A Computational I nterpretation of the Ap-calculus

G.M. Bierman

University of Cambridge

Abstract. This paper proposes a simple computational interpretafi®arigot’s
Ap-calculus. The\u-calculus is an extension of the typgetalculus which cor-
responds via the Curry-Howard correspondence to clademgial Whereas other
work has given computational interpretations by transtathe\p-calculus into
other calculi, | wish to propose here a direct computatiomerpretation. This
interpretation is best given as a single-step semanticshym particular, leads
to a relatively simple, but powerful, operational theory.

1 Introduction

It is well-known that the typed-calculus can be viewed as a term assignment for nat-
ural deduction proofs in intuitionistic logid (). Consequently the set of types of all
closed\-terms enumerates all intuitionistic tautologies. This is known asGtrry-
Howard correspondence, or the formulae-as-types principle. Thus one kaof &l
computational interpretation of.. A natural question is whether there is such a com-
putational interpretation of classical logiCl(). A first step is to devise a well behaved
natural deduction formulation faCL and give a term assignment. A number of pro-
posals have been made but recently Parigot [9] introduced a extensibe tfpged
A-calculus, which he called thgu-calculus. The set of types of all closeg-terms
enumerates all classical tautologies and the calculus is particularly well belsatisel
fying both strong normalisation and confluence.

However two questions remain. First, what does the extension td;tkealculus
mean computationally? Secondly, if thg-calculus is extended in much the same way
as the\-calculus is extended to yield PCF, what is its operational theory? Ofeour
the answer to the second question is heavily dependent upon the anshwerfiistt
In this paper | suggest that thg:-calculus has a natural computational reading: it is
a \-calculus which is able to manipulate the runtime environment viaxiedieatch
and throw operators. This can easily be expressed using evaluationtsomigsh are
common in work on control operators.

Morris-style contextual equivalence is commonly accepted as the natuiahnot
of equivalence for functional languages. There has been significant effoevising
alternative characterisations of contextual equivalence which are more amérable
constructing proofs. For PCF the common solution is to use somedf (applicative)
bisimilarity [3]. However these techniques do not often extend todaggs with con-
trol. In §6 | give a simple notion of program equivalence, based on transitioas in
abstract machine, which coincides with contextual equivalence.

2 Parigot’s Ap-calculus

In his seminal paper Parigot introduced an extension of the txpealculus, which he
called the\u-calculus. The extension is such that terms no longer have a singe typ
but asequence of types, one of which is said to be the active type and the rest which are
said to be passive. | shall not go into great detail here—the reader is refeany bne
of a number of good introductions [1, 7, 8].

Types are given by the grammar:= L | ¢ — ¢, and rawAu-terms are given by

M=z Variable
| Az:¢.M Abstraction
| MM Application
| [a:¢]M Passivation
|

pa: ¢.M Activation,

wherez is taken from a countable set dfvariablesy is a well-formed type (formula)
anda is taken from a countable set pfvariables.

Typing judgements are of the form, > M: ¢, X', wherel is a set of pairs of\-
variables and types writtert ¢, M is a term from the above grammar abddenotes a
set of pairs ofu-variables and types writtent p (thus¢ is the active type). The typing
rules are as follows.

—— Identity
Ie:¢ppx:¢p, X

x> M:9p, ¥ I'sM:¢ =9, X I'>N:¢, XY
—z —E
I'vAe:p.M:¢p = ¢, X I'> MN:y, X

I'vM:¢, % I'>sM:1 a:¢, %
Passivate — Activate
I'bla:¢p]M: L a:¢, % I'>pa:p.M: ¢, X

The new rules are thBassivate and Activate. The former takes a term whose active
type is¢ (where¢ is not L) and passivates it, i.e: becomes a passive type (and is
hence labelled with). The resulting term has an active typeiof The Activate rule
works similarly but in the reverse direction.

There are a number of reduction rules associated with\ thealculus. In full they
are as follows.

(Az: . M)N ~p3 M[z := N

pa: g.fa: pIM ~p5 M wherea ¢ pFv(M)
(pa:¢p = Y.M)N ~>. pa:tp.Mla: ¢ = Y]P < [a:] PN]
Ax. Mz~ M wherex ¢ FV(M)

[a: @lub: ¢.M ~>y Ma/b]

In the seconds-rule, uFv (M) denotes the set of freevariables in the termd/ (I shall
omit its rather obvious definition). In the commuting conversien.] | have used the

! This ensures that every term has an active type. It is pessillive a formulation where terms
need not have an active type.

notationM [N <« P] to denote the termd/ whereall occurrences of the subterivi

have been replaced by the teflin the last-rule, M[a/b] denotes the term/ where
all free occurrences of the-variableb are replaced wittu. All forms of substitution
are assumed to be non-capturing.

3 A Computational Interpretation

As it stands it is unclear what this move @ has given us—clearly we have terms
at new types and new terms at old types, but what does this mean compublg®ional
In order to find an answer | shall consider the operational behaviour afafcelus,
namely the execution of closed terms (programs) to canonical values.

Before presenting the operational behaviour | need first to introdune standard
terminology from work on control operators, e.g. [2]. To formalise notion of an
evaluation order, Felleisemy. cit.], defined anevaluation context. This is essentially
a term with a single ‘hole’ in it, writterE[e] (this will be defined formally in the next
section). The result of placing a term/, in that hole is writtenE[A/]. Evaluation
contexts are devised so that every closed tevi is either a canonical value or can
be writtenuniquely as E[R], whereR is a redex. The context[e] can be thought of
as representing the rest of the computation that remains to be dondkdfites been
reduced. In this sense it can be seen asctimtinuation of R or, more simply, the
current continuation.

Evaluation is then written a&&[R],£) = (M',£'), wheref is a function from
p-variables to evaluation contexts—the need for this will become cleaririipertant
evaluation rules are

(Elpa.M),€) = (M, € & (a — E[s]))
(E[[a]M], £ & (a — E'[o])) = (E'[M],E ¥ (a — E'[o]));

where€ W (a — E[e]) denotes the extension of the functiénwith the mapping

a — Ele]. Thus in the first reduction rule the current continuation is captucatih’),
added t&€ and indexed withu. In the second reduction rule the appropriate indexed con-
tinuation is taken frong, replacing the current continuation (i.e. the tekmis ‘thrown
back’ to an earlier continuation). In summary, thetivate and Passivate rules are
interpreted as indexed catch and throw operators, respectively.

4 pPCF

Rather than develop an operational theory forXpecalculus, | shall first enrich it with
natural numbers, a conditional, pairs and recursion. This is essentia#ly Ong and
Stewart calluPCF [8]. The next step is to choose an evaluation strategy. Mostavork
control operators has consideredatl-by-value strategy and to aid comparison | shall
adopt the same. It is important to note that what is developed in thi®seztn easily
be adjusted to reflect a call-by-name strategy; some details are sketchedTihis

is in contrast with Ong and Stewart's framework, which requires @it changes
to move from call-by-name to call-by-value (some details are in theiepgg). For

completeness the typing rules for the new constructors are given below.

I'>M:int, ¥ Lfigp—>op,x:ppM:0, X I,f:p—>¢>N:9p X
I'>n:int, X I'>suc(M): int, ¥ I'>letrec f = Ae.MinN:¢, ¥

I'>M:int, X I'>N:¢, X I'>P:¢, %

I'> ifz M then N else P: ¢, X
I'sM:¢, ¥ >Ny Y I'sMipxy,Y TI'sMipxy,X
I's(M,N):¢p x9p, X I'vfst(M):¢,X I'bsnd(M):¢, X

The syntactic classes of values, evaluation contexts and redexes are defivlbuhes f

Values vi=n|Az.M | (v,v)
Evaluation Contexts ::= e | vE | EM
| (B, M) |{v, E) | fst(E) [snd(E)
| suc(E)|ifz E then M else M
Redexes R ::= vv | fst(v) | snd(v)

| suc(v) |ifzvthen M else M
| letrec f = Ax.M in N |[a]M | pa.M

The fundamental property of evaluation contexts is the following.

Lemma 1. Every closed term, M, iseither avalue, v, or isuniquely of the form E[R],
where E[e] is an evaluation context and R is a redex.

We can now write out the (single-step) reduction rules in full, whiehas follows.

(E[(Az.M)o],€) = (E[M[z =]}, €)
(Elfst({v, w))], €) = (E[v], £)
(Elsnd({v, w))], £) = (E[w], €)
(Efsuc(n)],€) = (E[n+1],€)
(E[ifz 0 then M else N], &) = (E[M],€)
(E[ifz (n + 1) then M else N], &) = (E[N], €)
(Elletrec f = Az.M in N, &) = (E[N[f := Az.letrec f = Az.M in M]],£)
(Elua.M],€) = (M, €8 (a ~ Elo)))
(B[a]M), £ & (a — E'o]) = (E'M],€ ¥ (a > E'Jo]))

5 Examples

To demonstrate the expressive power of this computational interipretaghall show
the dynamics of particular ML-like exception handling and ‘callcc’ priveis are pre-
served by their encodings intd®CF (the encodings are due to Ong and Stewart [8]).

5.1 Exception Handling

ML can be extended with exceptions in a number of ways. One such methodvweas g
by Gunteret al. [5] and simplified by Ong and Stewart [8]. Typed exceptions are iden-
tified with names, thus typing judgements (for ML) are now of the fdrpA > M: ¢
wherel” is the usual typing environment andlis the typing environment for the ex-
ception names. Two new operators are added to ML whose typing rules at®as fo

'y Ab M: A I'yAja:A>M:A— B I'yAja:A>N:B

I'; Aa: A> raise(a, M): B I'; A> handle(a, M,N): B

The intended interpretation is that the first rule evaluafet® a valuev and then raises
an exception nameadassociated witl. The second rule evaluatés to a value (say)
and then evaluates. If N evaluates to a value then this is the overall result, but if it
raises an exception nameavith a valueu, then this is applied to. Given as reduction
rules the intended interpretation is as follows.

handle(a,v, w) ~ w (a & FN(w))
handle(a,v, E[raise(a, w)]) ~ vu (a ¢ FN(v, u))

These operators can be translated pRCF as follows (wheréis a freshu-variable).

[raise(a, M)] = (Az.pub.[a]e)[M]
[handle(a, M, N)] < b [b][M](ua. [D][N])

Itis relatively easy to show that this translation preserves the opeahtiehaviour, e.g.

[handle(a, M, E[raise(a, N)])], €)

pb. (0] [M] (pa. [D) E[(Az. pe.[a]x) [N]]), €)

[M](pa-BIE[(Az.puc.[a]e)[N])), £ & {b— o})

v(pa.p]E[(Az.pc.[a]z) [N]]), € & {b— o})

[1E[(Az.puc.a]z)[N]], € & {a — (ve),b — e})

(M pc.[a])[N]], € & {a — (ve),b — o})
pc.lalu)], €W {a — (ve),b > e})

u, 5U{ab—>(vo) b+ e, cr> Ele]})

vu, EW {a — (ve),b— o, c> Ee]})

5.2 Call-with-current-continuation (callcc)

ML can be extended with operators to manipulate first-class continuati@aisumber

of ways. | shall consider a proposal again due to Guetet. [5] and simplified by

Ong and Stewart [8]. Here (typed) continuations are associated with namgso

typing judgements are of the forfy A M : A, whereA is the typing environment for
continuation names. Three new operators are added to ML, whose typésgane as
follows.

I'sAbM:(A—B)— A 'y Ao M: A I'yAja: A>M: A

I'; A callee(M): A I'; Aya: Av abort(a, M): B I'; A set(a, M): A

The callcc operator applies the terd/ to an abstraction of the current continuation.
The set serves as a delimiter for continuations, anddhert discards the current con-
tinuation (delimited by:). Their intended operational behaviour is as follows.

set(a, E[abort(a, M)]) ~ M (a & FN(M))
set(a,v) ~ v (a & FN(v))
E[callce(M)] ~ set(a, E[M (Az.abort(a, E[z]))])

Ong and Stewart provided a translation of these operatorgR@F, which is as fol-
lows.

[callee(M)] e pa.[al([M](Az.ub.[a]z))
[abort(a, M)] e ub.[a][M] whereb & urv([M])
[set(a, M)] € pa.[a][M]
Again itis simple to check that this translation preserves the operabehaliour, e.g.

[set(a, E[abort(a, M)])], E)

(

(na [][[a][M]], €)
2%[[a][M]), € W {a > o})

(

o
=

€

=
= ([a][M],E¥{a— e,b— E[e]})
= ([M],EW{a+—> e,b+— E[e]})

5.3 Pairing

It is easy to verify thaty x ¢ = —(¢ — —¢) in CL. This logical equivalence can be
used to simulate pairing inPCF. The constructor and deconstructors are encoded as
follows 2

pair € Am:p An A (¢ — (p > L)).fmn
fst = Ap.pa.p(Az.pb.[a]z)
snd & Ap.pa.p(Ay.Az.[a]z)

It is left to the reader to verify that these encodings satisfy the expepecitonal
behaviour.

6 Operational Theory

An implementation based on the reduction rules givefdirwould work as follows.
Take atermM/: if itis a value then we are done; if not it can be given uniquelyZgg)].

One takes the relevant reduction step (determine®)¥the resulting term is either

a value, in which case we are done, or it has to be re-written again as an evaluatio
context and a redex. This process is repeated until a value is reached. Timaiaont
intermediate step of rewriting a term into an evaluation context andexneduld be
inefficient in practice and is quite cumbersome theoretically. Consequesiitill give

a new set of reduction rules where the context and the redex are actuallptséepar

2 A similar encoding using control operators was given by f@r{#].

Reduction rules are now of the forf§, M,£) — (S', M',£"), whereS is a stack of
evaluation frames, which are defined as follows.

Fi=eM|ve |(e,M)]|(v,e)
| fst(e)|snd(e)]|suc(e)|ifz then M else M

(Clearly& is now a function fromu-variables to stacks.) The reduction rules essentially
describe the transitions of a simple abstract machingull they are as follows.

(F'[o] :: S,v,E) — (S, F[v],€)

(S, MN,E) — ((eN) :: S, M,) M not a value
(S,uN,E) — ((ve) = S,N, E) N not a value
(S, (. M)v &) — (S, M[z :=v],€)
(S,{M,N),E) — ({(&,N) :: S, M,E) M not a value
(S (NY, &) — ((v,@) : S,N,) N not a value
(S, fst(),E) — (fst(®):: S, M,E) M not a value
(S, fst((v,w)), &) — (S,v,E)
(S, snd(),E) —> (snd(e):: S, M,E) M not a value
(S;snd((v, w})), £) — (S, w,£)
(S, suc(),E) — (suc(e) :: S, M, E) M not a value
(S, suc(n), €) — (S, +1,€)
(S,ifz M then N else P,£) —» ((ifz then N else P) :: S, M, £)M not a value
(S,ifz0 then M else N, &) — (S, M,)
(S,ifz (n+ 1) then M else N, &) — (S, N, €)
(S,letrec f = Ae.M in N,E) — (S, N[f := Az.letrec f = Ae.M in M|,)
(S,pa.M,E) — (|, M,E ¥ (a — 5))

(S,[a]M, €W (a—T)) — (T, M, (a — T))

An example may make these reduction rules clearer. Consider an instancécafltoe
reduction rule given ig5.2.

set(a, (Ax.N)(abort(a, M))) ~ M

The left hand term is translated to theCF-termua.[a](Az.[N])(ub.[a][M]), which
reduces as follows.

(S, pa.[a](Az.[N]) (ub.[a][M]),)

— ([l, [a](Az.[N])(ub.[a][M]), EW{a— S})

— (S, (Az.[N]) (pb.[a][M]), EW{a— S}

— ((()\a?[[N]])o) S, pb.Ja][M], EW{a— S}

— ([], [a][M], EW{a— S,b— (A\z.[N])e) :: S})
— (S, [M], EW{a— S,b— (Ax.[N])e) :: S})

It is easy to define a functioh&! which converts a given evaluation contekt,to a
stack of frames, and a functigii@ M which takes a stack of frames, S, and a tek,
and converts the stack back to an evaluation context before inséitigpr example

(. M)0)P)Q!E (Ax.M)e) = ((oP) 5= ((0Q) :: []))
(Az.M)e) = ((oP) :: ((oQ) = [))@N £ (A M)N)P)Q
The two sets of reduction rules can be related in the following sense.

% Harper and Stone [6] give similar transition rules in theialgsis of SML and Pitts [10] has
used similar rules in work on functional languages with dyitaallocation of store.

Proposition 1 (SQM, &) = (N,&')iff 38", M'.N = S'@QM', (S, M,[1) —* (', M',T ')
An important fact (first discovered by Pitts [10] in a different setliisghat the set
def

Ne= {(S, M, E) | v, £'.(S, M, &) —™ ([I,v,&)}

has a direct, inductive definition which is as follows.

(S, Flv], &)\
(v, €N —_——
! (F[o] :: S, v, E)\¢
((oN) = S, M, E)Ny ((ve) =2 S, N, E)N
M not avalue ——— — M not avalue
(S,MN, &)\ (S,vN,)N\,
(S, M[z :=v], &)\ (S,N[f := Az.letrec f = Az.M in M, E)\
(S, A\x.M)v, E)\ (S, letrec f = Az. M in N, E)N\,
({0, N) :: S, M, E)Ny ((v, @) S, N, E)N
M not a value N not a value
(S,(M,N), &)\ (S, (v, N}, E)N\y
(fst(®) :: S, M, E)N\ (S, v, &)\
M not a value
(S, fst(M), E)N\y (S, fst({v, w)), E)\
(snd(e) xS, M, &), (S, w, &)\
M not a value
(S,snd(M),)\ (S, snd((v,w)), E)\y
(T, M,EW (a—T))\ I, M, €W (a— S))\
(S,[a]M,EW (a—T))\ (S, pa.M, E),

Given two termsM and N such thaf) > M: ¢, X and() > N: ¢, X, they are said to be
ciu-similar, written M <4 - N, just whenvS,&. if (S, M, &)\, then(S, N, &) \..
They are said to beiu-equivalent, written A/ ~4 »» N just whenM <, s N and
N <4, 5 M. Both these relations are extended to open terms in the obvious way.

This notion of equivalence is quite refined, consider the followinggefwheref?
is a looping term, which can be defined using the recursion operator).

e pa.la](Ay.pc.[a](Ax.ifz y then §2 else 0))

Ty % Az [0](Ay.pc.[b](\z.ifz y then 12 else 0)2))z)
It is easy to verify thaflin ~;,. Ton for all natural numbersa. However they araot
ciu-equivalentag|(\s.s(s1))e], T1, 0)\, butitisnot the case thaf (As.s(sl))e], T2, 0)\..
This is an important example & andT: are equivalent given the definition of ap-
plicative bisimilarity by Ong and Stewart [8]. (Their notion of inislarity is hence not
a congruence.)

We can make the following definitions.

(M,€) § (v,€") E (M, &) =" (v,)and(v, ') %
def

(M: 8) I = Elvyg,'(M7g) 4 (U:SI)

Let C be a context, which is aAPCF-term with (possibly many) hole(s) in it (not to be
confused with an evaluation context). We say that two tetfnand N arecontextually
equivalent, written M/ ~ N, whenV(C, E.(C[M],€) | iff (C[N],&) | . In other words,
two terms are contextually equivalent if no larger program can tell them apart.

The two terms given abovd(andT5) are not contextually equivalent, as the con-
text (As.s(s1))e distinguishes them. Clearly this notion of contextual equivalence is
highly desirable but awkward to work with given the quantificatioeroall contexts.
However the notion of ciu-equivalence is more usable and an interestaxiign is in
what sense they are related. In fact we find that they coincide!

Theorem 1. VM, N.M ~ N iff M ~ N.

Proof. The proof is adapted from the standard one for purely functional lareguage,
for example, the chapter by Pitts [11]). It uses a variant of Howe’s naetho

This means that to prove two terms contextually equivalent we need oshotw that
they are ciu-equivalent, which is significantly easier. For example, itriple to show
the following ciu-equivalences.

(Ax.M)v ~ M[z := v]
pa.falM ~ M a & urFv(M)
(pa.M)N =~ pb.MJ[a]P <= [b]PN]

For example, the second equivalence holds by the assumptian¢hatv (M) and by
observing

(S, M, € (a— S\,
(0, [alM, €W (a = S)\
(S, pa-[a] M, E)\

7 Call-by-Name

This paper has so far considered only call-by-value computation. Howeigevéry
simple to provide a computational interpretation for a call-by-navaéuation strategy.
The main difference is in the (new) definition of values, evaluationecxdatand redexes,
which are as follows.

Values va=n|Ae.M| (M, M)
Evaluation Context& ::= e | EM |fst(E) | snd(E) | suc(E) | ifz E then M else M

Redexes R ::= vM | fst(v) | snd(v) | suc(v) | ifz v then M else M

recz.M | [a]M | pa.M

The evaluation rules are as before except for the following.

(E[(Ax.M)N], &) = (E
(EIfst((M, N))].£) = (B
(Elsnd(M. N))].€) = (E
(Efreca.M], &) = (E

The development of the corresponding operational theory followglgidisat outlined
in §6. The differs sharply from the treatment given by Ong and Stewart [} have
to introduce completely new reduction rules to move from a call-by-riamaecall-by-
value setting.

8 Conclusion

In this paper | have given a simple computation interpretation of\fiaealculus: it

is a A-calculus which is extended with indexed operators to manipulate thanein
environment. This is maybe not too surprising as Griffin [4] hassshthe close re-
lationship between classical logic and languages with control. This nettppn can

be expressed as a single-step reduction semantics using environmertscdntiirn

| gave an equivalent semantics expressed as steps of a simple abstract mauicime, w
eliminated the need for the evaluation contexts. Using this simpkeaaibsnachine it

is possible to define a notion of program equivalence based on a temnimekation
which coincides with a natural definition of contextual equivalence.

Clearly the work by Ong and Stewart [8] is most closely related to thatrtego
here. Their thesis is thatPCF is a foundational language for call-by-value functional
computation with control and this paper can be seen as further evidence ttaihat
However | would claim that the operational treatment given here is mariiug, more
flexible (in that different calling mechanisms can be handled easily) and leadadre
refined notion of program equivalence.

References

1. G.M. BIERMAN. A classical linean-calculus. Technical Report 401, Cambridge Computer
Laboratory 1996.

2. M. FELLEISEN. The theory and practice of first-class prompts. POPL 1988.

3. A.D. GoRrDON. Bisimilarity as a theory of functional programming: Mioéurse. Technical
Report NS-95-2, BRICS, Department of Computer Sciencesddsity ofArhus, July 1995.

4. T.G. RIFFIN. A formulae-as-types notion of control. POPL 1990.

5. C.A. GUNTER, D. REMY, AND J.G. RECKE. A generalisation of exceptions and control
in ML-like languages. FPCA 1995.

6. R. HARPER AND C. STONE. An interpretation of Standard ML in type theory. Technical
Report CMU-CS—-97-147, School of Computer Science, Cagridgilon University, June
1997.

7. M. HOFMANN AND T. STREICHER Continuation models are universal fap-calculus.
LICS 1997.

8. C.-H.L. ONG AND C.A. STEWART. A Curry-Howard foundation for functional computa-
tion with control. POPL 1997.

9. M. ParIGOT. MAp-calculus: an algorithmic interpretation of classicalunat deduction.
LPAR 1992. LNCS 624.

10. A.M. PTTs. Operational semantics for program equivalence. Slides fralk given at
MFPS, 1997.

11. A.M. PiTTs. Operationally-based theories of program equivalenc&ermantics and Logics
of Computation, CUP, 1997.

