
Separation Logic, Abstraction and Inheritance

Matthew J. Parkinson
University of Cambridge, UK

Matthew.Parkinson@cl.cam.ac.uk

Gavin M. Bierman
Microsoft Research Cambridge, UK

gmb@microsoft.com

Abstract
Inheritance is a fundamental concept in object-oriented program-
ming, allowing new classes to be defined in terms of old classes.
When used with care, inheritance is an essential tool for object-
oriented programmers. Thus, for those interested in developing
formal verification techniques, the treatment of inheritance is of
paramount importance. Unfortunately, inheritance comes in a num-
ber of guises, all requiring subtle techniques.

To address these subtleties, most existing verification method-
ologies typically adopt one of two restrictions to handle inheri-
tance: either (1) they prevent a derived class from restricting the
behaviour of its base class (typically by syntactic means) to triv-
ialize the proof obligations; or (2) they allow a derived class to
restrict the behaviour of its base class, but require that every in-
herited method must be reverified. Unfortunately, this means that
typical inheritance-rich code either cannot be verified or results in
an unreasonable number of proof obligations.

In this paper, we develop a separation logic for a core object-
oriented language. It allows derived classes which override the be-
haviour of their base class, yet supports the inheritance of methods
without reverification where this is safe. For each method, we re-
quire two specifications: a static specification that is used to ver-
ify the implementation and direct method calls (in Java this would
be with a super call); and a dynamic specification that is used for
calls that are dynamically dispatched; along with a simple relation-
ship between the two specifications. Only the dynamic specification
is involved with behavioural subtyping. This simple separation of
concerns leads to a powerful system that supports all forms of in-
heritance with low proof-obligation overheads. We both formalize
our methodology and demonstrate its power with a series of inher-
itance examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—class invariants; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Classes and
inheritance

General Terms Languages, Theory, Verification

Keywords Separation Logic, Modularity, Classes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

1. Introduction
1.1 Motivation
Inheritance is a fundamental concept in object-oriented program-
ming. It allows new classes to be defined in terms of existing
classes. These new, or derived, classes inherit both attributes and
behaviour from their base classes. There are several different uses
of inheritance in object-oriented code:

Specialization: One common use of inheritance is to create a
specialization of the base class. This typically involves directly
inheriting members from the base class and extending this set
with further members.

Overriding: Most object-oriented languages allow a class to re-
place some of the members of the base class, these members
are said to override the definitions in the base class.

Code re-use: Sometimes inheritance is used purely for code re-
use, that is, a derived class is not intended to be used in the
same places as its base class, but rather they just share code.

Our main concern is providing practical, modular verification
methodologies to enable programmers to reason about and docu-
ment their code. As inheritance—in all its guises—plays such an
important role in object-oriented code, we contend that any verifi-
cation methodology must provide practicable techniques for deal-
ing with it. In other words, the programmer should be able to verify
common inheritance patterns without substantial rewriting of their
code. Moreover, these typical patterns should not result in unrea-
sonable proof obligations on the programmer.

Let us consider some examples of these uses of inheritance and
the problems they raise for formal verification. In this paper we
only address languages that support single inheritance; for exam-
ple, languages such as C] and Java.1 In Figure 1, we define a base
class, Cell, and a derived class, Recell. This code uses both spe-
cialization and overriding. We will consider DCell and code re-use
later. The base class has a field val, and two methods, set and get.
The derived class directly inherits the field val, and method get. In
addition it specializes its base class by defining a new field bak;
and also overrides the set method. (The C] expression base.m ac-
cesses the m member of the base class of the current object. It is
written super.m in Java.)2

Firstly, by defining the derived class, we are able to pass Recell
objects as if they were Cell objects. This syntactic property is guar-
anteed by the type system. The corresponding semantic property,
known as substitutivity, is that whenever an object of type Cell is

1 In this paper, we shall write our code examples in a C]-style syntax,
but our techniques apply to Java, Visual Basic and other single-inheritance
object-oriented languages.
2 The overridden set method is very abstract in using a base call for
get, rather than direct field access or dynamic dispatch. We discuss the
alternatives in §5.5.

class Cell
{

public int val;

public virtual void set(int x)
{

this.val=x;
}

public virtual int get()
{

return this.val;
}

}

class Recell: Cell
{

public int bak;
public override void set(int x)
{

this.bak = base.get();
base.set(x);

}
}
class DCell:Cell
{

public override void set(int x)
{ base.set(2∗x); }

}

Figure 1. Examples of inheritance.

expected, supplying an object of type Recell will not change the
behaviour of the program. Liskov and Wing (1994) defined a no-
tion called behavioural subtyping that guarantees the property of
substitutivity.

Secondly, Recell inherits the Cell’s body for the get method.
This is correct at the level of types, but is it semantically valid to
inherit this method? Unfortunately, this is a non-trivial problem.
To simplify matters, most current verification methodologies adopt
one of two restrictions: either they (1) prevent a derived class
restricting the behaviour of the base class which trivializes the
proof obligations, e.g. Müller (2002); Barnett et al. (2004), or (2)
they allow a derived class to restrict the behaviour of its base class,
but require that all inherited methods are reverified (Parkinson and
Bierman 2005). Neither of these approaches are satisfactory and
one of the aims of this work was to remove these restrictions.

Now let us consider code reuse and the DCell class in Figure 1.
As far as we are aware, most systems (for example, Barnett et al.
(2005); Müller (2002)) cannot cope with this use of inheritance.
The intention is that instances of class DCell always store double
the value they have been set to. This use of inheritance is quite
subtle; we have declared class DCell as a derived class essentially
to enable us to inherit the get method code. However, it is clear
that instances of DCell behave quite differently from instances
of Cell, which is at odds with our assumptions of behavioural
subtyping. (It’s an instance of the “inheritance is not subtyping”
phenomenon (Cook et al. 1990).)

Whilst such programming techniques are obviously fragile, it
is our experience that this use of inheritance is quite common
in the developer community. So, we aim to verify such uses of
inheritance.

To summarize, our overall intention is to provide a flexible
framework to allow programmers to formally specify and verify
the behaviour of their object-oriented code. In this paper we con-
centrate specifically on verifying code that uses inheritance: where
a class can re-use, extend or alter the representation and operations
of its base class. We also impose a minimal set of requirements for
any solution to this problem:

Soundness: We insist that our solution is sound, by which we
mean that a verified program will satisfy its specification.

Modular: We insist that our solution is modular, by which we
mean that when new components are added to the system, no
old component needs to be re-specified or re-verified.

No base class code required: An inherited method need never be
reverified, or, alternatively, a class need not see the code of its
base class (Ruby and Leavens 2000).

Breadth: This is a harder criteria to quantify, but we insist that
our approach can verify the typical patterns of inheritance use

in real-world software. In this case, we wish to support special-
ization, overriding and code re-use.

1.2 Our proposal
Our proposal for supporting inheritance builds on our earlier
work (Parkinson and Bierman 2005) that developed a separation
logic for reasoning about object-oriented code. Separation logic
offers a particularly good framework as it supports local reason-
ing about stateful computation (Reynolds 2002) and hence deals
directly with issues of ownership and state modification (in other
systems these require additional complications to the underlying
framework).

In earlier work (Parkinson and Bierman 2005) we proposed the
notion of abstract predicate families to deal with the simple case of
inheritance where every method is either overridden, or reverified
in the derived class. Previously, when we verified a method body s
for class C with pre-condition P and post-condition Q, we verified
the following. ˘

P ∧ this:C
¯

s
˘
Q

¯
The type information, this:C, enables the use of abstract predicate
families, but prevents inheritance of methods without reverifica-
tion: the verification is specific to a single class.

In this work, we provide a generalized logic that allows these
restrictions to be lifted. For each method, we require two specifi-
cations: a static specification, that is used to verify the implemen-
tation and direct method calls (in Java this would be with a super
call); and a dynamic specification, that is used for calls that are dy-
namically dispatched; along with a simple relationship between the
two specifications. Only the dynamic specification is involved with
behavioural subtyping.

We will demonstrate the use of dynamic and static specifica-
tions by example, but first we must recap some details of abstract
predicates and abstract predicate families. An abstract predicate has
a name, a definition, and a scope. Within the scope one can freely
swap between using the abstract predicate’s name and its definition,
but outside its scope it must be handled atomically, i.e. by its name.
Thus the scope defines the abstraction boundary for the abstract
predicate. Whilst this handles simple modules, it is not powerful
enough to deal with object-oriented abstraction, as we wish each
class to be able to provide its own definition of the predicate.

To deal with this, we introduced the notion of an abstract predi-
cate family. Informally, it can be seen as a dynamically dispatched
predicate. Just as the code for a method invocation is chosen based
on the dynamic type of the instance parameter, we mirror this dis-
patch behaviour in the logic. An abstract predicate family uses its
first argument to choose the definition of the predicate, i.e. if the
first argument is of type C then the definition of the abstract predi-
cate family is the one that class C defines:

x : C ⇒ (α(x, y) ⇔ αC(x, y))

where α is an abstract predicate family, and αC is the definition for
class C.

Returning to our Cell example, we could define an abstract
predicate family Val(x, v), which for the Cell class is defined as
x.val 7→ v, that is when verifying the Cell class we assume:

x : Cell ⇒ (Val(x, v) ⇔ x.val 7→ v)

Other classes are free to define their own entry for the Val family.
This only specifies the definition for the Cell class; all other classes
are unspecified, hence the proof is independent of their definition.

Now let us specify the Cell class. We will give the dynamic
specification using abstract predicate families to allow more be-
havioural subtypes, and the static specification will closely mirror
the actual implementation:

class Cell

{
public int val;

public virtual void set(int x)
dynamic {Val(this,)} {Val(this, x)}
static {this.val 7→ } {this.val 7→ x)}
{ ... }

public virtual int get()
dynamic {Val(this, x)} {Val(this, x) ∗ ret = x}
static {this.val 7→ x} {this.val 7→ x ∗ ret = x}
{ ... }

}

The static specifications describe precisely how the methods work,
that is set modifies the val field to contain x; and get returns the
value stored in the val field.3 The dynamic specification is given in
terms of the Val abstract predicate family to enable derived classes
to alter the behaviour.

If the dynamic specification was given in terms of the fields ac-
cessed then a derived class would not be able to extend or alter the
behaviour in any way (Leino 1998). Similarly if the static speci-
fication was given in terms of the abstract predicate family, then
the derived class would not be able to inherit the method without
knowing the hidden representation (Parkinson and Bierman 2005).
By providing both a static and dynamic specification, we can inherit
methods without reverification, and this also allows derived classes
to alter the representation and behaviour if they override methods.

Let us return to the derived class DCell. We wish to provide a
specification that allows it to be a considered a behavioural subtype
of Cell in spite of its radically different behaviour. The DCell class
must behave the same as its parent’s dynamic specification. If we
define the Val predicate family as false for the DCell then this
proof obligation becomes trivial.

x : DCell ⇒ (Val(x, v) ⇔ false)

DCell ensures no client will ever have a Val predicate for a DCell.
Therefore, in the “Val -world”, DCell is not a subtype of Cell (that
is, a variable of static type Cell that satisfies Val will not point to a
DCell object).

class DCell : Cell{
public override void set(int x)
dynamic {Val(this,)} {Val(this, x)}

also {DVal(this,)} {DVal(this, x ∗ 2)}
{...}

public inherit int get()
dynamic {Val(this, v)} {Val(this, v) ∗ ret = v}

also {DVal(this, v)} {DVal(this, v) ∗ ret = v}
}

Here we use also to mean satisfies both specifications, and inherit
to provide a new specification for an inherited method. We intro-
duce a new predicate family DVal , which defines the DCell’s be-
haviour. We specify DVal as4

x : DCell ⇒ (DVal(x, v) ⇔ x.val 7→ v)

3 We could make the static specification more abstract to prevent a derived
class depending on the precise representations of its base class. We could
introduce a new predicate ValCell(x, v) for the entry in the Val family:

x : Cell ⇒ (Val(x, v) ⇔ ValCell(x, v))

This prevents the derived class depending on the unknown definition of the
Cell class. As, we do in the rest of the paper.
4 We could alternatively specify it as

x : DCell ⇒ (DVal(x, v) ⇔ ValCell(x, v))

to be abstract in the Cell’s representation.

The DCell does satisfy the specification of Cell, but only vac-
uously. However, clients do not need to know the specification is
only vacuously satisfied. They will never be able to observe this.

1.3 Contributions and content
This paper contains a number of novel contributions to the field of
object-oriented verification. We explore the power of our system
by considering a number of examples that exhibit typical uses of
inheritance. Many of these examples are not supported by existing
techniques. (Some more direct comparisons are given in §6.)

More specifically, the main contributions of this work are as
follows.

• The separation of method specifications into “static” and “dy-
namic” specifications,

• The formalization of the proof obligations resulting from this
separation,

• An elegant generalization of the formalization of abstract pred-
icate families based on higher-order separation logic, and

• A systematic exploration of the expressive power of our logic
by considering a number of typical programs exploiting various
aspects of inheritance.

The proof system defined in this paper is modular, and does not
require a derived class to see the code of its base class to verify its
method. It can support many uses of inheritance: where a derived
class extends its base class, where it restricts the behaviour of its
base class, where it changes the behaviour of its base class, and
even where it changes the representation of its base class. No other
proof system that we are aware of can handle all of these uses of
inheritance.

The rest of the paper is structured as follows. In §2 we define
a core object-oriented language with annotated method definitions.
In §3 we define formally our proof system, based on separation
logic. In §4 we show how to simplify the annotations. In §5 we
verify a number of example uses of inheritance. We conclude in §6
by comparing our proof system to others. In Appendix A we give
an overview of the semantics of our proof system.

2. A programming language with specifications
In this section we define formally both the core object-oriented
language we verify and the associated annotations.

2.1 Syntax
Our core language is an extended, featherweight fragment of C]

called FVC] (for Featherweight Verified C]), that is similar to var-
ious formalized fragments of Java (Flatt et al. 1997; Bierman et al.
2004). The main extension to C] is that we annotate method defi-
nitions with static and dynamic specifications. The syntax of FVC]

class definitions, method definitions, and statements is defined as
follows.

FVC] programs

L ::= class C : D{ public T f; A K M } Class definitions

A ::= define αC(x) as P Predicate Family Entry

K ::= public C() Sd Ss {s} Constructor

M ::= Method definition
public virtual C m(D x) Sd Ss B Virtual method
public override C m(D x) Sd Ss B Overridden method
public inherit C m(D x) Sd Ss; Inherited method

Sd ::= dynamic S Dynamic specification

Ss ::= static S Static specification
S ::= Method specification

{P} {Q}
S also {P} {Q}

B ::= { C x; s return y; } Method body

s ::= Statement
x = y; Assignment
x = null; Initialization
x = y.f; Field access
x.f = y; Field update
x = y.m(z); Dynamic method invocation
x = y.C::m(z); Direct method invocation
x = (C)y Cast
if(x == y){s} else {t} Equality test
x = new C(); Object creation

In the syntax rules we assume a number of metavariables: f
ranges over field names, C,D over class names, m over method
names, and x, y, z over program variables. We assume that the set
of program variables includes a designated variable this, which
cannot be used as an argument to a method (this restriction is
imposed by the typing rules). We follow Featherweight Java, or
FJ (Igarashi et al. 2001), and use an ‘overbar’ notation to denote
sequences.

As with FJ, for simplicity we do not include any primitive types
in FVC], and we assume that there is a distinguished class Object
that is at the root of the inheritance hierarchy. We do not formalize
the type system of FVC] here as it is entirely standard.

A FVC] class definition, L, contains a collection of fields and
method definitions and, for simplicity, a single constructor. A field
is defined by a type and a name. A virtual method definition, M,
is defined by a return type, a method name, an ordered list of
arguments—where an argument is a variable name and a type—a
method specification, S, and a method body, B.

A method specification consists of a dynamic specification,
Sd, and a static specification, Ss, each consisting of a sequence
of pre- and post-conditions separated by also. The use of these
was informally presented in the previous section, and the formal
conditions on their use is given later. In §4 we show how one
can drop one or the other specification, but in our featherweight
language we insist on both specifications to help in the definitions.

We also insist that all inherited methods are explicitly specified
in the derived class. This is partly to simplify some definitions,
but also to allow derived classes to provide new specifications for
inherited methods. Clearly, outside the formalization we would not
insist on specifying inherited methods—in which case it would be
assumed that the method specifications were inherited also.

A method body, B, consists of a number of local variable dec-
larations, followed by a sequence of statements and a return state-
ment. The real economy of FVC] is that we do not have any syn-
tactic forms for expressions (or even promotable expressions (Bier-
man et al. 2004)), and that the forms for statements are syntactically
restricted. All expression forms appear only on the right-hand side
of assignments. Moreover expressions only ever involve variables.
In this respect, our form for statements is reminiscent of the A-
normal form for λ-terms (Flanagan et al. 1993). A statement, s, is
either an assignment, a field access, a field update, a method invo-
cation, a cast, a conditional, or an object creation. In addition, we
support direct method invocations using a C++-style syntax, e.g.
c.C::m(y). This syntax subsumes the standard C] base calls: in a
class derived from a base class B, the statement x=base.m(y) in
C] is written as x=this.B::m(y) in FVC].

In FVC] we follow FJ and simplify matters by not consider-
ing overloading of methods or constructor methods. In spite of the

heavy syntactic restrictions, we have not lost any expressivity; it is
quite simple to translate a more conventional calculus with expres-
sions and promotable expressions into FVC]. Another advantage of
our approach is that we have no need for the ‘stupid’ rules of FJ.

In FVC] we assume a rather large amount of syntactic regular-
ity to make the definitions compact. All class definitions must (1)
include a supertype; (2) start with all the declarations of the vari-
ables local to the method (hence a method block is a sequence of
local variable declarations, followed by a sequence of statements);
(3) have a return statement at the end of every method; and (4)
write out field accesses explicitly, even when the receiver is this.

2.2 Dynamic semantics
The dynamic semantics of FVC] are routine and are omitted. How-
ever, it is interesting to compare the reduction rules for the two
forms of method invocations. These are as follows.

mbody(C, m) = (z′′, B)
B ≡ C x; s′ return x′; θ = [y1, z

′, x′/this, z′′, x]
z′, x′ fresh S′ = S[z′ 7→ S(z)]

S, H, y0 = y1.C::m(z);s −→ S′, H, (θs′)y0 = (θx′); s

type(H(S(y))) = C S, H, x = y.C::m(z); s −→ S′, H ′, s′

S, H, x = y.m(z); s −→ S′, H ′, s′

We define the dynamic semantics in terms of transitions be-
tween configurations. A configuration is a triple S, H, s consisting
of (1) a stack S, which is a map from identifiers to heap addresses;
(2) a heap H , which is a map from heap addresses to object rep-
resentations, where an object representation has a type and a map
from field name to addresses; and (3) a sequence of statements, s,
which is the program being evaluated.

The interesting feature of the (dynamic dispatch) method invo-
cation transition rule is its use of a direct method invocation.

3. Formalizing the proof system
In this section we formalize the proof system for reasoning about
FVC] programs. An overview of the semantics of this system is
given in Appendix A.

3.1 Logic syntax
In this subsection we define the fragment of separation logic that
we use to reason about our FVC] programs. Formulae, P are de-
fined by the following grammar, where x, y, z ranges over variable
names, α ranges over predicates. We encode the rest of the usual
connectives.

Formulae

P , Q ::= ∀x.P | P ⇒ Q | false | α(x) | e = e′ | x : C
| x.f 7→ e | P ∗Q | P −∗Q

e ::= x | null

Separation logic (Ishtiaq and O’Hearn 2001; O’Hearn et al.
2001; Reynolds 2002) is an extension to Hoare logic that permits
reasoning about shared mutable state. It extends Hoare logic by
adding spatial connectives to the assertion language, which allow
us to assert that two portions of the heap are disjoint, that is P ∗Q
means the heap can be split into two disjoint parts in which P and Q
hold respectively. Space prevents us from giving a more thorough
introduction; the reader is referred to the tutorial by Reynolds
(2002) for a general introduction, and to Parkinson (2005) for an
introduction to the use of separation logic for verifying object-
oriented programs.

We define an environment, Γ, that contains the static and
dynamic specifications specified in a FVC] program. We write
C.m(x) : {P} {Q} ∈ Γ to denote that Γ contains the dynamic
specification {P} {Q} that is associated with the method m with
parameters x defined in class C. Similarly C::m(x) : {S} {T} ∈ Γ
denotes that Γ contains the static specification {S} {T} that is as-
sociated with the method m with parameters x defined in class C.
We assume two special specifications C..ctor() and C::.ctor() for
the static and dynamic specifications of the constructor of class C.

We also need to define an environment, ∆, that stores the ab-
stract predicate families and their definitions. In previous work (Parkin-
son and Bierman 2005), we defined this as a set of predicate def-
initions, along with some complicated rules for controlling its
use. One contribution of this paper is to utilize some observa-
tions originating from more recent work on higher-order separation
logic (Biering et al. 2007), to simplify this representation. We give
the details in §3.2, but for now the reader can just consider ∆ as
containing the abstract predicate families and their definitions.

The judgements for reasoning about FVC] programs are of the
form ∆; Γ ` {P}s{Q}, meaning that given environments Γ and
∆, the statement sequence s satisfies the specification {P} {Q}.

The axioms and rules for forming valid judgements can be
divided into “structural rules” and “program rules”. The structural
rules are those that work independently of the programs, i.e. they
manipulate purely the pre- and post-conditions. These have been
given elsewhere for separation logic (Parkinson 2005), so we do
not repeat them here except for the “frame rule”, as it is crucial to
the “local reasoning” principle of separation logic. It is defined as
follows.

∆; Γ ` {P}s{Q}
∆; Γ ` {P ∗R}s{Q ∗R}

The program rules for forming valid judgements have also been
given elsewhere. However, we give below the rules for both forms
of method invocation. First, the rule for dynamic dispatch invoca-
tion, which is as follows.5

x has static type C C.m(x) : {P} {Q} ∈ Γ

∆; Γ `{P [x, y/this, x] ∧ this 6= null}
z = x.m(y)

{Q[z, x, y/ret, this, x]}
The rule for direct method calls is similar, except that the static
specification is used.

C::m(x) : {S} {T} ∈ Γ

∆; Γ `{S[x, y/this, x] ∧ this 6= null}
z = x.C::m(y)

{T [z, x, y/ret, this, x]}
Finally, we give the rule for constructing a new object.

C..ctor() : {P} {Q} ∈ Γ

∆; Γ ` {P}x = new C(){Q[x/this]}

3.2 Abstract predicate families
Next we explain how we represent abstract predicate families in this
framework (Parkinson and Bierman 2005). Rather than presenting
a syntax for a context and rules for manipulating and using this
context, we simply define our context, ∆, as a conjunction of
formulae from our logic:

∆ ::= P | ∆1 ∧∆2 | ∃α.∆

The existential is used to hide redundant definitions.

5 To simplify the presentation, we assume that the return variable, z, is
not an argument or the instance parameter (receiver). This restriction can
be satisfied trivially by adding an additional assignment to a fresh vari-
able z′ before the rule and replacing the uses of z by z′: z′ = z; z =
x[z′/z].m(y[z′/z])

By using a formula from the logic the work can be connected
with developments in higher-order separation logic (Biering et al.
2007; Nanevski et al. 2007; Krishnaswami et al. 2007). To simplify
the presentation we do not use the full generality of higher-order
separation logic in this paper: we simply require a second-order
quantifier.

Now let us consider representing predicate definitions in this
way. We might wish to define a predicate by define Point(x, v) as
x.f 7→ v, this can be seen as saying the following formula is true:

∀x, v. Point(x, v) ⇔ x.f 7→ v

However, this is not powerful enough to reason about object-
oriented abstractions. Due to dynamic dispatch, a method call
is chosen based on the dynamic type of the instance parameter.
Here we mirror this in the logic as the predicate definition is cho-
sen by the dynamic type of the first parameter. So we could say
define PointC(x, v) as x.f 7→ v, which would mean two things:
(1) the entry for the abstract predicate family Point is PointC;
and (2) this entry is defined as x.f 7→ v. These statements can be
provided by the following

(∀x, v. PointC(x, v) ⇔ x.f 7→ v)
∧ (∀x, v. x : C ⇒ (PointC(x, v) ⇔ Point(x, v)))

As a naming convention, we will use names, α, without a subscript
to represent an abstract predicate family, and with αC to represent
the entry for class C in family α.

The role of the predicate arguments can be seen as analogous
to the use of model fields in other work (Leino and Müller 2006).
Derived classes generally introduce more model fields, hence we
wish to interpret a predicate at many arities. To encode model fields
more directly we could pass a record rather than a list of arguments.
The implication below would then correspond to width subtyping
and forgotten fields are existentially quantified. Returning to our
point example, we might wish to be able to forget the outer most
argument as a base class does not use this parameter:

Point(x) ⇔ ∃v. Point(x, v)

We can now define the formal translation of a definition to a
logical assumption. We break the translation into three parts: (1)
family to entry, FtoE(α, C) is a formula that connects the family,
α, with the entry αC assuming the first argument is of type C; (2)
entry to definition, EtoD(define αC(x, x) as P) is a formula that
connects the entry αC with the definition P ; and (3) changing arity,
A(α; n) defines that family α can be given any arity less than n
and the missing values are existentially quantified.

FtoE(α, C)
def
= ∀x, x. x : C ⇒ (α(x, x) ⇔ αC(x, x))

EtoD(define αC(x, x) as P)
def
= ∀x, x. αC(x, x) ⇔ P

A(α; n + 1)
def
= A(α; n)∧
∀y1, . . . , yn. α(y1, . . . , yn) ⇔ ∃z. α(y1, . . . , yn, z)

A(α; 0)
def
= true

We can translate an entry definition as (1) the formula connect-
ing the family with the entry; (2) the formula connecting the entry
with the definition; and (3) the formula specifying that the arity can
be reduced.

apf C(define αC(x, x) as P)
def
= FtoE(α, C) ∧ EtoD(define αC(x, x) as P) ∧A(α; |x|)

apf (class C : D{ public T f; A1 · · ·An K M })
def
= apf C(A1) ∧ · · · ∧ apf C(An)

We have two rules to reason about these assumptions. The
first allows us to strengthen our assumptions. If we can prove our
program with just the assumptions ∆, then we can prove it with the

weaker assumptions ∆′.
∆′ ⇒ ∆ ∆;Γ ` {P}s{Q}

P-Weak
∆′; Γ ` {P}s{Q}

The second proof rule allows the removal of predicates: this is
the second-order analogy of the logical/ghost/auxilliary variable
elimination rule.

α /∈ FP(P , Q, Γ) ∆; Γ ` {Q}s{R}
P-Elim

(∃α. ∆); Γ ` {Q}s{R}
where FP(P, Q, Γ) is the set of free predicate names in P , Q and
Γ.

Finally, the rule of consequence is modified to take account of
the environment ∆.

∆ ⇒ (P ⇒ P ′) ∆; Γ ` {P ′}s{Q′} ∆ ⇒ (Q′ ⇒ Q)

∆; Γ ` {P}s{Q}

3.3 Refinement and behavioural subtyping
A number of authors have offered definitions of behavioural sub-
typing, but in this work we follow Leavens and Naumann (2006)
and propose a formulation in terms of a natural refinement order on
specifications. We say that a specification {P2} {Q2} refines an-
other specification {P1} {Q1}, if for all programs s, if s satisfies
the latter specification, then it also satisfies the former.

We characterize6 specification refinement using the structural
rules of Hoare and Separation logic (Consequence, Frame, Logical7

variable elimination); that is, there exists a proof of the form
∆ ` {P1} {Q1}

...
∆ ` {P2} {Q2}

When such a proof exists, we write ∆ ` {P1} {Q1} =⇒
{P2} {Q2}. We often need to introduce some type information
in specification refinement. To do so, we define

∆ ` {P1} {Q1}
this : C
=⇒ {P2} {Q2}

def
= ∆ ` {P1} {Q1} =⇒ {P2 ∗ this : C} {Q2}

We often need to combine specifications. This is written as also,
and is encoded as follows using logical (auxiliary) variables.

Definition 1.
˘
P1

¯ ˘
Q1

¯
alsoX

˘
P2

¯ ˘
Q2

¯
is defined as˘

(P1 ∧X=1) ∨ (P2 ∧X 6=1)
¯ ˘

(Q1 ∧X=1) ∨ (Q2 ∧X 6=1)
¯

We omit the X to mean selecting a fresh variable. In our ver-
ification rules, we omit also by encoding the specifications into a
single specification.

Lemma 2.
1. ∆ ` ({P1} {Q1} also {P2} {Q2}) =⇒ {P1} {Q1}
2. ∆ ` ({P1} {Q1} also {P2} {Q2}) =⇒ {P2} {Q2}

3.3.1 Method verification
There are three forms of method definitions in FVC]. A method
can be defined (1) as virtual, if it is not defined in its base class;
or (2) as inherit, if it is not defined in this class, but is defined in
its base class; or (3) as override, if it is defined both by this class
and its base class. For each of these types of method definitions,
we will provide the appropriate verification rule. The judgement
form is written as ∆; Γ ` M in E, which means informally that
“given environments Γ and ∆, the method definition M in class

6 We currently do not have an adaption completeness result for our proof
system, and so we cannot assert whether our syntactic characterization of
refinement is complete. Yang’s thesis provides an adaption completeness
result for separation logic without object-oriented features (Yang 2001).
7 Sometimes called auxiliary or ghost variables.

E can be verified to meet its specification.” (In what follows we
write C ≺1 D when class D is the immediate base class of derived
class C, i.e. class C : D { . . . }. Additionally, to simplify the
presentation, we assume that methods do not modify the variables
containing the arguments. Methods can be trivially rewritten to this
form.)

First, we define the rule for verifying a new virtual method.
B = { G y; s return z; }
Sd = dynamic {PE} {QE}
Ss = static {SE} {TE}

∆ ` {SE} {TE}
this : E
=⇒ {PE} {QE} (Dynamic dispatch)

∆; Γ ` {SE}s{TE[z/ret]} (Body Verification)

∆; Γ ` public virtual C m(D x) Sd Ss B in E

In this case there are just two proof obligations: we must ver-
ify that (1) the method body meets its static specification, (Body
Verification); and (2) using the dynamic specification is valid for
dynamic dispatch, (Dynamic dispatch). This second proof obliga-
tion forces a relationship between the static and dynamic specifica-
tions of a method. It corresponds to showing that if the object has
type E and the dynamic specification is satisfied by the client, then
the method body will execute successfully. Notice that by using the
static specification we do not have to verify the body against the
dynamic specification.

Next, we define the verification rule for inheriting a method.
E ≺1 F
Sd = dynamic {PE} {QE}
Ss = static {SE} {TE}
F.m(x) : {PF} {QF} ∈ Γ
F::m(x) : {SF} {TF} ∈ Γ
∆ ` {PE} {QE} =⇒ {PF} {QF} (Behavioural Subtyping)
∆ ` {SF} {TF} =⇒ {SE} {TE} (Inheritance)

∆ ` {SE} {TE}
this : E
=⇒ {PE} {QE} (Dynamic dispatch)

∆; Γ ` public inherit C m(D x) Sd Ss; in E

In this case there are three proof obligations: we must verify that
(1) the new dynamic specification is a valid behavioural subtype,
(Behavioural Subtyping); (2) the method meets the static specifi-
cation, (Inheritance); and (3) (as before) using the dynamic spec-
ification is valid for dynamic dispatch, (Dynamic dispatch). The
first proof obligation amounts to requiring that whenever it is valid
to use the dynamic specification of the base class, it is also valid
to use the dynamic specification of this class, E. The second proof
obligation amounts to showing that the inherited method body sat-
isfies the new static specification. However, this rule does not use
the inherited method body at all; it is not needed. The rule works
purely at the level of the specifications.

Finally, we give the verification rule for overriding a method.
E ≺1 F
F.m(x) : {PF} {QF} ∈ Γ

B = { G y; s return z; }
Sd = dynamic {PE} {QE}
Ss = static {SE} {TE}
∆ ` {PE} {QE} =⇒ {PF} {QF} (Behavioural Subtyping)

∆ ` {SE} {TE}
this : E
=⇒ {PE} {QE} (Dynamic dispatch)

∆; Γ ` {SE}s{TE[z/ret]} (Body Verification)

∆; Γ ` public override C m(D x) Sd Ss B in E

Again there are three proof obligations: we must verify that: (1)
the new dynamic specification is a valid behavioural subtype,
(Behavioural Subtyping); (2) the method body meets the static
specification, (Body Verification); and (3) using the dynamic spec-
ification is valid for dynamic dispatch, (Dynamic dispatch). This
verification is almost identical to the previous, but here we can ver-
ify the body of the method against the static specification as it is
defined in this class, E.

The second verification rule has a degenerate (but common)
form, when a derived class inherits a method from a base class but
does not provide a new specification. In this case, the verification
rule degenerates to the following.

E ≺1 F
F.m(x) : {PF} {QF} ∈ Γ
F::m(x) : {SF} {TF} ∈ Γ

∆ ` {SF} {TF}
this : E
=⇒ {PF} {QF} (Dynamic dispatch)

∆; Γ ` public inherit C m(D x); in E

There is just one proof obligation, which amounts to verifying that
if the object has type E and the dynamic specification of the base
class is satisfied by the client, then the method body will satisfy
the specification. Again, it is worth pointing out that this proof
obligation is at the level of the specifications; we do not need the
inherited method body from the base class.

Finally, we need a special verification rule for a constructor
method definition. This is as follows.

E ≺1 F
fields(E) = f1, . . . , fn
F::.ctor() : {SF} {TF} ∈ Γ
Sd = dynamic {PE} {QE}
Ss = static {SE} {TE}

∆ ` {SE} {TE}
this : E
=⇒ {PE} {QE}

∆; Γ ` {TF ∗R ∗ Fs}s{TE} (Body Verification)
SE ⇒ SF ∗ true
R ⇔ SF −~ SE

Fs = this.f1 7→ ∗ . . . ∗ this.fn 7→
∆; Γ ` public E() Sd Ss {s}

This rule is complicated by the implicit base call at the beginning
of the constructor, that is, before the constructor body s begins
executing, the base class constructor is executed. When verifying
the body (Body Verification) the pre-condition is composed of
three things: (1) the post-condition of the base class constructor
call, (2) a formula R which intuitively is the disjoint state required
by the constructor (and hence is given by the formula SF −~ SE

8),
and (3) a representation of the fields defined in E but not including
the fields inherited from the base class.

3.4 Class verification
We can now use the method verification rules given above to verify
a definition. The rule is as follows.

∀Mi ∈ M. ∆; Γ ` Mi in C ∆; Γ ` K

∆; Γ ` class C : D{ public T f; A K M }
Informally, this means that to verify a class definition one must
verify every method.

The rule for verifying a complete program is then as follows.
Γ = specs(L1 . . . Ln)
apf (L1); Γ ` L1 · · · apf (Ln); Γ ` Ln

true; Γ ` {true}s{true}
` L1 . . . Lns

Informally, this rule states that under the assumption that all the
specifications are correct, every class definition must be verified,9

along with verifying the main body, s.

Properties Given the proof rules above, we can now reconsider
the criteria given in §1.1. First, our proof system is sound.

Theorem 3. The program verification rule is sound. (See Ap-
pendix A for a formal statement of soundness and an overview of
the proof.)

8 P −~ Q is defined as ¬(P −∗ ¬Q) and intuitively means subtracting P
from Q.
9 This assumption is valid as we are only dealing with partial correctness.

Secondly, our system is modular, i.e. the introduction of new
methods or classes does not invalidate an existing proof. Thirdly,
each method body is verified only once, even when defining an
overridden method or inheriting a method from the base class.

Finally, in §5 we consider the applicability of our system by
considering a number of typical uses of inheritance in object-
oriented code.

4. Simplifying annotations
In many cases the dynamic and static specifications turn out to
be very similar. Fortunately, there is a relatively simple process to
derive the static specification from the dynamic, and vice versa.

Deriving static from dynamic We give a syntactic ‘opening’
function, JP KC , which opens all the abstract predicate families
in P on the object this at type C. That is,

Jα(this, x)KC
def
= αC(this, x)

Jα(y, x)KC
def
= α(y, x) where y 6≡ this

JαD(x)KC
def
= αD(x)

Jpr(x)KC
def
= pr(x)

JfalseKC
def
= false

JP op QKC
def
= JP KC op JQKC where op ::= ∗ |⇒| −∗

J∀x. P KC
def
= ∀x. JP KC

where pr(x, y) is either x.f 7→ y, x = y and x : C.

Lemma 4. this : C =⇒ (P ⇔ JP KC)

Hence, given a dynamic specification
˘
P

¯ ˘
Q

¯
, we can de-

rive the static specification
˘
JP KC

¯ ˘
JQKC

¯
, which automati-

cally satisfies the (Dynamic dispatch) proof obligation.

Lemma 5.
˘
JP KC

¯ ˘
JQKC

¯ this:C
=⇒

˘
P

¯ ˘
Q

¯
Proof.

˘
JP KC

¯ ˘
JQKC

¯
Frame˘

JP KC ∗ this:C
¯ ˘

JQKC ∗ this:C
¯

Conseq˘
P ∗ this:C

¯ ˘
Q

¯
Both the static specifications of the set and get methods of Cell

can be inferred in this way.

Deriving dynamic from static If we only provide a static specifi-
cation for a method, we assume the dynamic specification is iden-
tical to the static specification. This also satisfies the (Dynamic
dispatch) proof obligation trivially.

5. Examples
In this section we give a number of examples to demonstrate the
power and applicability of our proof system. All our examples
involve inheritance of the Cell class that we described in §1. For
completeness we give the complete definition of the Cell class,
including the abstract predicate families and method specifications,
in Figure 2.

Before we consider inheriting this class, we should first ver-
ify that it meets its own specification! For the three virtual meth-
ods, this means the two proof obligations, (Body Verification) and
(Dynamic dispatch). Luckily, for all three methods the latter proof
obligation is satisfied following Lemma 5. We give below a verifi-
cation of the set method body, and suppress the verifications of get
and swap.

{ValCell(this,)}
{this.val 7→ }this.val=x;{this.val 7→ x}

{ValCell(this, x)}

class Cell {
int val;
define ValCell(x, v) as x.val 7→ v

public Cell() dynamic {true} {Val(this,)} {}

public virtual void set(int x)
dynamic {Val(this,)} {Val(this, x)}
{this.val=x;}

public virtual int get()
dynamic {Val(this, v)} {Val(this, v) ∗ ret = v}
{ return this.val; }

public virtual void swap(Cell c)
static {Val(this, v1) ∗Val(c, v2)} {Val(this, v2) ∗Val(c, v1)}
{ int t,t2; t = this.get(); t2 = c.get(); this.set(t2); c.set(t); }
}

Figure 2. Source code for Cell examples

Before turning to deriving from this class, we consider in a little
more detail the swap method. It is an example of the template
method pattern (Gamma et al. 1994). It does not manipulate the
data directly, but simply uses other methods to update the state.
This allows the code to be reused in derived classes that alter the
representation.

Hence it is interesting to consider the consequences of inheriting
this method in some derived class, C, of Cell. If the derived class C
inherits swap and does not alter its specification, then its only proof
obligation is (Dynamic dispatch) which follows trivially (using the
rule of consequence) as follows.˘

Val(this, v1)∗Val(c, v2)
¯ ˘

Val(this, v2)∗Val(c, v1)
¯˘

Val(this, v1)∗Val(c, v2)∗this:C
¯ ˘

Val(this, v2)∗Val(c, v1)
¯

Thus, any derived class is essentially free to inherit this method. It
is particularly interesting to explore the consequences of different
implementations of the swap method and the effects on the ability
of derived classes to inherit this method. For example, consider if
we had implemented swap using direct field access on the object,
e.g.

public virtual void swap1(Cell c)
dynamic {Val(this, v1) ∗Val(c, v2)} {Val(this, v2) ∗Val(c, v1)}
static {ValCell(this, v1) ∗Val(c, v2)} {ValCell(this, v2) ∗Val(c, v1)}
{ int tmp = c.get(); c.set(this.val); this.val = tmp; }

The proof obligation to inherit this method would impose a
constraint on any derived class. A better alternative would probably
be to override the method.

A more optimised implementation of swap could directly access
the fields of c as well.

public virtual void swap2(Cell c)
static {Val(this, v1) ∗Val(c, v2)} {Val(this, v2) ∗Val(c, v1)}
{ int tmp = c.val; c.val = this.val; this.val = tmp; }

For the proof obligations to be satisfied, this would effectively
impose a global constraint on all derived classes of Cell, that they
preserve the usage of the val field:10

Val(x, v) ⇔ ValCell(x, v) ∗ValLeft(x) (1)

This kind of constraint is analogous to the condition in other
work (Müller 2002) that derived class invariants cannot restrict

10 Our program verification rules do not directly support this constraining
of derived classes, but this could be trivially added.

class Recell : Cell{
int bak;

define ValRecell(x, v, o) as ValCell(x, v) ∗ x.bak 7→ o

public Recell () dynamic {true} {Val(this, ,)} {}

public inherit int get()
dynamic {Val(this, v, o)} {Val(this, v, o) ∗ ret = v}

public override void set(int x)
dynamic {Val(this, v,)} {Val(this, x, v)}
{ this.bak = this.Cell::get(); this.Cell::set(x); }

public virtual void undo()
dynamic {Val(this, v, o)} {Val(this, o,)}
{ int tmp = this.bak; this.Cell::set(tmp); }
}

Figure 3. The Recell class

the base class invariant. The derived class must define a mean-
ing for the predicate family ValLeft . As we see later, this kind of
constraint prevents many useful subtypes.

5.1 Specialisation: Recell

Now let us consider Recell, a derived class of Cell, which addition-
ally stores the previous value that was set to allow undo. The code
is given in Figure 3. We consider the methods in turn: First, let us
consider the get method. We must show that it is valid to inherit
this method into the Recell class. First, we need to verify the proof
obligation (Inheritance) i.e. to show that the static specification of
the method in Recell refines the Cell static specification. This can
be proved as follows.˘

ValCell(x, v)
¯ ˘

ValCell(x, v) ∗ ret=v
¯

Frame
ValCell(x, v)
∗ x.bak 7→o

ff
ValCell(x, v)
∗ ret=v ∗ x.bak 7→o

ff
Conseq˘

ValRecell(x, v, o)
¯ ˘

ValRecell(x, v, o) ∗ ret=v
¯

This proof does not depend on either the internal representation
of the Cell class or the body of the get method, only the static
specification of the Cell class and the internal representation of the
Recell class.

Second, we need to verify the proof obligation (Behavioural
Subtyping), i.e. we must show that the Recell’s dynamic specifica-
tion of the get method is a valid behavioural subtype of the Cell’s
specification. This can be proved as follows.˘

Val(this, v, o)
¯ ˘

Val(this, v, o) ∗ ret=v
¯

VarElim˘
∃o. Val(this, v, o)

¯ ˘
∃o. Val(this, v, o) ∗ ret=v

¯
Conseq˘

Val(this, v)
¯ ˘

Val(this, v) ∗ ret=o
¯

Note that this proof uses the arity manipulation described in §3.2.
Now, we turn our attention to the set method. The first proof

obligation, (Body Verification), can be proved as follows.

{ValRecell(this, v,)}
{ValCell(this, v) ∗ this.bak 7→ }

tmp = this.Cell::get();
{ValCell(this, v) ∗ this.bak 7→ ∗ tmp = v}

this.bak = tmp;
{ValCell(this, v) ∗ this.bak 7→ v}

this.Cell::set(x);
{ValCell(this, x) ∗ this.bak 7→ v}
{ValRecell(this, x, v)}

class TCell : Cell {
int val2;

define ValTCell(x, v) as ValCell(x, v) ∗ x.val2 7→ v

TCell() dynamic {true} {ValTCell(this,)} {}

public override void set(int x)
dynamic {Val(this,)} {Val(this, x)}
{ this.val2=x; this.Cell::set(x); }

public virtual void check()
dynamic {Val(this, x)} {Val(this, x)}
{ int tmp = this.Cell::get(); if(this.val2 != tmp) crash(); }
}

Figure 4. The TCell code

The proof obligation (Behavioural Subtyping) is proved almost
identically as for the get method.˘

Val(this, v,)
¯ ˘

Val(this, x, v)
¯

VarElim˘
∃v. Val(this, v,)

¯ ˘
∃v. Val(this, x, v)

¯
Conseq˘

Val(this,)
¯ ˘

Val(this, x)
¯

The last proof obligation (Dynamic dispatch), can be shown
simply and is omitted, as is the verification of the undo method.

Interestingly, this class can inherit all three versions of swap:
we only need to provide proofs for swap1 and swap2. For swap1
we must show˘

ValCell(this, v1) ∗Val(c, v2)
¯ ˘

ValCell(this, v2) ∗Val(c, v1)
¯

ValCell(this, v1) ∗Val(c, v2)
∗ this.bak 7→ ∗ this : Recell

ff
ValCell(this, v2) ∗Val(c, v1)
∗ this.bak 7→ ∗ this : Recell

ff

Val(this, v1) ∗Val(c, v2)
∗ this : Recell

ff
Val(this, v2)
∗Val(c, v1)

ff
For swap2 we must satisfy (1), which can done trivially by

defining ValLeft for Recell as this.bak 7→ .

5.2 Restriction: TCell

Now we consider a derived class, TCell, that restricts the behaviour
of its base class. The code is given in Figure 4. It defines a field val2
that is expected to contain the same value as would be returned by
calling get. Every time the set method is called, both representa-
tions are updated, hence the check method should never be able to
call crash.

For this class, we must prove that it is valid to inherit the get
method, (Inheritance):˘

ValCell(x, v)
¯ ˘

ValCell(x, v) ∗ ret=v
¯

Frame
ValCell(x, v)
∗ x.val2 7→v

ff
ValCell(x, v)
∗ ret=v ∗ x.val2 7→v

ff
Conseq˘

ValTCell(x, v)
¯ ˘

ValTCell(x, v) ∗ ret=v
¯

We will omit the proof obligations for the set method. The check
method requires that we prove (Body Verification), which follows.

{ValTCell(this, x)}
{ValCell(this, x) ∗ this.val2 7→ x}
int tmp = this.Cell::get();
{ValCell(this, x) ∗ this.val2 7→ x ∗ tmp = x}
if(this.val2 != tmp) {

{ValCell(this, x) ∗ this.val2 7→ x ∗ tmp = x ∗ tmp 6= x}
{false}crash();{false}

{ValCell(this, x) ∗ this.val2 7→ x ∗ tmp = x}
}
{ValCell(this, x) ∗ this.val2 7→ x ∗ tmp = x}
{ValTCell(this, x)}

class DCell : Cell {
define ValDCell(x, v) as false
define DValDCell(x, v) as ValCell(x, v)

public inherit int get()
dynamic {DVal(this, x)} {DVal(this, x) ∗ ret = x}

also {Val(this, x)} {Val(this, x) ∗ ret = x}

DCell() {} dynamic {true} {DValDCell(this,)}

public override void set(int x)
dynamic {DVal(this,)} {DVal(this, x ∗ 2)}

also {Val(this,)} {Val(this, x)}
{ this.Cell::set(x ∗ 2); }

}

Figure 5. The DCell class

Hence, the method can never call crash when its pre-condition is
met.

Now, we consider inheriting the various swap methods. Firstly,
swap can trivially be inherited. swap1 cannot be inherited:˘

ValCell(this, v1) ∗Val(c, v2)
¯ ˘

ValCell(this, v2) ∗Val(c, v1)
¯

ValCell(this, v1) ∗Val(c, v2)
∗ this.val2 7→ v1 ∗ this : TCell

ff
ValCell(this, v2) ∗Val(c, v1)
∗ this.val2 7→ v1 ∗ this : TCell

ff

Val(this, v1) ∗Val(c, v2)
∗ this : TCell

ff
???
???

ff
Our proof fails because this.val2 7→ v1, so we cannot establish the
post-condition Val(this, v2) ∗ Val(c, v1) as this requires the field
to have been updated to this.val2 7→ v2. Hence, TCell would have
to override the swap1 method.

In addition, this class does not satisfy (1) required by swap2.
The state separate from ValCell depends on the value v, but ValLeft
does not take this as an argument. If this constraint was imposed on
the system, then the TCell class would not be allowed.

5.3 Reuse: DCell

In this example we present a subtype of Cell that is not a well-
behaved subtype in the traditional sense of behavioural subtyping.
We define the class DCell in Figure 5; it is essentially a Cell that
doubles the value it is set to. This breaks the standard substitutivity
property, and hence is not allowed in other verification method-
ologies. However, as we shall see, it can be verified in our proof
system.

We define the predicate family for ValDCell to be false . This
prevents clients calling a DCell using the Cell’s interface. This
reflects that fact that the use of inheritance in DCell is for code
reuse. To inherit the get method we must show the (Inheritance)
and (Behavioural Subtyping) proof obligations. The former can be
proved as follows.˘

ValCell(x, v)
¯ ˘

ValCell(x, v) ∗ ret=v
¯˘

ValCell(x, v) ∗ x:DCell
¯ ˘

ValCell(x, v) ∗ ret=v ∗ x:DCell
¯˘

DVal(x, v) ∗ x:DCell
¯ ˘

DVal(x, v) ∗ ret=v
¯

The latter proof obligation follows directly from the definition of
also (Definition 1).

Consider, the following client code of the DCell class.

public void crash()
dynamic {false} {false}
{ crash(); }

public void f(Cell c, DCell d)
dynamic {Val(c,) ∗DVal(d,)} {Val(c, 5) ∗DVal(d, 10)}
{

class SubRecell : Recell {
Stack ints;

define ValSubRecell(x, v1, v2, l) as
x.ints 7→ i ∗ Stack(i, v1 :: l) ∗ ((l = [] ∧ v2 = v1) ∨ l = v2 ::)

SubRecell() dynamic {true} {Val(this, , ,)}
{ ints = new Stack(); ints.push(0); }

public override int get()
dynamic {Val(this, v1, v2, l)} {Val(this, v1, v2, l) ∗ v1 = ret}
{ return ints.readTop(); }

public override void set(int x)
dynamic {Val(this, v1, v2, l)} {Val(this, x, v1, v1 :: l)}
{ ints.push(x); }

public override void undo()
dynamic {Val(this, v1, v2, w2 :: l)} {Val(this, v2, , l) ∗ v2 = w2}

also {Val(this, v1, v2, [])} {Val(this, v2, , [])}
{ if(ints.length()>1) this.ints.pop(); }
}

Figure 6. Recell with unbounded backup

if(c.set(5).get() != 5) crash();
if(d.set(5).get() != 10) crash();

}

The specification for f amounts to showing that if the arguments c
and d meet their specifications, then the method body never invokes
the crash method. Ordinarily, this would be very hard to establish
as DCell is not normally considered to be a behavioural subtype of
Cell.

However, the power of the approach described in this paper is
that it is possible (and quite simple) to show that the method f
meets it specification. The verification proceeds directly from the
dynamic specifications trivially. The first argument, c, can be any
subtype of Cell that has the Val(c,) predicate. Hence, we cannot
call this with the first argument of type DCell.

Surprisingly, the DCell class can validly inherit the swap1
method, and satisfy the constraint (1) for swap2. The constraint is
trivially satisfied by defining ValLeft for DCell as false . Similarly,
the swap1 method can be inherited trivially, as the specifications
pre-condition is false for this class, so the method will never be
called.

5.4 Altering internal representation: SubRecell

Finally we consider an example where we completely alter how
data is represented in the base class. In Figure 6, we present a
derived class of Recell called SubRecell that has an unbounded
undo capacity. The code uses a Stack to store the values, and does
not update the redundant fields it inherits from Recell; the code is
clearer and simpler by not using the parent fields. As all the meth-
ods are overridden this class can be rather straightforwardly veri-
fied. We must simply show that each method satisfies the rule for
behavioural subtyping (Behavioural Subtyping), and the method
bodies implement the specification (Body Verification).

The method swap can trivially be inherited as it does not depend
on the representation. However, swap1 cannot be inherited as it
assumes the original fields are used. The constraint, (1), required
for swap2 cannot be satisfied by this class.

5.5 Interplay between static and dynamic calls
Interestingly, the set method of Recell becomes considerably
harder to verify if the call to get is turned into a dynamic call,
rather than a direct/super call, that is

void set(int x)
dynamic {Val(this, v,) {Val(this, x, v)}
static {Val(this, v,) ∗Val TORecell(this)} {Val(this, x, v)}
{ int tmp = this.get(); this.bak = tmp; this.Cell::set(x); }

The increased difficulty comes from considering all possible de-
rived classes. If the derived class overrides the behaviour of get
then this code could inflict untold damage! Hence, we must place
a constraint on any method that inherits this code. This is done by
adding Val TORecell to the static pre-condition. We require that
this predicate has the following properties

Val TORecell(this) ∗Val(this, x, v)
⇒ ValRecell(this, x, v) ∗Val FROMRecell(this)

ValRecell(this, x, v) ∗Val FROMRecell(this)
⇒ Val TORecell(this) ∗ V al(this, x, v)

If the derived class alters the representation too much, then it is not
possible to find solutions to these equations. Finding these solutions
can be simplified11 to proving that the following is a tautology.

∀xv. Val(this, x, v)−∗„
ValRecell(this, x, v)∗
∀x′v′.ValRecell(this, x′, v′)−∗Val(this, x′, v′)

«
The outer use of −∗ is the TO predicate, and the inner one is the
FROM predicate. With this additional predicate we can perform
the verification, (Body Verification), as follows:

{Val(this, v,) ∗Val TORecell(this)}
tmp = this.get();

{Val(this, v,) ∗Val TORecell(this) ∗ tmp = v}
{ValRecell(this, v,) ∗Val FROMRecell(this) ∗ tmp=v}
{ValCell(this, v) ∗ this.bak 7→ ∗Val FROMRecell(this) ∗ tmp=v}

this.bak = tmp;
{ValCell(this, v) ∗ this.bak 7→v ∗Val FROMRecell(this)}

this.Cell::set(x);
{ValCell(this, x) ∗ this.bak 7→v ∗Val FROMRecell(this)}
{ValRecell(this, x, v) ∗Val FROMRecell(this)}
{Val(this, x, v)}

6. Conclusions and related work
In this paper we have considered the problem of verifying object-
oriented programs that use inheritance in a number of different
ways. We have defined a proof system that allows a derived class
to (1) simply extend a base class (Recell); (2) restrict its base
class’s behaviour (TCell); (3) alter its base class’s behaviour in a
way incompatible with the standard view of behavioural subtyp-
ing (DCell); and (4) replace the representation of its base class
(SubRecell). Even in the presence of these drastic changes, we are
still able to inherit code without needing to see the actual imple-
mentation. As far as we are aware, no other modular proof system
can verify all of these examples.

Poetzsch-Heffter and Müller (1999) present a logic with rules
with both virtual (dynamic) and implementation (static) specifica-
tions. However, they do not explore the inter-relationship between
the virtual and implementation specifications, and they do not con-
sider how this distinction enables the inheritance of methods with-
out reverification. The interaction with inheritance is the key to the
examples presented in this paper.

The Java Modelling Language, JML (Leavens et al. 2006), also
has similar notions to static (known as code contracts) and dynamic

11 Some might say simplifying to uses of −∗ is not simplifying at all!

specifications (known as non-code behaviour specifications). How-
ever the treatment of these specifications is different. Code con-
tracts can be used to verify method invocations where the exact
method can be statically determined. JML also takes a different ap-
proach to verifying overridden methods. It requires a method in a
derived class to be verified against not only its specification, but
also against all the specifications in its base classes. This has the
advantage of simplifying the framework (i.e. by eliminating proof-
theoretic notions such as refinement), but our work is motivated by
wishing to avoid such repeated verification of overridden methods.

Dhara and Leavens (1996) propose a relaxation of the JML
approach by defining slightly more liberal restrictions on the pre-
and post-conditions of a method in a derived class that ensure
behavioural subtyping.

JML does not currently define restrictions on inheriting meth-
ods. Addressing this, Müller (2002) and later (Müller et al. 2006)
restrict invariants in a derived class to only mention fields/proper-
ties introduced in that class, and the class must preserve the invari-
ants of its base classes. This means that methods can be inherited,
although not all code satisfies the restrictions. For example, this ap-
proach can only deal with the Cell, and Recell examples presented
in this paper.

Ruby and Leavens (2000) allow the invariant of a derived class
to depend on fields from its base class. They provide a series of
conditions for when it is valid to inherit a method into a class. Their
work can deal with Cell, Recell and TCell examples. It still requires
a derived class to satisfy the invariant of its base classes, so it cannot
allow representation changes that are required for SubRecell and
DCell.

Spec]/Boogie (Barnett et al. 2004) also allows the invariant of
a derived class to restrict the invariant of its base class. This means
it can deal with the Cell, Recell and TCell examples. Spec]/Boogie
uses a single, “polymorphic” specification for each method that is
interpreted in one of two ways, one for static/direct dispatch, and
one for the dynamic dispatch. They do not explicitly separate the
specification as we do in this paper, but their approach is clearly
closely related. A polymorphic specification is one containing a
distinguished symbol, typically written “1”, that is replaced with
the expression type(this) for dynamic dispatch, and with the ex-
pression C for the static dispatch, where C is the defining class.

This polymorphism can be justified quite succinctly using our
notion of refinement, as follows (where we write P [e] to mean the
formula P where all occurrences of the symbol 1 are replaced with
the expression e):

{P [C]} {Q[C]} this:C
=⇒ {P [type(this)]} {Q[type(this)]}.

Currently, Spec]/Boogie cannot deal with the SubRecell and DCell
classes as it enforces that a derived class preserves the invariant of
its base class.

In future work, we intend to pursue a more thorough compar-
ison of our approach and the Spec]/Boogie system. In joint work
with others (Parkinson et al. 2007) we propose the classic “gang of
four” design patterns as a benchmark for the verification of object-
oriented code. These patterns often make use of complicated aggre-
gate structures. Class invariant-based approaches, such as Spec],
require significant extensions to handle these structures and their
use (Leino and Schulte 2007). Early experiments suggest that our
approach—using separation logic and abstract predicate families—
requires no extensions to handle aggregate structures.

Note Independent to our work, Chin et al. (2008) suggest in these
proceedings a similar approach to avoiding re-verification. Whilst
working in the more traditional setting of class invariants, they
propose a very similar use of static/dynamic method specifications
in a separation logic. That two groups independently proposed the

distinction between static and dynamic specifications is perhaps
encouraging as to the naturalness of the basic idea.

Acknowledgments
We should like to thank Wei-Ngan Chin and Sophia Drossopoulou
for discussions on this work, and Gary Leavens, Rustan Leino,
Peter Müller, Clyde Ruby and Wolfram Schulte for discussions
about related work.

References
M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.

Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, 2004.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec] programming
system: An overview. In Proceedings of CASSIS, pages 49–69, 2005.

B. Biering, L. Birkedal, and N. Torp-Smith. Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM TOPLAS, 2007. To appear.

G. M. Bierman, M. J. Parkinson, and A. M. Pitts. MJ: An imperative core
calculus for Java and Java with effects. Technical Report 563, University
of Cambridge Computer Laboratory, 2004.

W.-N. Chin, C. David, H. Nguyen, and S. Qin. Enhancing modular OO
verification with separation logic. In Proceedings of POPL, 2008.

W. R. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In
Proceedings of POPL, 1990.

K. K. Dhara and G. Leavens. Forcing behavioral subtyping through speci-
fication inheritance. In Proceedings of ICSE, 1996.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proceedings of PLDI, 1993.

M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction
semantics for classes and mixins. Technical Report TR-97-293, Rice
University, 1997. Corrected June, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In Proceedings of POPL, pages 14–26, 2001.

N. Krishnaswami, J. Aldrich, and L. Birkedal. Modular verification of the
subject-observer pattern via higher-order separation logic. In Proceed-
ings of FTfJP, 2007.

G. T. Leavens and D. A. Naumann. Behavioral subtyping is equivalent
to modular reasoning for object-oriented programs. Technical Report
TR 06-36, Iowa State University, 2006.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a
behavioral interface specification language for Java. SIGSOFT Software
Engineering Notes, 31(3):1–38, 2006.

K. R. M. Leino. Data groups: Specifying the modification of extended state.
In Proceedings of OOPSLA, pages 144–153, 1998.

K. R. M. Leino and P. Müller. A verification methodology for model fields.
In Proceedings of ESOP, 2006.

K. R. M. Leino and W. Schulte. Using history invariants to verify observers.
In Proceedings of ESOP, 2007.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
TOPLAS, 16(6):1811–1841, 1994.

P. Müller. Modular Specification and Verification of Object-Oriented Pro-
grams, volume 2262 of LNCS. Springer-Verlag, 2002. PhD thesis, Fer-
nUniversität Hagen.

P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for
layered object structures. Science of Computer Programming, 62:253–
286, 2006.

A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates
and mutable ADTs in Hoare Type Theory. In Proceedings of ESOP,
2007.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Proceedings of CSL, pages 1–19,
2001.

M. Parkinson, G. Bierman, J. Noble, and W. Schulte. Contracts for patterns.
Unpublished note, 2007.

M. J. Parkinson. Local Reasoning for Java. PhD thesis, Computer Labora-
tory, University of Cambridge, 2005. UCAM-CL-TR-654.

M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In
Proceedings of POPL, pages 247–258, 2005.

A. Poetzsch-Heffter and P. Müller. A programming logic for sequential
Java. In Proceedings of ESOP, volume 1576 of LNCS, 1999.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of LICS, pages 55–74, 2002.

C. Ruby and G. T. Leavens. Safely creating correct subclasses without
seeing superclass code. SIGPLAN Not., 35(10):208–228, 2000.

H. Yang. Local reasoning for stateful programs. PhD thesis, University of
Illinois, July 2001.

A. Semantics of proof system
We give the semantics of our logic with respect to a state, σ,
an interpretation of predicates, I, and an interpretation of logical
variables, L. An interpretation of predicates maps predicate names
to predicate definitions, where predicate definitions map a list of
values to a set of states, that is:

I : Preds → (Vals∗ → P(Σ))
L : Vars → Vals

We define predicates in the standard way for a predicate calcu-
lus:

σ, I,L |= α(X) ⇐⇒ σ ∈ (I(α)(L(X)))

Definition 6. I |= ∆ iff for all σ and L then σ, I,L |= ∆ holds

Given this definition, we can prove that any set of disjoint
abstract predicate family definitions is satisfiable.

Lemma 7. For any set of disjoint definitions, A1 . . . An, there
exists an environment, I, such that I |= JA1K∧. . .∧JAnK, provided
that if Ai defines αC and Aj defines αC, then i = j.

Next, we define the semantics of the judgements of the proof
system. We use the standard semantics of a triple for separation
logic, that is, if the pre-condition holds of the start state, then (1)
the program will not fault (e.g. access unallocated memory); and
(2) if the program terminates, then the final state will satisfy the
post-condition.

Definition 8. I |=n

˘
P

¯
s

˘
Q

¯
iff (S, H), I,L |= P then

∀m ≤ n.

• S, H, s −→m fault does not hold; and
• if S, H, s −→m S′, H ′, skip then (S′, H ′), I,L |= Q.

Note that the step index n is used to deal with mutual recursion
in method definitions.

We define I |=n Γ to mean all the methods given in Γ meet
their specifications for at least n steps.

Definition 9 (Semantics of method verification).
I, Γ |=n+1 C.m(x) : {P} {Q} iff
I |=n Γ ⇒ I |=n+1

˘
P ∧ this : C

¯
mbody(C, m)

˘
Q

¯
I, Γ |=n+1 C::m(x) :

˘
S

¯ ˘
T

¯
iff

I |=n Γ ⇒ I |=n+1

˘
S ∧ this 6= null

¯
mbody(C, m)

˘
T

¯
I |=0 Γ always holds.

I |=n+1 Γ iff ∀spec ∈ Γ. I; Γ |=n+1 spec

We can now define the precise semantics of a judgement as
follows.

Definition 10. ∆; Γ |= {P}s{Q} iff for all I and n, if I |= ∆
and I |=n Γ, then I |=n+1

˘
P

¯
s

˘
Q

¯
.

That is, for all interpretations satisfying the predicate definitions
∆ and assuming all the methods executed for at most n steps meet
their specification given by Γ, then the statements s meet their
specification for at least n + 1 steps.

The judgements for statement and method verification are sound
with respect to the semantics.

Lemma 11.

1. If ∆; Γ ` {P}s{Q} then ∆; Γ |=
˘
P

¯
s

˘
Q

¯
.

2. If ∆; Γ ` M in E then
∀I. if I |= ∆ then ∀n∀spec ∈ M. I; Γ |=n spec

Our notion of refinement respects the weakening of assumptions
and, hence, we can verify classes in a weaker context.

Lemma 12.

1. If ∆′ ⇒ ∆ and ∆ `
˘
P1

¯ ˘
Q1

¯
=⇒

˘
P2

¯ ˘
Q2

¯
,

then ∆′ `
˘
P1

¯ ˘
Q1

¯
=⇒

˘
P2

¯ ˘
Q2

¯
.

2. If ∆; Γ ` L and ∆′ ⇒ ∆, then ∆′; Γ ` L.

Finally, we state and outline the soundness proof for the pro-
gram verification rule.

Theorem 13. If a program and main body s can be proved using
the program verification rule, then ∀I, n. I |=n

˘
true

¯
s

˘
true

¯
.

Proof. Using Lemma 12.2, we can simplify the rule to the follow-
ing.

∆; Γ ` L1 · · · ∆; Γ ` Ln ∆; Γ ` {true}s{true}
` L1 . . . Lns

where Γ = specs(L1 . . . Ln) and ∆ = apf (L1) ∧ · · · ∧ apf (Ln).
This rule assumes that ∆ is satisfied, which we know by

Lemma 7. The rest of the details are standard for the soundness
of an object-oriented logic for partial correctness, for example
see (Parkinson 2005).

