
A Computational Interpretation of the ��-calculus

G.M. Bierman

University of Cambridge

Abstract. This paper proposes a simple computational interpretationof Parigot’s��-calculus. The��-calculus is an extension of the typed�-calculus which cor-
responds via the Curry-Howard correspondence to classicallogic. Whereas other
work has given computational interpretations by translating the��-calculus into
other calculi, I wish to propose here a direct computationalinterpretation. This
interpretation is best given as a single-step semantics which, in particular, leads
to a relatively simple, but powerful, operational theory.

1 Introduction

It is well-known that the typed�-calculus can be viewed as a term assignment for nat-
ural deduction proofs in intuitionistic logic (IL). Consequently the set of types of all
closed�-terms enumerates all intuitionistic tautologies. This is known as the Curry-
Howard correspondence, or the formulae-as-types principle. Thus one can talk of a
computational interpretation ofIL. A natural question is whether there is such a com-
putational interpretation of classical logic (CL). A first step is to devise a well behaved
natural deduction formulation forCL and give a term assignment. A number of pro-
posals have been made but recently Parigot [9] introduced a extension of the typed�-calculus, which he called the��-calculus. The set of types of all closed��-terms
enumerates all classical tautologies and the calculus is particularly well behaved, satis-
fying both strong normalisation and confluence.

However two questions remain. First, what does the extension to the��-calculus
mean computationally? Secondly, if the��-calculus is extended in much the same way
as the�-calculus is extended to yield PCF, what is its operational theory? Of course
the answer to the second question is heavily dependent upon the answer to the first.
In this paper I suggest that the��-calculus has a natural computational reading: it is
a �-calculus which is able to manipulate the runtime environment via indexed catch
and throw operators. This can easily be expressed using evaluation contexts which are
common in work on control operators.

Morris-style contextual equivalence is commonly accepted as the natural notion
of equivalence for functional languages. There has been significant effort in devising
alternative characterisations of contextual equivalence which are more amenablefor
constructing proofs. For PCF the common solution is to use some form of (applicative)
bisimilarity [3]. However these techniques do not often extend to languages with con-
trol. In x6 I give a simple notion of program equivalence, based on transitions inan
abstract machine, which coincides with contextual equivalence.

2 Parigot’s ��-calculus

In his seminal paper Parigot introduced an extension of the typed�-calculus, which he
called the��-calculus. The extension is such that terms no longer have a single type
but asequence of types, one of which is said to be the active type and the rest which are
said to be passive. I shall not go into great detail here—the reader is referred to any one
of a number of good introductions [1, 7, 8].

Types are given by the grammar� ::= ? j �! �, and raw��-terms are given byM ::= x Variablej �x:�:M Abstractionj MM Applicationj [a:�]M Passivationj �a:�:M Activation;
wherex is taken from a countable set of�-variables,� is a well-formed type (formula)
anda is taken from a countable set of�-variables.

Typing judgements are of the form,� . M :�;�, where� is a set of pairs of�-
variables and types writtenx: ,M is a term from the above grammar and� denotes a
set of pairs of�-variables and types writtena:' (thus� is the active type). The typing
rules are as follows. Identity�; x:� . x:�;��; x:� . M : ;� !I� . �x:�:M : �! ;� � . M :�! ;� � . N : �;� !E� . MN : ;�� . M :�;� Passivate� . [a:�]M :?; a:�;� � .M :?; a:�;� Activate� . �a:�:M : �;�
The new rules are thePassivate andActivate. The former takes a term whose active
type is� (where� is not?) and passivates it, i.e.� becomes a passive type (and is
hence labelled witha). The resulting term has an active type of?.1 TheActivate rule
works similarly but in the reverse direction.

There are a number of reduction rules associated with the��-calculus. In full they
are as follows.(�x:�:M)N ;� M [x := N]�a:�:[a: �]M ;� M wherea 62 �FV(M)(�a:�! :M)N ;c �a: :M [[a: �!]P ([a:]PN]�x:Mx ;� M wherex 62 FV(M)[a:�]�b: �:M ;� M [a=b]
In the second�-rule,�FV(M) denotes the set of free�-variables in the termM (I shall
omit its rather obvious definition). In the commuting conversion (;c) I have used the

1 This ensures that every term has an active type. It is possible to give a formulation where terms
need not have an active type.

notationM [N (P] to denote the termM whereall occurrences of the subtermN
have been replaced by the termP . In the last�-rule,M [a=b] denotes the termM where
all free occurrences of the�-variableb are replaced witha. All forms of substitution
are assumed to be non-capturing.

3 A Computational Interpretation

As it stands it is unclear what this move toCL has given us—clearly we have terms
at new types and new terms at old types, but what does this mean computationally?
In order to find an answer I shall consider the operational behaviour of thecalculus,
namely the execution of closed terms (programs) to canonical values.

Before presenting the operational behaviour I need first to introduce some standard
terminology from work on control operators, e.g. [2]. To formalisethe notion of an
evaluation order, Felleisen [op. cit.], defined anevaluation context. This is essentially
a term with a single ‘hole’ in it, writtenE[�] (this will be defined formally in the next
section). The result of placing a term,M , in that hole is writtenE[M]. Evaluation
contexts are devised so that every closed term,M , is either a canonical value or can
be writtenuniquely asE[R], whereR is a redex. The contextE[�] can be thought of
as representing the rest of the computation that remains to be done afterR has been
reduced. In this sense it can be seen as thecontinuation of R or, more simply, the
current continuation.

Evaluation is then written as(E[R]; E)) (M 0; E 0), whereE is a function from�-variables to evaluation contexts—the need for this will become clear. Theimportant
evaluation rules are (E[�a:M]; E)) (M; E] (a 7! E[�]))(E[[a]M]; E] (a 7! E0[�]))) (E0[M]; E] (a 7! E0[�]));
whereE] (a 7! E[�]) denotes the extension of the functionE with the mappinga 7! E[�]. Thus in the first reduction rule the current continuation is captured (‘catch’),
added toE and indexed witha. In the second reduction rule the appropriate indexed con-
tinuation is taken fromE , replacing the current continuation (i.e. the termM is ‘thrown
back’ to an earlier continuation). In summary, theActivate andPassivate rules are
interpreted as indexed catch and throw operators, respectively.

4 �PCF

Rather than develop an operational theory for the��-calculus, I shall first enrich it with
natural numbers, a conditional, pairs and recursion. This is essentiallywhat Ong and
Stewart call�PCF [8]. The next step is to choose an evaluation strategy. Most workon
control operators has considered acall-by-value strategy and to aid comparison I shall
adopt the same. It is important to note that what is developed in this section can easily
be adjusted to reflect a call-by-name strategy; some details are sketched inx7. This
is in contrast with Ong and Stewart’s framework, which requires significant changes
to move from call-by-name to call-by-value (some details are in their paper [8]). For

completeness the typing rules for the new constructors are given below.� . n: int; � � .M : int; �� . suc(M): int; � �; f : �! �; x:� . M :�;� �; f :�! � . N : ;�� . letrec f = �x:M inN : ;�� .M : int; � � . N : �;� � . P :�;�� . ifzM thenN else P :�;�� . M :�;� � . N : ;�� . hM;Ni:�� ;� � . M :�� ;�� . fst(M):�;� � . M :�� ;�� . snd(M): ;�
The syntactic classes of values, evaluation contexts and redexes are defined as follows.

Values v ::= n j �x:M j hv; vi
Evaluation ContextsE ::= � j vE jEMj hE;Mi j hv; Ei j fst(E) j snd(E)j suc(E) j ifzE thenM elseM
Redexes R ::= vv j fst(v) j snd(v)j suc(v) j ifz v thenM elseMj letrec f = �x:M inN j [a]M j �a:M

The fundamental property of evaluation contexts is the following.

Lemma 1. Every closed term, M , is either a value, v, or is uniquely of the form E[R],
where E[�] is an evaluation context and R is a redex.

We can now write out the (single-step) reduction rules in full, which are as follows.(E[(�x:M)v]; E)) (E[M [x := v]]; E)(E[fst(hv; wi)]; E)) (E[v]; E)(E[snd(hv; wi)]; E)) (E[w]; E)(E[suc(n)]; E)) (E[n+ 1]; E)(E[ifz 0 thenM elseN]; E)) (E[M]; E)(E[ifz (n+ 1) thenM elseN]; E)) (E[N]; E)(E[letrec f = �x:M inN]; E)) (E[N [f := �x:letrec f = �x:M inM]]; E)(E[�a:M]; E)) (M; E] (a 7! E[�]))(E[[a]M]; E] (a 7! E0[�]))) (E0[M]; E] (a 7! E0[�]))
5 Examples

To demonstrate the expressive power of this computational interpretation I shall show
the dynamics of particular ML-like exception handling and ‘callcc’ primitives are pre-
served by their encodings into�PCF (the encodings are due to Ong and Stewart [8]).

5.1 Exception Handling

ML can be extended with exceptions in a number of ways. One such method was given
by Gunteret al. [5] and simplified by Ong and Stewart [8]. Typed exceptions are iden-
tified with names, thus typing judgements (for ML) are now of the form� ;� . M :�
where� is the usual typing environment and� is the typing environment for the ex-
ception names. Two new operators are added to ML whose typing rules are as follows.� ;� .M :A� ;�; a:A . raise(a;M):B � ;�; a:A .M :A! B � ;�; a:A . N :B� ;� . handle(a;M;N):B
The intended interpretation is that the first rule evaluatesM to a valuev and then raises
an exception nameda associated withv. The second rule evaluatesM to a value (sayv)
and then evaluatesN . If N evaluates to a valuew then this is the overall result, but if it
raises an exception nameda with a valueu, then this is applied tov. Given as reduction
rules the intended interpretation is as follows.handle(a; v; w) ; w (a 62 FN(w))handle(a; v; E[raise(a; u)]) ; vu (a =2 FN(v; u))
These operators can be translated into�PCF as follows (whereb is a fresh�-variable).[[raise(a;M)]] def= (�x:�b:[a]x)[[M]][[handle(a;M;N)]] def= �b:[b][[M]](�a:[b][[N]])
It is relatively easy to show that this translation preserves the operational behaviour, e.g.([[handle(a;M;E[raise(a;N)])]]; E)def= (�b:[b][[M]](�a:[b]E[(�x:�c:[a]x)[[N]]]); E))2 ([[M]](�a:[b]E[(�x:�c:[a]x)[[N]]]); E] fb 7! �g))� (v(�a:[b]E[(�x:�c:[a]x)[[N]]]); E] fb 7! �g)) ([b]E[(�x:�c:[a]x)[[N]]]; E] fa 7! (v�); b 7! �g)) (E[(�x:�c:[a]x)[[N]]]; E] fa 7! (v�); b 7! �g))+ (E[�c:[a]u)]; E] fa 7! (v�); b 7! �g)) ([a]u; E] fa 7! (v�); b 7! �; c 7! E[�]g)) (vu; E] fa 7! (v�); b 7! �; c 7! E[�]g)
5.2 Call-with-current-continuation (callcc)

ML can be extended with operators to manipulate first-class continuationsin a number
of ways. I shall consider a proposal again due to Gunteret al. [5] and simplified by
Ong and Stewart [8]. Here (typed) continuations are associated with names,and so
typing judgements are of the form� ;�.M :A, where� is the typing environment for
continuation names. Three new operators are added to ML, whose typing rules are as
follows.� ;� .M : (A! B)! A� ;� . callcc(M):A � ;� .M :A� ;�; a:A . abort(a;M):B � ;�; a:A .M :A� ;� . set(a;M):A

The callcc operator applies the termM to an abstraction of the current continuation.
Theset serves as a delimiter for continuations, and theabort discards the current con-
tinuation (delimited bya). Their intended operational behaviour is as follows.set(a;E[abort (a;M)]) ; M (a 62 FN(M))set(a; v); v (a 62 FN(v))E[callcc(M)] ; set(a;E[M(�x:abort(a;E[x]))])
Ong and Stewart provided a translation of these operators into�PCF, which is as fol-
lows. [[callcc(M)]] def= �a:[a]([[M]](�x:�b:[a]x))[[abort (a;M)]] def= �b:[a][[M]] whereb 62 �FV([[M]])[[set (a;M)]] def= �a:[a][[M]]
Again it is simple to check that this translation preserves the operationalbehaviour, e.g.([[set(a;E[abort (a;M)])]]; E)def= (�a:[a]E[�b:[a][[M]]]; E))2 (E[�b:[a][[M]]]; E] fa 7! �g)) ([a][[M]]; E] fa 7! �; b 7! E[�]g)) ([[M]]; E] fa 7! �; b 7! E[�]g)
5.3 Pairing

It is easy to verify that� � � :(� ! :) in CL. This logical equivalence can be
used to simulate pairing in�PCF. The constructor and deconstructors are encoded as
follows.2 pair def= �m:�:�n: :�f : (�! (!?)):f m nfst def= �p:�a:p(�x:�b:[a]x)snd def= �p:�a:p(�y:�x:[a]x)
It is left to the reader to verify that these encodings satisfy the expected operational
behaviour.

6 Operational Theory

An implementation based on the reduction rules given inx4 would work as follows.
Take a termM : if it is a value then we are done; if not it can be given uniquely asE[R].
One takes the relevant reduction step (determined byR)—the resulting term is either
a value, in which case we are done, or it has to be re-written again as an evaluation
context and a redex. This process is repeated until a value is reached. The continual
intermediate step of rewriting a term into an evaluation context and a redex would be
inefficient in practice and is quite cumbersome theoretically. ConsequentlyI shall give
a new set of reduction rules where the context and the redex are actually separated.

2 A similar encoding using control operators was given by Griffin [4].

Reduction rules are now of the form(S;M; E) �! (S0;M 0; E 0), whereS is a stack of
evaluation frames, which are defined as follows.F ::= �M j v � j h�;Mi j hv; �ij fst(�) j snd(�) j suc(�) j ifz � thenM elseM
(ClearlyE is now a function from�-variables to stacks.) The reduction rules essentially
describe the transitions of a simple abstract machine.3 In full they are as follows.(F [�] :: S; v; E) �! (S; F [v]; E)(S;MN; E) �! ((�N) :: S;M; E) M not a value(S; vN; E) �! ((v�) :: S;N; E) N not a value(S; (�x:M)v; E) �! (S;M [x := v]; E)(S; hM;Ni; E) �! (h�; Ni :: S;M; E) M not a value(S; hv;Ni; E) �! (hv; �i :: S;N; E) N not a value(S; fst(M); E) �! (fst(�) :: S;M; E) M not a value(S; fst(hv; wi); E) �! (S; v; E)(S; snd(M); E) �! (snd(�) :: S;M; E) M not a value(S; snd(hv; wi); E) �! (S;w; E)(S; suc(M); E) �! (suc(�) :: S;M; E) M not a value(S; suc(n); E) �! (S; n+ 1; E)(S; ifzM thenN else P; E) �! ((ifz � thenN else P) :: S;M; E)M not a value(S; ifz 0 thenM elseN; E) �! (S;M; E)(S; ifz (n+ 1) thenM elseN; E) �! (S;N; E)(S; letrec f = �x:M inN; E) �! (S;N [f := �x:letrec f = �x:M inM]; E)(S; �a:M; E) �! ([];M; E] (a 7! S))(S; [a]M; E] (a 7! T)) �! (T;M; E] (a 7! T))
An example may make these reduction rules clearer. Consider an instance of the‘callcc’
reduction rule given inx5.2.set(a; (�x:N)(abort(a;M)));M
The left hand term is translated to the�PCF-term�a:[a](�x:[[N]])(�b:[a][[M]]), which
reduces as follows.(S; �a:[a](�x:[[N]])(�b:[a][[M]]); E)�! ([]; [a](�x:[[N]])(�b:[a][[M]]); E] fa 7! Sg)�! (S; (�x:[[N]])(�b:[a][[M]]); E] fa 7! Sg)�! (((�x:[[N]])�) :: S; �b:[a][[M]]; E] fa 7! Sg)�! ([]; [a][[M]]; E] fa 7! S; b 7! ((�x:[[N]])�) :: Sg)�! (S; [[M]]; E] fa 7! S; b 7! ((�x:[[N]])�) :: Sg)
It is easy to define a functiondEe which converts a given evaluation context,E to a
stack of frames, and a functionS@M which takes a stack of frames, S, and a term,M ,
and converts the stack back to an evaluation context before insertingM . For exampled(((�x:M)�)P)Qe def= ((�x:M)�) :: ((�P) :: ((�Q) :: []))((�x:M)�) :: ((�P) :: ((�Q) :: []))@N def= (((�x:M)N)P)Q
The two sets of reduction rules can be related in the following sense.
3 Harper and Stone [6] give similar transition rules in their analysis of SML and Pitts [10] has

used similar rules in work on functional languages with dynamic allocation of store.

Proposition 1 (S@M; E)) (N; E 0) iff 9S0;M 0:N = S0@M 0; (S;M;d Ee) �!� (S0;M 0;d E 0e)
An important fact (first discovered by Pitts [10] in a different setting) is that the set&def= f(S;M; E) j 9v; E 0:(S;M; E) �!� ([]; v; E 0)g
has a direct, inductive definition which is as follows.([]; v; E)& (S; F [v]; E)&(F [�] :: S; v; E)&((�N) :: S;M; E)&M not a value(S;MN; E)& ((v�) :: S;N; E)&M not a value(S; vN; E)&(S;M [x := v]; E)&(S; (�x:M)v; E)& (S;N [f := �x:letrec f = �x:M inM]; E)&(S; letrec f = �x:M inN; E)&(h�; Ni :: S;M; E)&M not a value(S; hM;Ni; E)& (hv; �i :: S;N; E)& N not a value(S; hv;Ni; E)&(fst(�) :: S;M; E)&M not a value(S; fst(M); E)& (S; v; E)&(S; fst(hv; wi); E)&(snd(�) :: S;M; E)&M not a value(S; snd(M); E)& (S;w; E)&(S; snd(hv; wi); E)&(T;M; E] (a 7! T))&(S; [a]M; E] (a 7! T))& ([];M; E] (a 7! S))&(S; �a:M; E)&
Given two termsM andN such that; . M :�;� and; . N :�;�, they are said to be
ciu-similar, writtenM ��;� N , just when8S; E : if (S;M; E)& then (S;N; E)&.
They are said to beciu-equivalent, writtenM '�;� N just whenM ��;� N andN ��;� M . Both these relations are extended to open terms in the obvious way.

This notion of equivalence is quite refined, consider the following terms (where

is a looping term, which can be defined using the recursion operator).T1 def= �a:[a](�y:�c:[a](�x:ifz y then
 else 0))T2 def= �z:�b:[b]((�y:�c:[b]((�x:ifz y then
 else 0)z))z)
It is easy to verify thatT1n 'int T2n for all natural numbersn. However they arenot
ciu-equivalent as([(�s:s(s1))�]; T1; ;)&, but it isnot the case that([(�s:s(s1))�]; T2; ;)&.
This is an important example asT1 andT2 are equivalent given the definition of ap-
plicative bisimilarity by Ong and Stewart [8]. (Their notion of bisimilarity is hence not
a congruence.)

We can make the following definitions.(M; E) + (v; E 0) def= (M; E))� (v; E 0)and(v; E 0) 6)(M; E) + def= 9v; E 0:(M; E) + (v; E 0)

Let C be a context, which is a�PCF-term with (possibly many) hole(s) in it (not to be
confused with an evaluation context). We say that two termsM andN arecontextually
equivalent, writtenM � N , when8C; E:(C[M]; E) + iff (C[N]; E) + : In other words,
two terms are contextually equivalent if no larger program can tell them apart.

The two terms given above (T1 andT2) are not contextually equivalent, as the con-
text (�s:s(s1))� distinguishes them. Clearly this notion of contextual equivalence is
highly desirable but awkward to work with given the quantification over all contexts.
However the notion of ciu-equivalence is more usable and an interesting question is in
what sense they are related. In fact we find that they coincide!

Theorem 1. 8M;N:M � N iff M ' N .

Proof. The proof is adapted from the standard one for purely functional languages (see,
for example, the chapter by Pitts [11]). It uses a variant of Howe’s method.

This means that to prove two terms contextually equivalent we need only toshow that
they are ciu-equivalent, which is significantly easier. For example, it is simple to show
the following ciu-equivalences.(�x:M)v ' M [x := v]�a:[a]M ' M a 62 �FV(M)(�a:M)N ' �b:M [[a]P ([b]PN]
For example, the second equivalence holds by the assumption thata 62 �FV(M) and by
observing (S;M; E] (a 7! S))&([]; [a]M; E] (a 7! S))&(S; �a:[a]M; E)&
7 Call-by-Name

This paper has so far considered only call-by-value computation. However it is very
simple to provide a computational interpretation for a call-by-name evaluation strategy.
The main difference is in the (new) definition of values, evaluation contexts and redexes,
which are as follows.

Values v ::= n j �x:M j hM;Mi
Evaluation ContextsE ::= � jEM j fst(E) j snd(E) j suc(E) j ifzE thenM elseM
Redexes R ::= vM j fst(v) j snd(v) j suc(v) j ifz v thenM elseMj rec x:M j [a]M j �a:M

The evaluation rules are as before except for the following.(E[(�x:M)N]; E)) (E[M [x := N]]; E)(E[fst(hM;Ni)]; E)) (E[M]; E)(E[snd(hM;Ni)]; E)) (E[N]; E)(E[rec x:M]; E)) (E[M [x := (rec x:M)]]; E)

The development of the corresponding operational theory follows closely that outlined
in x6. The differs sharply from the treatment given by Ong and Stewart [8] who have
to introduce completely new reduction rules to move from a call-by-nameto a call-by-
value setting.

8 Conclusion

In this paper I have given a simple computation interpretation of the��-calculus: it
is a �-calculus which is extended with indexed operators to manipulate the runtime
environment. This is maybe not too surprising as Griffin [4] has shown the close re-
lationship between classical logic and languages with control. This interpretation can
be expressed as a single-step reduction semantics using environment contexts. In turn
I gave an equivalent semantics expressed as steps of a simple abstract machine, which
eliminated the need for the evaluation contexts. Using this simple abstract machine it
is possible to define a notion of program equivalence based on a termination relation
which coincides with a natural definition of contextual equivalence.

Clearly the work by Ong and Stewart [8] is most closely related to that reported
here. Their thesis is that�PCF is a foundational language for call-by-value functional
computation with control and this paper can be seen as further evidence to thatclaim.
However I would claim that the operational treatment given here is more intuitive, more
flexible (in that different calling mechanisms can be handled easily) and leads to a more
refined notion of program equivalence.

References

1. G.M. BIERMAN. A classical linear�-calculus. Technical Report 401, Cambridge Computer
Laboratory 1996.

2. M. FELLEISEN. The theory and practice of first-class prompts. POPL 1988.
3. A.D. GORDON. Bisimilarity as a theory of functional programming: Mini-course. Technical

Report NS–95–2, BRICS, Department of Computer Science, University ofÅrhus, July 1995.
4. T.G. GRIFFIN. A formulae-as-types notion of control. POPL 1990.
5. C.A. GUNTER, D. RÉMY, AND J.G. RIECKE. A generalisation of exceptions and control

in ML-like languages. FPCA 1995.
6. R. HARPER AND C. STONE. An interpretation of Standard ML in type theory. Technical

Report CMU–CS–97–147, School of Computer Science, Carnegie Mellon University, June
1997.

7. M. HOFMANN AND T. STREICHER. Continuation models are universal for��-calculus.
LICS 1997.

8. C.-H.L. ONG AND C.A. STEWART. A Curry-Howard foundation for functional computa-
tion with control. POPL 1997.

9. M. PARIGOT. ��-calculus: an algorithmic interpretation of classical natural deduction.
LPAR 1992. LNCS 624.

10. A.M. PITTS. Operational semantics for program equivalence. Slides from talk given at
MFPS, 1997.

11. A.M. PITTS. Operationally-based theories of program equivalence. InSemantics and Logics
of Computation, CUP, 1997.

