
A New General Purpose Parallel Database SystemM. Afshar, J. Bates, G. Bierman, K. MoodyComputer LaboratoryUniversity of CambridgeCambridge, CB2 3QGAbstractThis paper is concerned with the transparent par-allelisation of declarative database queries, based ontheoretical principles. We have designed an entiredatabase architecture suitable for use on any general-purpose parallel machine. This architecture addressesthe shortcomings in exibility and scalability of com-mercial parallel databases. A substantial bene�t is thatthe mathematical principles underlying our frameworkallow provably correct parallel evaluations and opti-misations, using compile-time transformations. Weaddress parallelism in a language-independent waythrough the choice of monoids as a formulation forexpressing and modelling queries. Queries expressedin our declarative language are transformed into ap-plications of a higher{order function, the monoid ho-momorphism. The evaluation of this function is par-titioned at run-time, giving a tree-like processor topol-ogy, the depth and breadth of which can be variedwith a declarative execution plan. Leaf nodes withinthe evaluation tree operate on their own data parti-tions and forward results to the appropriate interiornodes. Due to the nature of our language, the func-tions that are necessary to combine results from inde-pendent parallel evaluations are generated automati-cally at compile{time from a monoid de�nition dictio-nary, additions to which can be made to extend the sys-tem's data types. We have built a complete prototypeof our system, which uses Swiss Radio Corporation'sentire recorded music catalogue, on a general{purposeAP1000, 128{cell parallel computer at the IFPC.11 IntroductionOur research is motivated, in particular, by opportuni-ties to improve the e�ciency of database queries. Wepropose an abstract declarative method for query ex-pression, removing the need to break down the prob-lem into parallel tasks, handle internal communica-tions or assign a procedural processor{task topology.1Imperial College/Fujitsu Parallel Computing Centre, Lon-don

This paper is structured as follows: �rstly we detailthe motivations for our work. Section 1.2 gives anoverview of related work. Section 2 describes our ap-proach and the high-level design of our system and isfollowed by a theoretical grounding of our work in sec-tion 3. We then discuss our prototype implementationin section 4 before going on to present preliminary re-sults in section 5. We make some concluding remarksin section 6.1.1 MotivationParallel databases are suitable for tackling very largedata sets or applications with high transaction vol-umes. Those applications typically involve databasescontaining many gigabytes of information.Current commercial approaches lack exibility, whichis mainly due to the fact that they are targeted speci�-cally at SQL and they lack extensible data types. Scal-ability is also a problem, mainly due to the use of ashared disk approach. Moreover, they lack a theoreti-cal basis, i.e. a provably correct model for their modeof parallel query evaluation. We address all of theseshortcomings in our work.A parallel database can be de�ned as a system inwhich more than one process is used to performdatabase queries. However, we shall assume that aparallel database involves the following sub{processes:splitting database queries into parallelisable sub{queries; performing these sub{queries in parallel; col-lecting and amalgamating the results.In a tightly coupled shared-disk system, processornodes in a parallel database system will be assignedto carry out the above functions. At the bottom levelare parallel data managers built on processors withattached disks. Each data manager can evaluate sub{queries on its local data set. The total data is par-titioned in a suitable manner across these data man-ager nodes (see section 4 for details). Other nodesare responsible for splitting up queries, passing thesub{queries to the data management nodes and thencollecting and amalgamating the results.In commercial parallel database systems, such as Or-

acle, standard SQL queries are supported, the par-allelisation of which is made transparent. Businessescan thus upgrade to powerful parallel database engineswithout changing their existing software infrastruc-ture. These systems are tuned for maximum trans-action throughput.In the research domain, related projects are addressingboth parallel object{oriented systems and specialisedparallel database machines, the latter becoming lessfashionable. In the former, research is at present fo-cussed on the parallelisation of individual operationsin OQL in order to address the ine�ciency of currentobject query evaluation strategies. These e�ciencyproblems are brought about by the semantic richnessand powerful data modelling features of OQL.In contrast, we base our entire database systems ar-chitecture on a theoretical foundation which we claimcovers all current approaches.1.2 Related WorkAlthough the speci�c target area of this paper isdatabases, the underlying model is of general relevanceto parallel data processing. It uni�es several relatedresearch strands involving parallel programming, the-oretical database and algorithms.Research into parallel programming lan-guages/systems can be broadly categorised intothree areas: those which address the parallel pro-cessing problem by adding features to traditionalsequential programming languages; those that providestandard library functions which can be used to buildparallel applications; and those that take a declarativepath concentrating on de�ning stereotypical patternsof parallel computation which can be put together.We briey look at each of these in turn.In the �rst category lie systems which have extendeda procedural language with explicit constructs for par-allelism such as C* [8] and High Performance Fortran[10], which is the latest language that combines For-tran 90 with enhanced user de�ned data distribution.A similar idea is the provision of standard messagepassing library extensions, such as MPI and PVM,which enable much exibility through facilitating theuse of existing sequential languages (currently C/C++and Fortran). Both supply a set of routines to allowtasks on each processor to communicate.Although suitable for some application classes, di�-culties still exist in both of these approaches such astask division and allocation, expressing massively par-allel programs, and reasoning about programs.Within the database community, an alternative ap-proach has been to exploit implicit parallelism withindatabase queries by use of high level declarative lan-

guages such as logic or functional languages [5, 9, 13].One advantage of the functional framework is thatprogram transformation is based on mathematicalprinciples. Higher order functions allow recursion pat-terns over structured types to be \abstracted out",leading to concise programs with no explicit recursionand hence greater potential for program transforma-tion. Although such languages o�er the potential formuch implicit parallelism, most of this is too �ne{grain for e�cient parallel implementation.A derivative of this third approach has been to concen-trate on the development of a programming method-ology for parallel machines which allows portabilitythrough the use of, for example, high level speci�ca-tions, or skeletons. Skeletons have received attentionboth from the theoretical view and in practical imple-mentations [6, 4, 2]. A skeleton is a high level templatedescription of some parallel operations in which partof the functionality is parametrised. Skeletons can beexpressed naturally through their equivalent higher or-der functions in functional languages. Much complex-ity (process topology, data distribution and amalga-mation and control) can be hidden inside skeletons,easing considerably the task of the compiler. Further-more, by using performance models for each skeleton,a compiler can make accurate decisions about resourceallocation. The use of skeletons allows the program-mer to structure the parallel computation by meansof the composition of a set of well de�ned patterns.Common examples of skeletons are processor farms,process pipelines and divide and conquer trees, whichexhibit independent parallelism.Notable implementations of the declarative approachinclude NESL[3], which allows the de�nition of arbi-trary functions in a pseudo{functional language, andP3L [2], which allows skeletons to be used as a gluefor sequential C++ code and includes a performancemodel for the evaluation. A key feature of NESL isthat functions can be applied in parallel to achievenested parallelism.Independent parallelism, as exhibited by functionssuch as map and filter, is very e�ective for decom-posed forms of data and for divide{and{conquer com-putations, which categorises many database opera-tions. Structural recursion, which is a developmentof these ideas has been investigated, both over singlecollection types [12, 11], and over multiple collectiontypes [7].Our work draws upon the work in database querymodelling [7] and the reduce skeleton in [1]. reduceis a derivative of divide{and{conquer and map skele-tons and resembles the higher{order function fold in

functional languages. The evaluation of this functionproceeds in a tree{based fashion.2 General Approach2.1 ApproachQueries are expressed in a declarative language en-vironment in which we use program transformationson a stereotypical function (capable of divide{and{conquer computation), which is then subject to eval-uation in parallel.The algebraic properties necessary for parallelismform the basis for our choice of monoids to model col-lection (e.g. lists, bags) and primitive types (e.g. max,sum, product).Expressions expressed as a (potentially nested)monoid comprehension are translated to the applica-tion of a single function, the monoid homomorphism,which resembles the reduce skeleton. The evaluationof expressions involving this function are then subjectto parallelism at run{time. Monoid comprehensionso�er an intuitive and declarative basis for de�ning,translating and evaluating DBMS query languages.We view monoid comprehensions as a high-level formfor monoid homomorphisms, which we see as abstractmachine code.Monoid comprehensions can capture most collectionand aggregate operators currently in use for relationaland object algebra [12], and can be used to expressqueries which simultaneously deal with more than onecollection type and also naturally compose in a waythat mirrors the allowable query nesting in OQL. Theyalso permit easy integration of functional subexpres-sions, as used in [7]. The following example showsa query in SQL, monoid comprehensions and monoidhomomorphisms.SQL Monoid Comprehensions Monoid HomomorphismsSELECT NAME hom[SET,SET].�cd.FROM CDs bagfname(cd)jcd CDs, (if (age(cd) >3)WHERE AGE>3 age(cd)>3g then fcdgelse fg) CDsThe use of monoid comprehensions is based on thefollowing factors:Firstly, queries expressed in the monoid comprehen-sion are translated into applications of monoid homo-morphisms, which are amenable to parallel evaluationsince they capture a reduce computation.Secondly, the information that inuences the amountof parallelism that can be extracted from the evalu-ation of a query is dependent upon a number of al-gebraic properties (i.e. associativity, commutativity,idempotency and existence of a \unit" for the mergefunction). Whilst it is desirable to elucidate whetherparticular functions exhibit such algebraic properties

by inspection, the problem is, in general, undecidable.Hence, we have taken the approach of allowing thedatabase maintainers to provide this information forthe system. This information is made available to thesystem through a monoid dictionary, at the time wheneach monoid is de�ned. This means that the combinerfunctions that are required to combine the results fromparallel evaluations of a particular reduction, are infact, part of the natural de�nition of each monoid in-volved in the reduction. For example, in the de�ni-tion for the monoid set(�), the user{de�ned functionto combine instances, which is part of the monoid def-inition, is the well known set{union operator [(theimplementation of which is in the monoid dictionary).The information held in the monoid dictionary con-tributes to making the data types that the system candeal with extensible and also enables us to carry outthe kind of type{checking which is necessary to verifythe correctness of our mode of parallel evaluation.
Translator

SQL

Monoid
Comprehensions

Monoid
Comprehensions

Translator

Monoid
Definition
Dictionary

Monoid
Homomorphisms

Parallel Type
Checker

Data
Dictionary

Data
Partition

Information Monoid
Homomorphisms

SELECT NAME
FROM EMPLOYEES
WHERE AGE<30

bag{name(cd)| cd<- CDs,age(cd)>3}

hom[set,bag].(if (age(cd)>3)
 then unit(bag,{name(cd))}
 else zero(bag)).cds

Definition
for New
Monoids

hom[set,bag].(if (age(cd)>3)
 then unit(bag,{name(cd))}
 else zero(bag)).cds

Monoid Query
Language

OQL

Figure 1: Software Architecture2.2 DesignFigure 1 represents our software architecture.Queries may either be expressed in terms of monoidcomprehensions or in SQL (for which a translator pro-duces monoid comprehensions). For example, a queryto select \the name of all compact discs produced more

than three years ago" is shown in section 2.1.Expressions containing monoid comprehensions arefed into a translator that produces monoid homomor-phism code on which optimisations are carried out. Atthis stage, the types of each collection monoid whichrepresent a database object (e.g. cds in a musicalcompact disc database), are obtained from the datadictionary. The result of this process is then fed intoa type{checker which uses the monoid dictionary toensure that correct parallel evaluation can be achievedusing our methodology (section 3.3). This paralleltype-checker requires a data dictionary, which includesdescriptions of the data in the database, a monoidde�nition dictionary which includes de�nitions for allmonoids (table 1), and data partitioning informationwhich stipulates how the data has been partitionedbetween processors. This information has a direct in-uence on the type-checking process (in section 3.3).At the end of this process, code expressed in terms ofmonoid homomorphisms is suitable for evaluation onthe parallel evaluator.3 Theoretical BasisOur high{level language is based on monoid compre-hensions. In this section we discuss the theoreticalbasis for this and also for the lower{level language,monoid homomorphisms, which is executed by theback{end parallel query evaluator.3.1 Monoid ComprehensionsOur query language is based on monoid comprehen-sions, which are translated into parallel operations ex-pressed in terms of the monoid homomorphism whichoperates on multiple monoid types.De�nition 1. (Monoid). A data type T is ex-pressed as a monoid M with a unit function M =(T; zero; unit;merge), where the function merge, oftype, T � T ! T , is associative with left and rightidentity zero.If 8x; y : merge[T](x; y) = merge[T](y; x) then we saythat the monoid is commutative.If. 8x : merge[T](x; x) = x, we say that the monoidis idempotent.De�nition 2. (Free Monoid). Let T(�) bedetermined by the type parameter � (i.e. T is atype constructor) and (T(�,zero[T],unit[T],merge[T]))be a monoid. The quadruple (T(�),zero[T],unit[T],merge[T]) where unit[T] is a function of type � !T (�), is a free monoid.We divide monoids into two sorts: collection and prim-itive monoids, as in table 1. Collection monoids whichcapture bulk types, such as lists, sets and bags, andcan be freely nested. Primitive monoids capture prim-itive types such as integers and booleans.

Collection MonoidsM T zero unit(x) merge Com/Idemset set(�) fg fxg [C&Ibag bag(�) ffgg ffxgg] Clist list(�) [] [x] ++ -Primitive MonoidsM T zero unit(x) merge Com/Idemsum int 0 x + Cmax int 0 x max C&Iall bool true x ^ C&ITable 1: Examples of Collection and PrimitiveMonoidsA comprehension over the monoid(T; zero[T],unit[T];merge[T]) is de�ned by thefollowing inductive equation:Tfe j g = unit[T](e)Tfe j x u; rg = hom[S; T](� xfe j r g) uTfe j pred; rg = if pred then Tfe j r g else zero[T]where r is a possible (empty) sequence of terms (ofthe form x u or pred) separated by commas, pred isa predicate, and u is an expression of type S(�), whereS is a free monoid with S � T . The expression at thehead of the comprehension (to the left hand side ofthe j sign) may contain other comprehension terms.3.2 Monoid HomomorphismA monoid homomorphism hom[T; S] from thefree monoid (T (�); zero[T]; unit[T];merge[T])to a monoid (S; zero[S];merge[S]) is de-�ned by the following inductive equations:hom[T; S](f)zero[T] = zero[S]hom[T; S](f)unit[T](a) = f(a)hom[T; S](f)merge[T](x; y) =merge[S](hom[T; S](f)x; hom[T; S](f)y)where T�S, where � is the obvious order-ing on monoid properties, e.g. fassociateg �fassociative; commutativeg. For example, a monoidhomomorphism hom[set,sum] that captures the car-dinality of a set is not valid since set 6� sum (setis commutative and idempotent, whereas sum is justcommutative). Conformance to this rule is checked bythe type{checker for parallel evaluation (section 3.3),since the commutativity and idempotency propertiesof a monoid are speci�ed explicitly when the monoidis de�ned and are stored in the monoid de�nition dic-tionary.

3.3 Type-CheckingIn addition to checking that queries are well formedwith respect to the database schema as de�ned in thedata dictionary, we incorporate a type{checker for par-allel evaluation which is built into our system. Thefunction of this type{checker is to ensure that queriesexpressed in terms of monoid{homomorphisms makelegitimate transitions and hence that our methodol-ogy for parallel evaluation yields a correct result. Inorder to make such decisions, the type{checker needstwo types of information: the monoid de�nition ta-ble, and information on data partitioning. The �rsttype{checking stage is concerned with ensuring thatthe homomorphisms in the query follow acceptabletransitions (i.e. that T � S is satis�ed). For queriesthat fail �rst type{check, we use data partitioning in-formation to ascertain whether the query is can stillbe evaluated correctly.For example, the query given below selects all tracksfrom a database of tracks on CDs:sumf1 j t tracks, date recorded(t)<=1992gThe homomorphism in the above query takes a set(of tracks) and produces a sum from it (i.e. givesthe total number tracks in the database which wererecorded before 1992). Although this query may ap-pear to be legitimate, in the absence of informationregarding data partitioning, it is rejected. A closerinspection of the properties of the collection monoid,set and the primitive monoid, sum, reveals that setis a commutative, idempotent monoid whereas sumis only commutative (i.e. the condition T � S is notsatis�ed). Hence, the query is passed to the secondphase of the type{checking process.The given query can lead to a correct parallel evalua-tion if the argument data structures, which are the setof tracks and CDs, are distributed across the nodessuch that there are no duplicates across nodes (i.e.the collection can be reconstructed without perform-ing any duplicate purging). Since data of collectiontype set is partitioned across nodes in this way, i.e.there are no duplicates across nodes, then the eval-uation can be accepted by the second phase type{checker, since there are no intermediate partial resultsproduced which violate this condition.However, the following query which returns the num-ber of tracks that have been produced in the samecountry as the CD requires further analysis:sumf1jt tracks, cd cds,recorded in(track)=recorded in(cd)g

The information in the data dictionary regarding eachcollection that has been split across multiple nodesholds information about the attribute upon whichsuch partitioning has been carried out (if appropri-ate). In our database of CDs and tracks, informationis stored for each table noting that it has been parti-tioned on the join attribute, namely cd id. Clearly,since none of the �lters in the above query contain anequality on the join attribute, the query is rejected.This can be traced to the observation that the queryasks for the tracks that have been recorded in the sametown as any CD, not the particular CD title on whichthe track appears. Since there may indeed be caseswhere potential results are lost, e.g. a track appear-ing on node 1 is recorded in London and so is a CD onnode 6 but this does not contribute to the �nal resultsince it does lie across a node boundary, the query isrejected. Our check detects when our mode of evalua-tion would be incorrect, however contrived the queryexample is! Indeed, an e�cient parallel implementa-tion could only be produced if the argument set canbe merged without performing duplicate purging.The type-checker also has at its disposal the meta datadetailing the way in which each database table hasbeen partitioned. If, for example, the tracks databasewere to be split up on the recorded in �eld, then thetype{checker would infer that the monoid type for thetracks table is in fact partitioned{set if the querywere to involve an recorded in �lter. The querywould thus have been veri�ed to be correct.4 Implementation and ExperimentsWe have implemented a prototype of our system ona single-user 128{node Fujitsu AP1000 parallel com-puter. It would be possible to port this to any par-allel machine on which a subset of nodes have accessto disks. Each node (cell) consists of one processorrunning a UNIX{like operating system with no pre{emptive scheduling. Local disks are attached to 32cells, although all cells are able to access all 32 ofthe local disks. The machine is SIMD in principle,although it is possible to obtain MIMD behaviour, afeature which we make use of in our evaluations. Weuse the native message{passing libraries, as, at thetime of implementation, no local I/O could be carriedout on the MPI implementation.Our experimental data set consists of the Swiss Ra-dio Corporation's CD acquisitions catalogue. Thisdatabase consists of two tables: a compact discs ta-ble, and a tracks table with about 30,000 CDs and onaverage about 9 tracks per CD. Both tables have beenpartitioned horizontally on the key attribute cd id,so that all tracks relevant to a CD can be found on

the same node. This is required to address poten-tial problems with nested queries involving idempo-tent monoids (e.g. set, which is commutative idempo-tent), as discussed in section 3.3.As shown in �gure 1 database queries are expressed interms of monoid comprehensions, or SQL | in whichcase they are subject to translation to monoid com-prehension �rst | which are translated into monoidhomomorphisms at which stage suitable type check-ing is carried out. During this process optimisationsmay also be carried out, to produce optimised monoidhomomorphism queries.The prototype system requires a declarative executionplan in order to de�ne the form of the evaluation{tree since, due to the operating system limitations,we are not able to create processes dynamically onthe cells of the AP1000. This means that the pro-cess topology is de�ned at compile{time in the formof a declarative evaluation map, which de�nes thenumber of processors at each level within the eval-uation tree. The depth and breadth of the evaluationtree inuences the e�ciency of the parallel evaluation.Changes to a declarative evaluation map may requirere{organisation of the data residing on local disks. Ifthe number of leaf nodes which process data directlyo� their local disks is varied, (e.g from 32 to 16), somereorganisation of the database partitions is required.The run{time system takes care of this reorganisation.The prototype parallel evaluator requires both themonoid homomorphism code and a declarative evalua-tion map. Its software architecture is given in �gure 2.The server running on the host broadcasts the monoidhomomorphism program together with a declarativeevaluation map to the 128 cells on the machine. Eachcell then calculates its position in the evaluation treeusing the plan, which always consist of one cell actingas the root gathering results at the top. Cells whichare at the leaf nodes of the evaluation tree are neces-sarily equipped with disks on where their data resides.Each leaf node interprets the homomorphism code andsends its results to its sole destination cell periodicallyduring evaluation. Internal cells in the evaluation treecombine results from a number of leaf{nodes (or otherinternal nodes) and forward their results to internalnodes higher up in the evaluation tree. The functionswhich are required to combine results from other cellsat the internal nodes are available in the monoid de�-nition dictionary, which is part of the run{time systemof each cell. The evaluation is complete when the rootcell has �nished combining results from its communi-cation partners.

Monoid
Homomorphisms

Declarative Execution
Plan

(1) Start(2)(3) (m) - Signal COMPLETE to HOST

HOST
Run-time
system.

DATA

Monoid
Homomorphisms

celln

Declarative Execution
Plan

cell1

Declarative Execution
Plan

Data + Monoid
Definition Dictionaries

Data + Monoid
Definition Dictionaries

Data + Monoid
Definition Dictionaries

Monoid
Homomorphisms

Internal Node

Monoid Hom
Interpreter

DATA- celln

Communications
Layer

Disk Handler

Local disk

Leaf Node
Run-time

Interior Node
Runtime System

AP1000

Host SUN
Workstation

COMPLETE
DATA
SET

DATA - cell1

DATA - cell2

DATA- celln

Data Partition
Information

Figure 2: Run{time Software Environment5 Initial ResultsThe graph below shows the speedup for typical queryruns on a single table (CDs table), with con�gurationscontaining up to 20 cells. Initial inspections show thatthe query with the lowest selectivity (3% of the datainspected is returned in the result) has the fasted eval-uation time, whereas the other two evaluations whichare less selective (with selectivities of 14.8% and 85%)take longer. As would be expected, the speedup isgreater with the query returning fewest results.The results show that the runs with 19 and 23 cellsdo not show a relative performance improvement overthe runs with 17 cells. The information which we haveomitted from the graph gives us an insight into whythis may be so.Runs with 19 and 23 cells have con�gurations of(1,2,16), and (1,2,4,16), where these numbers indicatethe number of cells at each level from the root downto the leaves within the evaluation tree. The run with17 cells, which has a con�guration of (1,16), does not

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25 30 35

1/
T

im
e

(1
/s

ec
s)

Number of cells

selectivity=3%
selectivity=14.8%

selectivity=85%

Figure 3: Speedup graphperform signi�cantly worse than runs with 19 and 23cells since the extra-level(s) within the evaluation treein the latter runs is/are degrading rather than enhanc-ing performance. Put another way, the evaluation treeis too deep for the amount of data and cell con�gura-tion in the runs with 19 and 23 cells.6 ConclusionsThis paper has described the theoretical basis, designand implementation of our model for parallel data pro-cessing. We have presented a framework for parallelis-ing database queries based on monoid comprehensionsas a declarative high{level language. Expressions in-volving monoid comprehensions are translated into ap-plications of the monoid homomorphism, which is sub-ject to parallel evaluation in a tree{structured topol-ogy. Monoid de�nitions are kept in a monoid de�ni-tion dictionary, additions to which can be made in amodular, organised, simple and provably correct way,without any need to change any existing code. Thede�nition of monoids includes functions required tocombine partial results. This enables experimentationwith di�erent implementations of the same combineroperations. The parallel evaluation of monoid homo-morphisms is more scalable than that of a master{slave arrangement, which is sometimes used for paral-lel database query evaluation. We have implementedour framework on a Fujitsu AP1000 128{cell parallelmachine using a large commercial dataset.References[1] M Afshar and H Khoshnevisan. Mechanical paral-lelisation of database applications. In Proceedingsof The 1994 ACM Symposium on Applied Com-puting, pages 436{441. March 1994, Phoenix, Az.

[2] Bacci, Danelutto, Orlando, Pelagatti, and Van-neschi. P3L: a structured high level parallellanguage and its structured support. Concur-rency: Practice and Experience, 7(3):225{255,May 1995.[3] G E Belloch. Programming parallel algorithms.Communications of the ACM, March 1996.[4] M Cole. Algorithmic Skeletons: Structure Man-agement of Parallel Computation. Pitman/MIT,1989.[5] S Danforth and P Valduriez. A fad for data inten-sive applications. IEEE Transactions on Knowl-edge and Data Engineering, 4(1):34{51, February1992.[6] J Darlington et al. Parallel programming usingskeleton functions. In Proceedings, Parallel Archi-tectures and Languages, Europe, Lecture Notes inComputer Science, number 694, 1993.[7] L Fegaras. A uniform calculus for collection types.Technical Report 94-030, Department of Com-puter Science and Engineering, Oregon GraduateInstitute of Science and Technology, OR 97291-1000, 1994.[8] P Hatcher, W F Tichy, and M Philippsen. A cri-tique of the programming language C*. Commu-nications of the ACM,, 35(6):21{24, June 1992.[9] M L Heytens. The Design and Implementation ofa Parallel Persistent Object System. PhD thesis,MIT Laboratory of Computer Science, 1992.[10] High performance fortran language speci�cation,version 1.0. Technical Report, May 1993. RiceUniversity[11] T Sheard and D Stemple. Automatic veri�ca-tion of database transactions. ACM Transactionson Database Systems, 14(3):322{368, September1989.[12] V B Tannen, P Buneman, and L Wong. Natu-rally embedded query languages. In Proceedingsof International Conference on Database Theory,Berlin, Germany, number 646 in lncs, October1992.[13] P Trinder. A Functional Database. Prg-82, Ox-ford University Programming Research Group,1989. DPhil.

