Unfreeze: �;�It is important to realise that neither an active formula, �, nor a passiveformula,  , respectively, need to be present for these rules to be applied; or, inother words, we can consider the rules able to perform an implicit Weakeningif necessary. 2 (Of course, when we come to the linear calculus, this will notbe the case.) This enables us to handle the earlier example, as follows� [�]��� �;�; �� Freeze �;�; �� Unfreeze �;�; �� (�I):(� �  )�;�; ��Parigot's system (which he calls the ��-calculus) is given below, where forcompactness I have presented the deductions in a sequent-style and added a2This is clari�ed if Parigot's system is presented with explicit structural rules.3



biermanterm syntax. �; x:� . x:��;��; x:� .M : �;� (�I)� . �x:�:M : (� �  )�;� � . M : (� �  )�;� � . N :��;� (�E)� . MN : �;�� . M :��;� Freeze� . freeze��(M):��;� � . M :��;� Unfreeze� . unfreeze��(M):��;�Thus judgements are of the form �.M :��;� where � denotes a set of formulaelabelled with variable names, written x: and � denotes a set of (passive)formulae labelled with `passi�cation variables', which we write as  �. Todemonstrate the full power of Parigot's system, below is a derivation of thefamous Peirce's law.
y: (� �  ) � � . y: (� �  ) � ��

x:� . x:�� Freezex:� . freeze��(x):�� Unfreeze (1)x:� . unfreeze � (freeze��(x)): �; �� (�I).�x:�:unfreeze � (freeze��(x)):� �  �; �� (�E)y: (� �  ) � � . y(�x:�:unfreeze � (freeze��(x))):��; �� Freeze (2)y: (� �  ) � � . freeze��(y(�x:�:unfreeze � (freeze��(x)))):�� Unfreezey: (� �  ) � � . unfreeze��(freeze��(y(�x:�:unfreeze � (freeze��(x))))):�� (�I).�y: (� �  ) � �:unfreeze��(freeze��(y(�x:�:unfreeze � (freeze��(x))))): ((� �  ) � �) � ��The reader familiar with the sequent calculus formulation of CL will spotwhere Parigot's formulation mimics the sequent proof. More speci�cally theapplication of the Unfreeze rule, marked (1), corresponds to theWeakening-Rightrule and the application of the Freeze rule marked (2), corresponds to theContraction-Right rule.3.1 Reduction RulesThere are two �-rules corresponding to introduction-elimination pairs, alongwith a commuting conversion for the Unfreeze rule.(�x:�:M)N ;� M [x := N ]unfreeze��(freeze��(M)) ;� M(unfreeze�� � (M))N ;c unfreeze �(M [freeze�� � (P )( freeze �(PN)])In the last commuting conversion rule, I have used the notation M [N ( P ]to denote the term M where (inductively) all occurrences of the subterm Nhave been replaced by the term P .Parigot has (impressively) shown the following results for this reductionsystem. 4



biermanTheorem 3.1(i) The ��-calculus is strongly normalising; and(ii) The ��-calculus is con
uent.It is folklore that the sequent calculus formulation of CL has the undesir-able feature of several disastrous critical pairs. A simple example of this is thefollowing derivation [8, Page 151].�1���� � � WeakeningR� � �; � �2���� � � WeakeningL�; � � � Cut� � �Given the usual process of local cut-elimination, it is not clear whether toreduce this proof to �1 or to �2. It is interesting to note that this exampletranslates to the following application of substitution in Parigot's formulation[[�2]][x := [[�1]]]where x is not a free variable of [[�2]], and so by the de�nition of substitution,this is equal to[[�2]]:Thus Parigot's formulation automatically avoids critical pairs essentially byits syntactic form for the structural rules.Another important property of Parigot's formulation is that � and �??are not forced to be equal by the proof theory. Of course we have the derivedrulesx:� � ? . x:� � ? � . M :� (�E)�; x:� � ? . xM :? (�I)� . �x:� � ?:xM : (� � ?) � ?and
� . M : (� � ?) � ? x:� . x:� Freezex:� . freeze��(x):?�; �� (�I).�x:freeze��(x):� � ?�; �� (�E)� . M(�x:freeze��(x)):?�; �� Unfreeze.� . unfreeze��(M(�x:freeze��(x))):�Composing the �rst with the second givesunfreeze((�x:xM)(�x:freeze(x)));� unfreeze((�x:freeze(x))M);� unfreeze(freeze(M));�M ;but composing the second with the �rst yields�y:y(unfreeze(M(�x:freeze(x))) 5



biermanwhich is in (head) normal form. 33.2 Normal FormsBefore I consider a linear version of Parigot's system, it seems prudent tohighlight a slightly tricky area: that of normal forms. Parigot takes the opinionthat the Unfreeze rule can act as a barrier between an introduction-eliminationpair and so adds a commuting conversion to remove it. This has both a familiarand unfamiliar feel to it. We are used to this notion of commuting conversionsto permit �-reductions from the writings of Prawitz. However in this case, itintroduces a new, unfamiliar, form of substitution, textual substitution, wherewhole subterms are replaced.One could take these ideas further. Prawitz, as mentioned earlier, suggestsadding the rule[:�]���? RAA�to IL to get a formulation of CL. However, he notes that applications of thisrule can be restricted to cases where � is atomic. This is achieved by bothfactoring formulae through the de Morgan dualities (thus eliminating certainproblematic connectives) and by transformation. For example, an applicationof the above rule where � = � �  is transformed to[� �  ] [�] (�E) [: ] (�E)? (�I):(� �  )���? RAA (�I);� �  where clearly the size of the formula used in the application of the RAA rulehas been reduced. Prawitz suggests transforming all applications of this ruleuntil they involve only atomic formulae. However the use of the de Morgandualities is vital here; Prawitz [11, Footnote 1, Page 50] mentions that thistechnique does not extend to all the connectives (the problematic one beingthe disjunction).Ong [9] suggests a similar strategy for Parigot's system by rewriting appli-cations of Unfreeze until they are of atomic type, although he advocates it toensure con
uence when considering �-reduction. Given that this technique re-quires the use of the de Morgan dualities when considering all the connectives,3This property enables Ong [9] to de�ne a categorical model. It is well known that a CCCwith an isomorphism A?? �= A collapses to a boolean algebra.6



biermanI shall not consider it here.4 From Intuitionistic Linear Logic to Classical LinearLogicI shall extend the natural deduction formulation of ILL from my thesis [3](which has appeared in other places e.g. [2]) using Parigot's techniques asexplained in the previous section. The resulting system is given below.x:� . x:���; x:� .M : �;� (��I)� . �x:�:M : (��� )�;� � . M : (��� )�;� � . N :��;�0 (��E)�;� . MN : �;�;�0� . M :��;� � . N : �;�0 (
I)�;� . M
N : (�
 )�;�;�0� . M : (�
 )�;� �; x:�; y: . N : ��;�0 (
E)�;� . letM be x
y inN : ��;�;�0�1 . M1: !��1;�1 �1 . P1: !((!�1�� ?)�� ?)�;�1�n . Mn: !��n;�n �m . Pm: !((!�m�� ?)�� ?)�;�mx1: !�1; : : : ; xn: !�n . N : �; (!�1�� ?)�1 ; : : : ; (!�m�� ?)�m Promotion~�; ~� . promote ~M j~P for ~xj~� inN : ! �; ~�; ~�� . M : !��;� Dereliction� . derelict(M):��;�� . M : !��;� � . N : �;�0 Weakening�;� . discardM inN : �;�;�0� . M : !��;� �; x: !�; y: !� . N : �;�0 Contraction�;� . copyM as x; y inN : �;�;�0� . M :��;� (?I)� . unit��(M):?�; ��;�� . M :?�; ��;� (?E )� . deunit��(M):��;�7



biermanA few observations need to be made before continuing. In this formulationthe par unit, ?, must be introduced. The other classical connectives becomede�ned as follows�? def= ���?;?� def= (!�?)?; and�...............................................................................................  def= ((�?)
( ?))?:It is interesting that, I, the tensor unit now becomes a de�ned formula, thedetails are given below. Applications of the?I rule are restricted such that theupper active formula, �, is not equal to ?. The ?E rule is similarly restricted.A further property of this formulation is that the Promotion rule is not thesame as that for ILL. It seems that rather the ILL formulation is a particularinstance of the full classical formulation.However the formulation is sound and complete in the following sense.Theorem 4.1 � is provable in CLL if and only if there is a term M suchthat .M :��.It is worth discussing further the nature of negation in this system. Con-sider the formula �??���. In the standard presentation of proof nets thisis just the identity function as all formulae are factored by the equivalencesfor negation; in particular, �?? � �. In systems based on Parigot's methodthis will not be the case, the formula is ((��� ?)�� ?)���. In some sensesone could say that negation retains here a more constructive nature. Thisdoes not seem that unreasonable, however. By analogy consider the formulae� ^ ( _ �) and (� ^  ) _ (� ^ �). In both CL and IL these are equivalentand, for example, in a cartesian closed category (with coproducts) they areisomorphic. However we wouldn't necessarily expect to collapse them. Indeedin the simply typed �-calculus, there are distinct functions which map fromone to the other (as they represent distinct datatypes!).4.1 Reduction RulesWe have the �-rules for the linear �-calculus, suitably extended for the Promotionrule, as well as the �-rule for the new unit ?. In addition, I shall give thecommuting conversions, as per the discussion in x3.2.(�x:�:M) N ;� M [x := N ]letM
N be x
y in P ;� P [x :=M;y := N ]derelict(promote ~M j~P for ~xj~� inN) ;� N [xi :=Mi;unit�j��?�j (R)( derelict(Pj)R]discard (promote ~M j~P for ~xj~� inN) inR ;� discard ~M; ~P inR8



biermancopy (promote ~M j~P for ~xj~� inN) as y; z inR ;� copy ~M as ~x0; ~x00 incopy ~P as ~w0; ~w00 inR [y := promote ~x0j ~w0 for ~xj~� inN;z := promote ~x00j ~w00 for ~xj~� inN ]deunit��(unit��(M)) ;� M(deunit��� � (M))N ;c deunit �(M [unit��� � (P )( unit �(PN)])let deunit�
 � (M) be x
y inN ;c deunit��(M [unit�
 � (P )( unit��(let P be x
y inN)])derelict(deunit!�� (M)) ;c deunit��(M [unit!�� (P )( unit��(derelict(P ))])copy (deunit!�� (M)) as x; y inN ;c deunit��(M [unit!�� (P )( unit��(copy P as x; y inN)])discard (deunit! � (M)) inN ;c deunit��(M [unit!�� (P )( unit��(discard P inN)])It is important to realise that the discussion earlier concerning the restrictionsof the ?-rules is relevant in the formulation of the commuting conversions.For example, a special case of the �rst commuting conversion is(deunit���?� (M))N;cM [unit���?� (P )( PN ]:A vital property of this formulation is the so-called subject reduction property.Theorem 4.2 If � . M :��;� and M ;�;c N then � . N :��;�.I conjecture that the properties of strong normalisation and con
uencehold for this linear system.My original motivation in devising this formulation was to study syntac-tically the process of cut elimination for CLL. This will be given in detail inthe full version of this paper [5]. For now I shall show how the laws for thetensor unit, I, can be derived.First the introduction rule can be derived asx:? .x:? (��I).�x:? :x:? �� ?and the elimination rule as� . M : (? �� ?)�;� � . N :��;�0 (?I)� . unit��(N):?�; ��;�0 (��E)�;� . M(unit��(N)):?�; ��;�;�0 (?E):�;� . deunit��(M(unit��(N))):��;�;�0The �-rule then holds as follows.let � be � inN def= deunit��((�x:x)(unit��(N)));� deunit��(unit��(N));� N 9



biermanThe commuting conversions associated with the (IE) rule [3, Figure 3.7] alsotranslate correctly; below I give two examples.(letM be � inN)P def= (deunit��� � (M(unit��� � (N))))P;c deunit �(M(unit �(NP )))def= letM be � in (NP )derelict(letM be � inN) def= derelict(deunit!�� (M(unit!�� (N))));c deunit��(M(unit��(derelict(N))))def= letM be � in derelict(N)5 A Continuation-Passing InterpretationIn x3 Parigot's formulation was motivated in terms of proof theory, but aworthwhile question is whether there is a more convincing computer scienceexplanation. Consider again the ?I rule,� . M :��;� (?I):� . unit��(M):?�; ��;�A key to understanding this rule is to give a computational explanation of thepassive formulae. To do so I shall rewrite it as the following� . M :��;� Catch:� . �M :?�; �:��� ?;�Here � is to be thought of as a continuation variable. A judgement ~x: � .M :�;~�: � consists of a term, M , with (typed) free variables, ~x, and (typed)free continuation variables, ~�. (Hence � is now a multiset of continuationvariables.) The ?E rule can similarly be rewritten as� . M :?�; �:��� ?;� Throw:� . throw��(M):��;�In standard work in continuation-passing, e.g. [6], the non-local behaviourof evaluation is re
ected by writing the reduction rules in context. Thusclosed terms are evaluated in a context of the current environment. For thisformulation there is an additional context which contains a multiset of labelledterms (the continuations). For example given a term.M :��; �1: �1�� ?; : : : ; �n: �n�� ?;we need a multiset of continuations E = [M1; : : : ;Mn]. Evaluation is thenwritten asE [[M ]]E )M 0where E is the current environment. The important evaluation rules are thenE y [�:N ][[�M ]]E ) E [[NM ]]E;E [[throw�(M)]]E ) E y [�:E][[M ]]id;10



biermanwhere id is the identity continuation and E y [k:N ] denotes the extensionof the continuation multiset E with k:N . Thus Throw captures the currentenvironment and places it in the continuation multiset, labelled with �. TheCatch catches a continuation 4 from the multiset and replaces the continuationvariable with the caught term.The rather confusing formulation of the Promotion rule from x4 becomesslightly clearer with this continuation interpretation. The rule is rewritten as�1 . M1: !��1;�1 �1 . P1: !((!�1�� ?)�� ?)�;�1�n . Mn: !��n;�n �m . Pm: !((!�m�� ?)�� ?)�;�mx1: !�1; : : : ; xn: !�n . N : �; �1: (!�1�� ?)�� ?; : : : ; �m: (!�m�� ?)�� ? Promotion:~�; ~� . promote ~M j~P for ~xj~� inN : ! �; ~�; ~�Thus the promoted term can be seen not only as a sort of closure for thefree variables, as is the case for ILL, but also for the continuation variables;where we build in substitution for both classes of variable. As this closure canbe freely duplicated and discarded, the continuation terms, Pi, must be of anon-linear type.Of course this interpretation applies to CL in a similar way. In comparisonto other works where authors have used continuation-passing work to explainclassical logic (e.g. [1]), this interpretation is essentially in the other direction,viz. using classical logic to suggest a continuation-passing technique. The ad-vantage here is that a quite complicated programming feature is given directlyby a proof theory. Filinski [7] has suggested that linear versions of conven-tional continuation-passing ideas are of some use, and I would hope that theseadvantages apply to this system.6 Conclusions and Future WorkIn this paper I have demonstrated how Parigot's techniques can be appliedto the linear case to yield a classical linear �-calculus. I hope to have atleast shed some light on its relationship with more traditional treatments ofclassical logic in natural deduction. I would claim that the resulting program-ming language is of more use than one based on proof nets. As mentionedearlier, proof nets rely on equivalent datatypes being considered equal|thiswould present an unusual programming paradigm where, for example, thetype inference mechanism would have to be adapted to factor all types bythe various equivalences. In the classical linear �-calculus there are explicitcoercion terms.In particular I would promote the computational interpretation suggestedin x5 for both the linear and non-linear calculus. Although tentative, itpromises a new programming language facility: multiple-continuation-passing,which unlike most proposals has an exact correspondence with a proof theory.This alone makes it worthy of further study.4 Linearity guarantees that the continuation exists.11
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