
Strong Normalisation of Cut-Eliminationin Classical LogicC. Urban G.M. BiermanUniversity of Cambridge Computer Laboratoryfcu200,gmbg@cl.cam.ac.ukAbstract. In this paper a strongly normalising cut-elimination proce-dure is presented for classical logic. The procedure adapts the stan-dard cut transformations, see for example [12]. In particular our cut-elimination procedure requires no special annotations on formulae. Wedesign a term calculus for a variant of Kleene's sequent calculus G3via the Curry-Howard correspondence and the cut-elimination steps aregiven as rewrite rules. In the strong normalisation proof we adapt thesymmetric reducibility candidates developed by Barbanera and Berardi.1 IntroductionGentzen has shown in his seminal paper [10] that all cuts can be eliminated fromproofs in LK and LJ. Since then many Haupts�atze (cut-elimination theorems)have appeared for various sequent calculus formulations. Most of them, includingGentzen's original, provide a cut-elimination procedure which is weakly normal-ising, i.e., they employ a particular reduction strategy (for example an inner-mostreduction strategy or the elimination of the cut with the highest rank). Besidesthese weakly normalising methods a few strongly normalising cut-eliminationprocedures have been developed; for example in [4{7, 13, 14]. However, all thosemethods impose some form of restriction on the reduction rules to ensure strongnormalisation. A common restriction is to not allow a cut-rule to pass overanother cut-rule (exceptions are [6, 13]). However this limits, in the intuitionis-tic case, the correspondence between cut-elimination and beta-reduction [8, 14].Therefore in this paper we develop a strongly normalising cut-elimination pro-cedure adapting the standard cut-elimination steps for logical cuts and allowingcommuting cuts to pass over other cuts. (A cut-rule is said to be a logical cutwhen both cut-formulae are introduced by axioms or logical inference rules; oth-erwise the cut is said to be a commuting cut.) Our method is closely relatedto the cut-elimination procedure developed for LKtq [6, 15]. However we do notneed their colour annotations.The problem of non-termination of cut-elimination occurs in both intuitionis-tic logic and classical logic. One example of a non-terminating reduction sequencein intuitionistic logic is given in [20]; for classical logic [6] and [9] give the fol-lowing example:



A A A AA_A A;A _LA_A A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A Cutwhere a commuting cut needs to be eliminated. There are two possible reduc-tions: either the cut can be permuted upwards in the left proof branch or in theright proof branch. If one is not careful, applying these reductions in alternationcan lead to arbitrary big normal forms and to non-termination. This is reme-died in [6] by devising a speci�c protocol for cut-elimination, which depends onadditional information (`colours') attached to every cut-formula. For this cut-elimination procedure strong normalisation and conuence has been proved; thecolours are used to ingeniously map every LKtq-proof to a corresponding proof-net in linear logic and every cut-elimination step to a series of reductions onproof-nets (strong normalisation for proof-nets has been proved in [11]).We shall consider a sequent calculus formulation very similar to Kleene's G3[16] and G3c of [18], where the structural rules are completely implicit in the formof the logical rules. Another feature of our work is that we shall annotate proofswith terms and term rewrite rules will describe the cut-elimination steps. In ourapproach no additional information is required to guide the cut-elimination pro-cess. The rest of the paper is organised as follows: x2 contains various notationalconventions and de�nitions; x3 contains a detailed proof of strong normalisationfor the rewrite system. The proof adapts the technique of symmetric reducibilitycandidates [1]; x4 concludes and gives suggestions for further work.2 Terms, Judgements, Rewrite Rules and SubstitutionThe main idea behind the cut-elimination procedure presented in this paper isto transport one subderivation of a commuting cut to the place(s) where thecut-formula is introduced. Consider the following proof in G3c:�18><>: A B � C;A� A;B C;A�A B � C;A �RA_A B � C;A _L A? D;A A? D;AA D;A^A ^R A?; E A A?; E AA;E A^A ^RA;D � E A^A �L 9>=>;�2A_A;D � E B � C;A^A CutThe cut-formula A is neither a main formula in the inference rule _L, nor in �L.Therefore the cut is a commuting cut. In �1 the cut-formula is a main formulain the axioms marked with a bullet; in �2, respectively, in the axioms markedwith a star. Eliminating the cut in the proof above means to either transportthe derivation �2 to the places marked with a bullet and `cut it against' thecorresponding axioms, or to transport �1 and `cut it against' the axioms markedwith a star. In both cases the derivation being transported is duplicated.In the remainder of this section we shall annotate proofs, via the Curry-Howard correspondence, with terms and present a rewrite system for cut-elim-ination. The raw terms are de�ned in Figure 1 using names and co-names as



Raw Terms: M;N ::= Ax(x; a) Axiomj Cut(ha:BiM; (x:B)N) Cutj AndR(ha:BiM; hb:CiN; c) And-Rj AndiL((x:B)M; y) And-Li (i = 1; 2)j OriR(ha:BiM; b) Or-Ri (i = 1; 2)j OrL((x:B)M; (y:C)N; z) Or-Lj ImpR((x:B)ha:CiM; b) Imp-Rj ImpL(ha:BiM; (x:C)N; y) Imp-LFig. 1. The grammar for the raw terms where B and C are types; x; y; z aretaken from a set of names and a; b; c from a set of co-names.binders. Besides the terms, which are going to be used as annotations for proofs,there are two other syntactic categories which play an important rôle in thede�nition of substitution and in the strong normalisation proof. Let M and Nbe terms, then (x:B)M and ha:BiN are called named terms and co-named terms,respectively. We use round brackets to signify that a name becomes bound in aterm and angle brackets that a co-name becomes bound in a term. Analogousto the Church-style formation rules for the �-calculus, all binders are explicitlytyped (types are de�ned as normal). However in what follows we will omit thesetypings when they are clear from the context. Given a term M , its set of freenames is written as FN(M) and its set of free co-names is written as FC(M)(similarly for named and co-named terms) { their routine de�nitions are omitted.We assume that the three types of terms are equal up to �-conversion and thata Barendregt-style naming convention holds for names and co-names (see 2.1.13in [2]). Rewriting a name x to y in M is written as Mfx 7! yg (respectivelyMfa 7!bg for co-names). The routine formalisation of the rewriting operation isomitted.In the following we are only concerned with terms which can be well-typedby the inference system given in Figure 2. The typing judgements are of the form� .M .� where � is a set of name-type pairs and � is a set of co-name-typepairs. The reader will see that this system is the term system for a variant ofKleene's G3 formulation via the Curry-Howard correspondence. Our ^L and _Rrules di�er slightly from the G3 and G3c of [18]: they provide more conveniencein the strong normalisation proof, but the original rules could be used as well(see Section 4). There are no primitive rules for contraction and weakening: theyare completely implicit in the form of the logical rules. However, special careneeds to be taken with implicit contractions. Consider the proof fragment:x :B;� .M .�; b :B � C; a :C� . ImpR((x)haiM; b) .�; b :B � C �R (1)The typing rule introduces the co-name-type pair b :B � C in the conclusion.However it is allowed that this pair can already be present in the premise. Onthe other hand, the name-type pair x :B and the co-name-type pair a :C in the



x :B;� . Ax(x; a) .�; a :Bx :Bi; � .M .�y :B1^B2; � . AndiL((x)M; y) .� ^Li � .M .�; a :B � .N .�; b :C� . AndR(haiM; hbiN; c) .�; c :B^C ^Rx :B;� .M .� y :C; � .N .�z :B_C; � . OrL((x)M; (y)N; z) .� _L � .M .�; a :Bi� .OriR(haiM; b) .�; b :B1_B2 _Ri� .M .�; a :B x :C;� .N .�y :B � C; � . ImpL(haiM; (x)N; y) .� �L x :B;� .M .�; a :C� . ImpR((x)haiM; b) .�; b :B � C �R�1 .M .�1; a :B x :B;�2 .N .�2�1; �2 . Cut(haiM; (x)N) .�1; �2 CutFig. 2. The typing rules for the propositional fragment.premise are not allowed to be in the conclusion: they become bound in the term.The following de�nition corresponds to the traditional notion of what the mainformula of a inference rule is.De�nition 1.A term M introduces the name z or co-name c if M is of the form:for z: Ax(z; c)AndiL((x)S; z)OrL((x)S; (y)T ; z)ImpL(haiS; (x)T ; z) for c: Ax(z; c)AndR(haiS; hbiT ; c)OriR(haiS; c)ImpR((x)haiS; c)Recall our example from the beginning of this section where a commuting cutcan be permuted in two di�erent directions. Therefore the rewrite system for ourcut-elimination procedure is de�ned using two, symmetric forms of substitution,which are written as P [x := haiQ] and S[b := (y)T ]. These substitutions are usedwhen the inference rules directly above the cut do not introduce the cut-formula.In these cases the cuts can permute, or `jump' directly to the place(s) where thecut-formula is introduced (i.e., is a main formula). Whenever a substitution `hits'a term where the cut-formula is introduced the substitution `expands' to a cut.Two examples are as follows:AndR(haiM; hbiN; c)[c := (x)P ] def= Cut(hciAndR(haiM; hbiN; c); (x)P )Ax(x; a)[x := hbiQ] def= Cut(hbiQ; (x)Ax(x; a))In the �rst term the formula labelled with c is the main formula and in thesecond the formula labelled with x is a main formula. So in both cases thesubstitution expands to a cut. In the other cases where the name or co-namethat is substituted is not a label for the main formula, then the substitution ispushed into the subterms or vanishes in case of the axioms. Two examples areas follows (assume the substitution [�] is not of the form [z := : : :] or [a := : : :]):



OrL((x)M; (y)N; z)[�] def= OrL((x) M [�]; (y) N [�]; z)Ax(z; a)[�] def= Ax(z; a)However, special care needs to be taken for axioms, because they have two mainformulae. For technical reasons in the strong normalisation proof we need thefollowing property:M [x := haiP ][b := (y)Q] �M [b := (y)Q][x := haiP ] (2)if b 62 FC(haiP ) and x 62 FN((y)Q). The na��ve de�nition outlined above doesnot satisfy this property: in case M is of the form Ax(x; b) we get two di�erentterms:Ax(x; b)[x := haiP ][b := (y)Q] def= Cut(haiP ; (x)Cut(hbiAx(x; b); (y)Q))Ax(x; b)[b := (y)Q][x := haiP ] def= Cut(hbiCut(haiP ; (x)Ax(x; b)); (y)Q)Furthermore the nested cuts with an axiom as an immediate subterm could be asource for non-termination as noted in [6]. Therefore we use a more subtle de�ni-tion of substitution and introduce two special clauses to handle the problematicexample above.De�nition 2. SubstitutionCut(haiAx(x; a); (y)M)[x := hbiP ] def= Cut(hbiP ; (x)Mfy 7!xg)Cut(haiM; (x)Ax(x; b))[b := (y)P ] def= Cut(hbiMfa 7!bg; (y)P )M [c := (y)P ] def= Cut(hciM; (y)P ) if M introduces cM [y := hciP ] def= Cut(hciP; (y)M) if M introduces yotherwise Ax(x; a)[�] def= Ax(x; a)Cut(haiM; (x)N)[�] def= Cut(hai M [�]; (x) N [�])AndR(haiM; hbiN; c)[�] def= AndR(hai M [�]; hbi N [�]; c)AndiL((x)M; y)[�] def= AndiL((x) M [�]; y)OriR(haiM; b)[�] def= OriR(hai M [�]; b)OrL((x)M; (y)N; z)[�] def= OrL((x) M [�]; (y) N [�]; z)ImpR((x)haiM; b)[�] def= ImpR((x)hai M [�]; b)ImpL(haiM; (x)N; y)[�] def= ImpL(hai M [�]; (x) N [�]; y)Recall that we assumed a Barendregt-style naming condition for (co-)names. Asubstitution M [a := (x:B)N ] is said to be well-formed, i� Cut(ha:BiM; (x:B)N)is well-typed. In the following we shall consider only well-formed substitutions.A na��ve translation of the traditional, logical cut-elimination rules into ourterm calculus is, for example, as follows (^1 case):Cut(hciAndR(haiM; hbiN; c); (y)And1L((x)P ; y)) ��! Cut(haiM; (x)P )However, there is a problem with this reduction rule. In our sequent calculus, thestructural rules are implicit (see the discussion of proof (1)). This makes the cal-culus smaller, and more importantly it provides a very convenient way to de�ne



substitution (no explicit contractions are required when a term is duplicated).Unfortunately, we have to pay a price for this in the logical cut-elimination rules.Consider the following instance of the redex above:�1 .M .�1; c :B^C; a :B �1 .N .�1; b :C�1 . AndR(haiM; hbiN; c) .�1; c :B^C ^R x :B;�2 . P .�2y :B^C; �2 . And1L((x)P; y) .�2 ^L1�1; �2 . Cut(hciAndR(haiM; hbiN; c); (y)And1L((x)P ; y)) .�1; �2 Cutwhere c :B^C 2 FC(M). The na��ve reduction rule given above would (incor-rectly!) reduce this proof to the following:�1 .M .�1; c :B^C; a :B x :B;�2 . P .�2�1; �2 . Cut(haiM; (x)P ) .�1; �2; c :B^C CutUnfortunately c has now become free! In order to obtain a subject reductionproperty for the rewrite system we have to include in every logical reduction stepextra substitutions (the main formula of the conclusion could potentially be inevery subterm). These substitutions ensure that no bound (co-)name becomesfree. In e�ect the logical reduction rules look slightly complicated, but that isthe price we have to pay for the convenience of not having explicit structuralrules. The cut-elimination procedure is de�ned (in its entirety) as follows:De�nition 3. Cut-EliminationLogical Cuts (i = 1; 2)1. Cut(hbiAndR(ha1iM1; ha2iM2; b); (y)AndiL((x)N; y))��!Cut(haiiMi[b := (y)AndiL((x)N; y)]; (x)N [y := hbiAndR(ha1iM1; ha2iM2; b)])2. Cut(hbiOriR(haiM; b); (y)OrL((x1)N1; (x2)N2; y))��!Cut(haiM [b := (y)OrL((x1)N1; (x2)N2; y)]; (xi)Ni[y := hbiOriR(haiM; b)])3. Cut(hbiImpR((x)haiM; b); (z)ImpL(hciN; (y)P ; z))��!Cut(haiCut(hciN [z := hbiS]; (x)M [b := (z)T ]); (y)P [z := hbiS]) or��!Cut(hciN [z := hbiS]; (x)Cut(haiM [b := (z)T ]; (y)P [z := hbiS]))where S � ImpR((x)haiM; b) and T � ImpL(hciN; (y)P ; z)4. Cut(haiM; (x)Ax(x; b)) ��!Mfa 7!bg if M introduces a5. Cut(haiAx(y; a); (x)M) ��!Mfx 7!yg if M introduces xCommuting Steps (otherwise)6. Cut(haiM; (x)N) ��!M [a := (x)N ] if M does not introduce a or��!N [x := haiM ] if N does not introduce xThere are a few subtleties in the reduction rule for the third case. Firstly, thereare two ways to reduce a cut-rule having an implication as the cut-formula.Therefore we have included two reductions for this case. Secondly, special careneeds to be taken that there is no clash between bound and free (co-)names. Inthe �rst reduction rule we need to ensure that a is not a free co-name in N ; inthe second rule that x is not free in P . This can always be achieved by renaminga and x appropriately (they are binders in ImpR((x)haiM; b)). We assume thatthe renaming is done implicitly in the cut-elimination procedure.



The main di�erence between our rules and the cut-elimination procedurede�ned for LKtq is the inclusion of non-determinism. Recall our example fromthe beginning of this section where a commuting cut can move in two directions.Let Cut(haiM; (x)N) be the term annotation for this commuting cut where Mand N are the corresponding term annotations for proofs �1 and �2, respectively.According to our last rule, this term can reduce to either M [a := (x)N ] orN [x := haiM ]. The choice to which term it reduces is not speci�ed (similarlyfor the reduction of the logical cut in the third case). In contrast, in LKtq thischoice is completely determined by the colour annotation. In general the colourannotation reduces the number of normal forms (cut-free proofs) reachable froma proof containing cuts (see x4 for an example). For the substitution we havethe following lemmas:Lemma 1.(i) M [x := haiAx(y; a)]��!+Mfx 7!yg or M [x := haiAx(y; a)] �M(ii) M [a := (x)Ax(x; b)]��!+Mfa 7!bg or M [a := (x)Ax(x; b)] �MProof. Routine induction on the structure of M .Lemma 2. For any arbitrary substitution [�]if M��!M 0, then M [�]��!M 0[�] or M [�] �M 0[�]Proof. Induction on the structure of M . One interesting case is where M [�] �M 0[�]; it is as follows:Case M � Cut(haiAx(y; a); (x)P ): Let P introduce x, thenM��!M 0 withM 0 �Pfx 7!yg. Let [�] be [y := hciQ]. We have:M [�] � Cut(haiAx(y; a); (x)P )[y := hciQ] def= Cut(hciQ; (y)Pfx 7!yg)M 0[�] � Pfx 7!yg[y := hciQ] def= Cut(hciQ; (y)Pfx 7!yg)3 Proof of Strong NormalisationWe give in this section a detailed proof of strong normalisation for the reductionsystem developed in the previous section. To save space only details for the ^-fragment are presented, but some pointers are given at the end of this sectionfor the other connectives. The proof uses the notion of symmetric reducibilitycandidates from [1]. The proof proceeds as follows:1. De�ne the sets of candidates over types using a �xed point construc-tion.2. Prove that candidates are closed under reduction.3. Show that a named or co-named term in a candidate implies strongnormalisation for the corresponding term.4. Prove that all terms are strongly normalising.The set SN denotes the set of strongly normalising terms. The candidates arede�ned only for named and co-named terms. We say that hBi is the type ofco-named terms of the form ha:BiM ; similarly (B) is the type of named termsof the form (x:B)M . We de�ne:



1. CThBi is the set of co-named terms of type hBi,2. NT(B) is the set of named terms of type (B).In the following we de�ne for every type hBi and (B) the candidates, writtenas JhBiK and J(B)K; they are subsets of CThBi and NT(B), respectively. Thede�nition of the candidates uses set operators for which we de�ne the types asfollows (where the set of all subsets of a given set S will be denoted as P(S)):andrighthB^Ci : P(CThBi) � P(CThCi) � P(NT(B^C)) ! P(CThB^Ci)andlefti(B1^B2) : P(NT(Bi)) � P(CThB1^B2i) ! P(NT(B1^B2))binding(B) : P(CThBi) ! P(NT(B))bindinghBi : P(NT(B)) ! P(CThBi)neg(B) : P(CThBi) ! P(NT(B))neg(B) : P(CThBi) ! P(NT(B))The operators are indexed on types. When de�ning the set operators we use thefollowing two sets of named and co-named axioms:axioms(B) def= f(x:B)Ax(y; b) j for all Ax(y; b)g � NT(B)axiomshBi def= fha:BiAx(y; b) j for all Ax(y; b)g � CThBiThe set operators andright, andlefti and binding are de�ned as follows:andrighthB^Ci(X;Y; Z) def= fhc:B^CiAndR(ha:BiM; hb:CiN; c) j8 (x:B^C)P 2 Z: hai M [c := (x)P ] 2 X and hbi N [c := (x)P ] 2 Y gandlefti(B1^B2)(X;Y ) def= f(y:B1^B2)AndiL((x:Bi)M; y) j8 ha:B1^B2iP 2 Y: (x) M [y := haiP ] 2 Xgbinding(B)(X) def= f(x:B)M j 8ha:BiP 2 X: M [x := ha:BiP ] 2 SNgbindinghBi(Y ) def= fha:BiM j 8(x:B)P 2 Y: M [a := (x:B)P ] 2 SNgThe set operator neg and the candidates J(B)K and JhBiK are de�ned simulta-neously over types:neghBi(X) def= axiomshBi [ bindinghBi(X) hBi atomicdef= axiomshC^Di [ bindinghC^Di(X) [ hBi � hC^DiandrighthC^Di(JhCiK; JhDiK; X)neg(B)(Y ) def= axioms(B) [ binding(B)(Y ) (B) atomicdef= axioms(C^D) [ binding(C^D)(Y ) [ (B) � (C^D)andleft1(C^D)(J(C)K; Y ) [ andleft2(C^D)(J(D)K; Y )For the de�nition of the candidates we use �xed points of an increasing setoperator. A set operator op is said to be:increasing, i� S � S0 ) op(S) � op(S0), anddecreasing, i� S � S0 ) op(S) � op(S0).



The candidates are de�ned as follows:J(B)K def= X0 and JhBiK def= neghBi(J(B)K)where X0 is the least �xed point of the operator neg(B)ÆneghBi.1 We have thatbindinghBi and andrighthC^Di (i.e., X 7! andrighthC^Di(JhCiK; JhDiK; X))are decreasing operators. But then neghBi must be a decreasing operator (sim-ilarly neg(B) must be decreasing). If both neghBi and neg(B) are decreasing,then the operator neg(B)ÆneghBi is increasing and the least �xed point X0exists according to Tarski's �xed point theorem. For the candidates we have:J(B)K = neg(B)(JhBiK) and JhBiK = neghBi(J(B)K).Since neg is closed under axioms we also have have:axioms(B) � J(B)K and axiomshBi � JhBiK: (3)Lemma 3.(i) If ha:BiM 2 JhBiK and M��!M 0 then ha:BiM 0 2 JhBiK.(ii) If (x:B)M 2 J(B)K and M��!M 0 then (x:B)M 0 2 J(B)K.Proof. We prove both cases simultaneously by induction on hBi and (B).Case hBi atomic: For (i) we have JhBiK = neghBi(J(B)K); therefore ha:BiM 2axiomshBi [ bindinghBi(J(B)K).M cannot be an axiom (because axioms donot reduce), therefore ha:BiM 2 bindinghBi(J(B)K) def= fha:BiS j 8(x:B)T 2J(B)K:S[a := (x:B)T ] 2 SNg. For ha:BiM we have M [a := (x:B)P ] 2 SN forall (x:B)P 2 J(B)K and since M��!M 0 we know by Lemma 2 that eitherM [a := (x)P ]��!M 0[a := (x)P ] or M [a := (x)P ] � M 0[a := (x)P ]. In bothcases we have M 0[a := (x:B)P ] 2 SN for all (x:B)P 2 J(B)K. This impliesthat ha:BiM 0 2 bindinghBi(J(B)K) and hence ha:BiM 0 2 neghBi(J(B)K).Therefore ha:BiM 0 2 JhBiK. Similarly for (ii).Case hBi � hC^Di: ha:C^DiM is element of JhC^DiK=neghC^Di(J(C^D)K)def=axiomshC^Di[bindinghC^Di(J(C^D)K)[andrighthC^Di(JhCiK; JhDiK; J(D^C)K):ha:C^DiM 62 axiomshC^Di, because axioms do not reduce. Therefore wehave that ha:C^DiM 2 andrighthC^Di(JhCiK; JhDiK; J(C^D)K) or thatha:C^DiM 2 bindinghC^Di(J(C^D)K). In the second case we reason asin the atomic case. In the �rst case we know that haiM is of the formhc:C^DiAndR(hdiS; heiT ; c) and haiM 0 � hc:C^DiAndR(hdiS0; heiT 0; c) whereeither S��!S0 and T � T 0 or S � S0 and T��!T 0. Assume the formercase (the other case being similar). We have that hd:CiS[c := (x)P ] 2 JhCiKfor all (x:C^D)P 2 J(C^D)K. Since S��!S0 we know by Lemma 2 that ei-ther S[c := (x)P ] � S0[c := (x)P ] or S[c := (x)P ]��!S0[c := (x)P ]. In both1 In all rigour we also have to assume that the candidates are closed under �-conversion.



cases (in the second by IH) we can infer that hdiS0[c := (x)P ] 2 J(C)Kfor all (x:C^D)P 2 J(C^D)K. Therefore we know that ha:C^DiM 0 mustbe in andrighthC^Di(JhCiK; JhDiK; J(C^D)K) and we can conclude thatha:C^DiM 0 2 JhC^DiK. Similarly for (ii).Lemma 4.(i) If ha:BiM 2 JhBiK, then M 2 SN .(ii) If (x:B)M 2 J(B)K, then M 2 SN .Proof. Simultaneous induction on the types hBi and (B).Case hBi atomic: Since JhBiK = neghBi(J(B)K) we have ha:BiM 2 axiomshBior ha:BiM 2 bindinghBi(J(B)K). In the �rst caseM is an axiom and thereforestrongly normalising. In the second case we know thatM [a := (x:B)P ] 2 SNfor all (x:B)P 2 J(B)K. By (3) we have (x:B)Ax(x; a) 2 J(B)K and thereforeM [a := (x)Ax(x; a)] 2 SN . Furthermore we know by Lemma 2 that eitherM [a := (x)Ax(x; a)] � M or M [a := (x)Ax(x; a)]��!+M . Therefore M 2SN . Similarly for (ii).Case hBi � hC^Di: By JhC^DiK = neghC^Di(J(C^D)K) we have that:ha:C^DiM 2 axiomshC^Di [ bindinghC^Di(J(C^D)K) [andrighthC^Di(JhCiK; JhDiK; J(C^D)K)If ha:C^DiM is element of the �rst two sets we reason as in the atomic case.Left to show is thatM 2SN if haiM2andrighthC^Di(JhCiK; JhDiK; J(C^D)K).In this case haiM is of the form hciAndR(hdiS; heiT ; c) where hdiS[c := (x)P ] 2JhCiK and heiT [c := (x)P ] 2 JhDiK for all (x :C^D)P 2 J(C^D)K. By (3) weknow that (x:C^D)Ax(x; c) 2 J(C^D)K and we have hdiS[c := (x)Ax(x; c)] 2JhCiK and heiT [c := (x)Ax(x; c)] 2 JhDiK. By IH we can infer that S[c :=(x)Ax(x; c)] 2 SN and T [c := (x)Ax(x; c)] 2 SN . From Lemma 1 we caninfer that S[c := (x)Ax(x; c)] � S or S[c := (x)Ax(x; c)]��!+S. In both caseswe know that S 2 SN (similarly T 2 SN). But then AndR(hdiS; heiT ; c)must be strongly normalising too. Similarly for (ii).Lemma 5. If M;N 2 SN and ha:BiM 2 JhBiK, (x:B)N 2 J(B)Kthen Cut(ha:BiM; (x:B)N) 2 SN .Proof. We assign to each term of the form Cut(ha:BiM; (x:B)N) a lexicograph-ically ordered induction value of the form (Æ; l(M); l(N)) where Æ is the degreeof the cut-formula B; l(M) and l(N) are the lengths of the maximal reductionsequences starting from M and N , respectively. By assumption both l(M) andl(N) are �nite. We prove that all terms to which Cut(haiM; (x)N) reduces arestrongly normalising.Inner Reduction: Cut(haiM; (x)N)��!Cut(haiM 0; (x)N 0) where either M �M 0 and N��!N 0 or M��!M 0 and N � N 0. Assume the later case (theother case being similar). We have to prove that Cut(haiM 0; (x)N) 2 SN .



From ha:BiM 2 JhBiK we can infer by Lemmas 3 and 4 that ha:BiM 0 2 JhBiKand M 0 2 SN . We know that the degree of the cut-formula is in both termsequal, but l(M 0) < l(M). Therefore we can apply the IH and infer thatCut(haiM 0; (x)N) 2 SN .Commuting Reduction: Cut(haiM; (x)N)��!M [a := (x)N ]. By assumptionwe have ha:BiM 2 JhBiK = neghBi(J(B)K). We know that the commutingreduction is only applicable ifM does not introduce a; therefore we have thatha:C^DiM 62 andrighthC^Di(JhCiK; JhDiK; J(C^D)K) (where B � C^D).That means that ha:BiM 2 axiomshBi or ha:BiM 2 bindinghBi(J(B)K).In the �rst case we have Cut(haiM; (x)N)��!M [a := (x)N ] � M (becauseM is an axiom and does not introduce a); M is strongly normalising byassumption.In the second case we have thatM [a := (y:B)P ] 2 SN for all (y:B)P 2 J(B)K.Set (y:B)P to (x:B)N which is in J(B)K by assumption. Symmetric case issimilar.Case Logical Reduction I: Cut(haiAx(y; a); (x)N)��!Nfx 7!yg. By assump-tion we know that N 2 SN . This implies that Nfx 7!yg 2 SN . Symmetriccase is similar.Case Logical Reduction II: Cut(hciAndR(haiS; hbiT ; c); (y)And1L((x)U; y)),where B � C^D. For more clarity we set hciM � hc:C^DiAndR(haiS; hbiT ; c)and (y)N � (y:C^D)And1L((x)U; y).Cut(hciAndR(haiS; hbiT ; c); (y)And1L((x)U; y))��!Cut(haiS[c := (y)N ]; (x)U [y := hciM ]):By assumption we know that hc:C^DiM 2 JhC^DiK and (y:C^D)N 2J(C^D)K. We have to show that Cut(ha:CiS[c := (y)N ]; (x:C)U [y := hciM ]) 2SN . Since hciM 2 JhC^DiK = neghC^Di(J(C^D)K) and hciM 62axiomshC^Diwe know that:hc:C^DiM 2 bindinghC^Di(J(C^D)K) orhc:C^DiM 2 andrighthC^Di(JhCiK; JhDiK; J(C^D)K).Similarly(y:C^D)N 2 binding(C^D)(JhC^DiK) or(y:C^D)N 2 andleft1(C^D)(J(C)K; JhC^DiK).If hc:C^DiM 2 bindinghC^Di(J(C^D)K) we know that M [c := (z)P ] 2 SNfor all (z:C^D)P 2 J(C^D)K. By assumption (y:C^D)N 2 J(C^D)K andthereforeM [c := (y)N ] � Cut(hciM; (y)N) 2 SN . But then we also have thatits reduct Cut(haiS[c := (y)N ]; (x)U [y := hciM ]) 2 SN . Similarly for the case(y:C^D)N 2 binding(C^D)(JhC^DiK). It is left to show strong normalisationin the case where hc:C^DiM 2 andrighthC^Di(JhCiK; JhDiK; J(C^D)K) and(y:C^D)N 2 andleft1(C^D)(J(C)K; JhC^DiK). We have hai S[c := (y)P ] 2JhCiK and (x) U [y := hciQ] 2 J(C)K for all terms (y:C^D)P 2 J(C^D)K andhc:C^DiQ2 JhC^DiK. By assumption we know that hc:C^DiM 2 JhC^DiKand (y:C^D)N 2 J(C^D)K; set hciM for hciQ and (y)N for (y)P respectively.Therefore we know that hai S[c := (y)N ] 2 JhCiK and (x) U [y := hciM ] 2J(C)K. Furthermore, by Lemma 4 we have S[c := (y)N ] 2 SN and U [y :=



hciM ] 2 SN . Because the degree of the cut-formula decreased we can applythe IH and infer thatCut(haiS[c := (y)N ]; (x)U [y := hciM ]) 2 SN:We have shown that all immediate reducts of Cut(haiM; (x)N) are strongly nor-malising. Consequently Cut(haiM; (x)N) must be strongly normalising.It is left to show that all well-typed terms are strongly normalising. To do so,we shall consider a special class of simultaneous substitutions, which are calledsafe. The principal property of safe substitutions [�1] and [�2] is that they canbe commuted, i.e. M [�1][�2] �M [�2][�1].Let �̂ be a set of substitutions of the form [x := haiP ] and [b := (y)Q].Let us call the set of the x's and b's the domain of �̂ (written as dom(�̂));the set of named terms (y)Q and co-named terms haiP is called the co-domainof �̂ (written as codom(�̂)). A safe simultaneous substitution (sss) is a set ofsubstitutions where no variable clash between the domain and co-domain occurs(this can always be achieved by appropriate �-conversions, however, we omit aprecise de�nition). The next lemma shows that a speci�c type of simultaneoussubstitutions is safe.Lemma 6. Let �̂ be of the form:( [i=0;:::;n[xi := hciAx(xi; c)]) [( [j=0;:::;m[aj := (y)Ax(y; aj)])where the xi's and ai's are distinct names and co-names, respectively. Substitu-tion �̂ is a sss.Proof. Induction on the length of �̂.Lemma 7. For every term M (not necessarily strongly normalising) and forevery sss �̂, such that FN(M) [ FC(M) � dom(�̂) (i.e., �̂ is a closingsubstitution2) and for every (x:B)P 2 codom(�̂) (x:B)P 2 J(B)K and everyha:CiQ 2 codom(�̂) ha:CiQ 2 JhCiK, we have M�̂ 2 SN .Proof. We proceed by induction over the structure of M . We write �̂; [�] for theset �̂ [ [�] where [�] 62 �̂.Case Ax(x; a): We have to prove that: Ax(x; a) �̂; [x := hbiP ]; [a := (y)Q] 2SN . By de�nition of substitution Ax(x; a) �̂; [x := hbiP ]; [a := (y)Q] �Cut(hbiP ; (y)Q). By assumption hb:BiP 2 JhBiK and (y:B)Q 2 J(B)K. ByLemma 4 we know that P 2 SN and Q 2 SN . Therefore we can applyLemma 5 and can infer that Cut(hbiP; (y)Q) 2 SN . Therefore Ax(x; a)�̂; [x :=hbiP ]; [a := (y)Q] 2 SN .2 All free names and co-names of M are amongst the domain of �̂.



Case AndR(haiM; hbiN; c): We prove that AndR(haiM; hbiN; c) �̂; [c := (z)R] 2SN where (z:B^C)R is an arbitrary named term in J(B^C)K. We can inferthat AndR(haiM; hbiN; c) �̂; [c := (z)R] � Cut(hciAndR(haiM�̂; hbiN�̂; c); (z)R).By IH we know that M �̂; [c := (x)S]; [a := (y)P ] 2 SN and N �̂; [c :=(x)S]; [b := (v)Q] 2 SN for arbitrary (y:B)P 2 JhBiK, (v:C)Q 2 JhCiK and(x:B^C)S 2 J(B^C)K.Making appropriate �-conversions we have (M�̂)[c := (x)S][a := (y)P ] 2SN and (N�̂)[c := (x)S][b := (v)Q] 2 SN . By de�nition of binding wehave ha:Bi (M�̂)[c := (x)S] 2 JhBiK and hb:Ci(N�̂)[c := (x)S] 2 JhCiK. Be-cause (x:B^C)S is an arbitrary named term in the candidate J(B^C)K wehave by de�nition of andrighthB^Ci that hc:B^CiAndR(haiM�̂; hbiN�̂; c) 2JhB^CiK. Furthermore we know by Lemma 4 that AndR(haiM�̂; hbiN�̂; c) 2SN .For (z:B^C)R 2 J(B^C)K we have by Lemma 4 that R 2 SN . We can applyLemma 5 and have Cut(hciAndR(haiM�̂; hbiN�̂; c); (z)R) 2 SN and thereforeAndR(haiM; hbiN; c) �̂; [c := (z)R] 2 SN .Case AndiL((x)M; y) (i = 1; 2): We have to prove that AndiL((x)M; y) �̂; [y :=hciR] 2 SN where hc:B1^B2iR is an arbitrary co-named term in JhB1^B2iK.We have AndiL((x)M; y) �̂; [y := hciR] � Cut(hciR; (y)AndiL((x)M�̂; y)) byde�nition of substitution. By IH we know thatM �̂; [y := haiS]; [x := hbiT ] 2SN for arbitrary ha:B1^B2iS 2 JhB1^B2iK, and arbitrary (b:Bi)T 2 JhBiiK.Making appropriate �-conversions we have (M�̂)[y := haiS][x := hbiT ] 2SN . By de�nition of binding we have (x :Bi) (M�̂)[y := haiS] 2 J(Bi)K.Since ha:B1^B2iS is an arbitrary co-named term in JhB1^B2iK we have byde�nition of andlefti(B1̂ B2) that (y:B1^B2)AndiL((x)M�̂; y) 2 J(B1^B2)K.By Lemma 4 we can infer that AndiL((x)M�̂; y) 2 SN . For (c:B1^B2)R 2J(B1^B2)K we have by Lemma 4 that R 2 SN . We can apply Lemma 5 andhave Cut(hciR; (y)AndiL((x)M�̂; y)) 2 SN . Therefore AndiL((x)M; y) �̂; [y :=hciR] 2 SN .Case Cut(haiM; (x)N):Subcase I: M is an axiom (case N being an axiom is similar). We have toshow that Cut(haiAx(x; a); (y)N) [x := hbiS]; �̂ 2 SN . By de�nition of substi-tution Cut(haiAx(x; a); (y)N) [x := hbiS]; �̂ � Cut(hbiS; (x) Nfx 7!yg�̂). Byassumption we know that hb:BiS 2 JhBiK; using Lemma 4 we know thatS 2 SN . By assumption we know that N �̂; [x := hbiS]; [y := hbiS] 2SN for arbitrary hb:BiS 2 JhBiK. Because �̂; [x := hbiS]; [y := hbiS] is asafe simultaneous substitution we have (making appropriate �-conversions)N �̂; [x := hbiS]; [y := hbiS] � (Nfy 7! xg�̂) [x := hbiS]. By de�nition ofbinding we know that (x:B) Nfy 7!xg�̂ 2 J(B)K. By Lemma 4 we can inferthat Nfy 7! xg�̂ 2 SN . Then we can apply Lemma 5 and can show thatCut(hbiS; (x) Nfy 7!xg�̂) 2 SN . Therefore Cut(haiAx(x; a); (y)N) �̂; [x :=hbiS] 2 SN .Subcase II: M and N are not axioms. We prove that Cut(haiM; (x)N) �̂ 2SN . By IH we know that M �̂; [a := (y)S] 2 SN and N �̂; [x := hbiT ] 2 SNfor arbitrary (y:B)S 2 J(B)K and hb:BiT 2 JhBiK. Making appropriate �-conversions we know that (M�̂)[a := (y)S] 2 SN and (N�̂)[x := hbiT ] 2 SN .



By de�nition of binding we can infer that ha:Bi M�̂ 2 JhBiK and (x:B) N�̂ 2J(B)K. By Lemma 4 we have thatM�̂ 2 SN andN�̂ 2 SN . Therefore we canapply Lemma 5 and infer Cut(hai M�̂; (x) N�̂) � Cut(haiM; (x)N) �̂ 2 SN .We can now prove our main theorem.Theorem 1. All well-typed terms are strongly normalising.Proof. We know by Lemma 7 that for arbitrary well-typed terms M and arbi-trary safe simultaneous substitution �̂, we have M�̂ 2 SN . Let �̂ be the safesimultaneous substitution from Lemma 6. Using Lemma 1 we can infer thateither M�̂��!+M or M�̂ �M . From this we have M 2 SN .This theorem can be extended to the full classical logic. To save space wegive only the de�nitions for the set operators with implicational type:impleft(B�C) : P(CThBi) � P(NT(C)) � P(CThB�Ci) ! P(NT(B�C))imprighthB�Ci : P(NT(B)) � P(CThCi) � P(NT(B�C)) ! P(CThB�Ci)impleft(B�C)(X;Y; Z) def= f(z:B � C)ImpL(ha:BiM; (x:C)N; z) j8 hc:B � CiP 2 Z:hai M [z := hciP ] 2 X and (x) N [z := hciP ] 2 Y gimprighthB�Ci(X;Y; Z) def= fhb:B � CiImpR((x:B)ha:CiM; b) j8 (z:B � C)P 2 Z; 8 hc:BiS 2 X:hai M [z := hciP ][x := hciS] 2 Y and8 (z:B � C)P 2 Z; 8 (y:C)T 2 Y:(x) M [z := hciP ][a := (y)T ] 2 XgneghB�Ci(X) def= axiomshB�Ci[ bindinghB�Ci(X)[ imprighthB�Ci(J(B)K; JhCiK; X)neg(B�C)(X) def= axioms(B�C)[ binding(B�C)(X)[ impleft(B�C)(JhBiK; J(C)K; X)The strong normalisation proof can be easily extended using the de�nitionsabove. The only diÆculty arises in Lemma 5 for the cut-elimination reduction forthe connective�. The reduct of such a cut contains two nested cuts. Although thedegree of the cut-formula decreases for the outer cut, the IH is not immediatelyapplicable. In order to apply the induction hypothesis for the outer cut one hasto show for the inner cut that:haiCut(hciN [z := hbiImpR((x)haiM; b)]; (x)M [b := (z)ImpL(hciN; (y)P; z)]) 2 JhCiK and(x)Cut(haiM [b := (z)ImpL(hciN; (y)P; z)]; (y)P [z := hbiImpR((x)haiM; b)]) 2 J(B)KIn the �rst case (the other being similar) one has to show that:Cut(hciN [z := hbiImpR((x)haiM; b)]; (x)M [b := (z)ImpL(hciN; (y)P ; z)])[a := (v)T ] 2 SN:To infer this it is essential to know that a is not a free name in N and P(requirement of the reduction rule which can always be achieved by renaming aappropriately).4 ConclusionIn this paper we presented a reduction system for cut-elimination in classicallogic. One feature of the reduction system is to permute a subderivation of a



A_A A_A A_A A_A(A_A)_(A_A) A_A _L A A A AA_A A _L A A A AA A^A ^RA_A A^A Cut(A_A)_(A_A) A^A CutA A A AA A^A ^R A A A AA A^A ^RA_A A^A _L A A A AA_A A _L A A A AA_A A _LA_A A^A ^R(A_A)_(A_A) A^A _LFig. 3. A proof in G3c and a cut-free normalform which is not reachable by a cut-elimination procedure using colours as in LKtq .commuting cut directly to the place(s) where the cut-formula is a main formula.This is an idea taken from the work in LKtq [6]. However we do not requiretheir colour annotations on the cut-formulae (in fact no additional informationis required at all). One consequence is that, in general, more normal forms canbe reached from a given proof containing cuts (see Figure 3 for an example).Because of the fewer constraints on our reduction system strong normalisationcannot be proved by translating every reduction to a series of reductions inproof-nets as done for LKtq. The use of a term calculus for sequent derivationsallowed us to use directly proof techniques from the �Sym-calculus [1] to provestrong normalisation. This use of syntax to study proof structures is part of aon-going research project [3, 19].The result presented in this paper can be extended to the �rst-order calculusand can be adapted to LK or free-style LKtq. There are many directions forfurther work. For example what is the precise correspondence in the intuition-istic case between normalisation and our strongly normalising cut-eliminationprocedure? For classical logic the correspondence between our cut-eliminationprocedure and normalisation in, for example, Parigot's �� [17] is another inter-esting question. Some of these problems will be addressed in Urban's PhD-thesis.Acknowledgements: We should like to thank Roy Dyckho� and Martin Hy-land for their help and encouragement. The work has greatly bene�ted fromdiscussions with Harold Schellinx and Jean-Baptiste Joinet on LKtq. Urban issupported by a scholarship from the DAAD. Bierman is supported by EPSRCGrant GR-M04716 and Gonville & Caius College, Cambridge.References1. F. Barbanera and S. Berardi. A Symmetric Lambda Calculus for \Classical" Pro-gram Extraction. In Theoretical Aspects of Computer Software, volume 789 ofLNCS, pages 495{515. Springer Verlag, 1994.
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