A New General Purpose Parallel Database System

M. Afshar, J. Bates, G. Bierman, K. Moody
Computer Laboratory
University of Cambridge
Cambridge, CB2 3QG

Abstract

This paper is concerned with the transparent par-
allelisation of declarative database queries, based on
theoretical principles. We have designed an entire
database architecture suitable for use on any general-
purpose parallel machine. This architecture addresses
the shortcomings in flexibility and scalability of com-
mercial parallel databases. A substantial benefit is that
the mathematical principles underlying our framework
allow provably correct parallel evaluations and opti-
misations, using compile-time transformations. We
address parallelism in a language-independent way
through the choice of monoids as a formulation for
expressing and modelling queries. Queries expressed
in our declarative language are transformed into ap-
plications of a higher—order function, the monoid ho-
momorphism. The evaluation of this function is par-
titioned at run-time, giving a tree-like processor topol-
ogy, the depth and breadth of which can be varied
with a declarative execution plan. Leaf nodes within
the evaluation tree operate on their own data parti-
tions and forward results to the appropriate interior
nodes. Due to the nature of our language, the func-
tions that are necessary to combine results from inde-
pendent parallel evaluations are generated automati-
cally at compile—time from a monoid definition dictio-
nary, additions to which can be made to extend the sys-
tem’s data types. We have built a complete prototype
of our system, which uses Swiss Radio Corporation’s
entire recorded music catalogue, on a general-purpose
AP1000, 128—cell parallel computer at the IFPC.!

1 Introduction

Our research is motivated, in particular, by opportuni-
ties to improve the efficiency of database queries. We
propose an abstract declarative method for query ex-
pression, removing the need to break down the prob-
lem into parallel tasks, handle internal communica-
tions or assign a procedural processor-task topology.

HMmperial College/Fujitsu Parallel Computing Centre, Lon-
don

This paper is structured as follows: firstly we detail
the motivations for our work. Section 1.2 gives an
overview of related work. Section 2 describes our ap-
proach and the high-level design of our system and is
followed by a theoretical grounding of our work in sec-
tion 3. We then discuss our prototype implementation
in section 4 before going on to present preliminary re-
sults in section 5. We make some concluding remarks
in section 6.

1.1 Motivation

Parallel databases are suitable for tackling very large
data sets or applications with high transaction vol-
umes. Those applications typically involve databases
containing many gigabytes of information.

Current commercial approaches lack flexibility, which
is mainly due to the fact that they are targeted specifi-
cally at SQL and they lack extensible data types. Scal-
ability is also a problem, mainly due to the use of a
shared disk approach. Moreover, they lack a theoreti-
cal basis, i.e. a provably correct model for their mode
of parallel query evaluation. We address all of these
shortcomings in our work.

A parallel database can be defined as a system in
which more than one process is used to perform
database queries. However, we shall assume that a
parallel database involves the following sub—processes:
splitting database queries into parallelisable sub-—
queries; performing these sub—queries in parallel; col-
lecting and amalgamating the results.

In a tightly coupled shared-disk system, processor
nodes in a parallel database system will be assigned
to carry out the above functions. At the bottom level
are parallel data managers built on processors with
attached disks. Each data manager can evaluate sub—
queries on its local data set. The total data is par-
titioned in a suitable manner across these data man-
ager nodes (see section 4 for details). Other nodes
are responsible for splitting up queries, passing the
sub—queries to the data management nodes and then
collecting and amalgamating the results.

In commercial parallel database systems, such as Or-



acle, standard SQL queries are supported, the par-
allelisation of which is made transparent. Businesses
can thus upgrade to powerful parallel database engines
without changing their existing software infrastruc-
ture. These systems are tuned for maximum trans-
action throughput.

In the research domain, related projects are addressing
both parallel object—oriented systems and specialised
parallel database machines, the latter becoming less
fashionable. In the former, research is at present fo-
cussed on the parallelisation of individual operations
in OQL in order to address the inefficiency of current
object query evaluation strategies. These efficiency
problems are brought about by the semantic richness
and powerful data modelling features of OQL.

In contrast, we base our entire database systems ar-
chitecture on a theoretical foundation which we claim
covers all current approaches.

1.2 Related Work

Although the specific target area of this paper is
databases, the underlying model is of general relevance
to parallel data processing. It unifies several related
research strands involving parallel programming, the-
oretical database and algorithms.

Research  into  parallel  programming  lan-
guages/systems can be broadly categorised into
three areas: those which address the parallel pro-
cessing problem by adding features to traditional
sequential programming languages; those that provide
standard library functions which can be used to build
parallel applications; and those that take a declarative
path concentrating on defining stereotypical patterns
of parallel computation which can be put together.
We briefly look at each of these in turn.

In the first category lie systems which have extended
a procedural language with explicit constructs for par-
allelism such as C* [8] and High Performance Fortran
[10], which is the latest language that combines For-
tran 90 with enhanced user defined data distribution.
A similar idea is the provision of standard message
passing library extensions, such as MPI and PVM,
which enable much flexibility through facilitating the
use of existing sequential languages (currently C/C++
and Fortran). Both supply a set of routines to allow
tasks on each processor to communicate.

Although suitable for some application classes, diffi-
culties still exist in both of these approaches such as
task division and allocation, expressing massively par-
allel programs, and reasoning about programs.
Within the database community, an alternative ap-
proach has been to exploit implicit parallelism within
database queries by use of high level declarative lan-

guages such as logic or functional languages [5, 9, 13].
One advantage of the functional framework is that
program transformation is based on mathematical
principles. Higher order functions allow recursion pat-
terns over structured types to be “abstracted out”,
leading to concise programs with no explicit recursion
and hence greater potential for program transforma-
tion. Although such languages offer the potential for
much implicit parallelism, most of this is too fine—
grain for efficient parallel implementation.

A derivative of this third approach has been to concen-
trate on the development of a programming method-
ology for parallel machines which allows portability
through the use of, for example, high level specifica-
tions, or skeletons. Skeletons have received attention
both from the theoretical view and in practical imple-
mentations [6, 4, 2]. A skeleton is a high level template
description of some parallel operations in which part
of the functionality is parametrised. Skeletons can be
expressed naturally through their equivalent higher or-
der functions in functional languages. Much complex-
ity (process topology, data distribution and amalga-
mation and control) can be hidden inside skeletons,
easing considerably the task of the compiler. Further-
more, by using performance models for each skeleton,
a compiler can make accurate decisions about resource
allocation. The use of skeletons allows the program-
mer to structure the parallel computation by means
of the composition of a set of well defined patterns.
Common examples of skeletons are processor farms,
process pipelines and divide and conquer trees, which
exhibit independent parallelism.

Notable implementations of the declarative approach
include NESL[3], which allows the definition of arbi-
trary functions in a pseudo—functional language, and
P3L [2], which allows skeletons to be used as a glue
for sequential C++ code and includes a performance
model for the evaluation. A key feature of NESL is
that functions can be applied in parallel to achieve
nested parallelism.

Independent parallelism, as exhibited by functions
such as map and filter, is very effective for decom-
posed forms of data and for divide—and—conquer com-
putations, which categorises many database opera-
tions. Structural recursion, which is a development
of these ideas has been investigated, both over single
collection types [12, 11], and over multiple collection
types [7].

Our work draws upon the work in database query
modelling [7] and the reduce skeleton in [1]. reduce
is a derivative of divide—and—conquer and map skele-
tons and resembles the higher—order function fold in



functional languages. The evaluation of this function
proceeds in a tree—based fashion.

2 General Approach

2.1 Approach

Queries are expressed in a declarative language en-
vironment in which we use program transformations
on a stereotypical function (capable of divide—and—
conquer computation), which is then subject to eval-
uation in parallel.

The algebraic properties necessary for parallelism
form the basis for our choice of monoids to model col-
lection (e.g. lists, bags) and primitive types (e.g. max,
sum, product).

Expressions expressed as a (potentially nested)
monoid comprehension are translated to the applica-
tion of a single function, the monoid homomorphism,
which resembles the reduce skeleton. The evaluation
of expressions involving this function are then subject
to parallelism at run—time. Monoid comprehensions
offer an intuitive and declarative basis for defining,
translating and evaluating DBMS query languages.
We view monoid comprehensions as a high-level form
for monoid homomorphisms, which we see as abstract
machine code.

Monoid comprehensions can capture most collection
and aggregate operators currently in use for relational
and object algebra [12], and can be used to express
queries which simultaneously deal with more than one
collection type and also naturally compose in a way
that mirrors the allowable query nesting in OQL. They
also permit easy integration of functional subexpres-
sions, as used in [7]. The following example shows
a query in SQL, monoid comprehensions and monoid
homomorphisms.

sqQu Monoid Comprehensions Monoid Homomorphisms
SELECT NAME hom[SET,SET] . Acd.
FROM CDs bag{name(cd)‘cd(—CDs, (if (age(cd) >3)
WHERE AGE>3 age(cd)>3} then {cd}

else {}) CDs

The use of monoid comprehensions is based on the
following factors:

Firstly, queries expressed in the monoid comprehen-
sion are translated into applications of monoid homo-
morphisms, which are amenable to parallel evaluation
since they capture a reduce computation.

Secondly, the information that influences the amount
of parallelism that can be extracted from the evalu-
ation of a query is dependent upon a number of al-
gebraic properties (i.e. associativity, commutativity,
idempotency and existence of a “unit” for the merge
function). Whilst it is desirable to elucidate whether
particular functions exhibit such algebraic properties

by inspection, the problem is, in general, undecidable.
Hence, we have taken the approach of allowing the
database maintainers to provide this information for
the system. This information is made available to the
system through a monoid dictionary, at the time when
each monoid is defined. This means that the combiner
functions that are required to combine the results from
parallel evaluations of a particular reduction, are in
fact, part of the natural definition of each monoid in-
volved in the reduction. For example, in the defini-
tion for the monoid set(a), the user—defined function
to combine instances, which is part of the monoid def-
inition, is the well known set—union operator U (the
implementation of which is in the monoid dictionary).
The information held in the monoid dictionary con-
tributes to making the data types that the system can
deal with extensible and also enables us to carry out
the kind of type—checking which is necessary to verify
the correctness of our mode of parallel evaluation.

FROM EMPLOYEES
WHERE AGE<30

SELECT NAVE
oQL SQL

Monoid Query

Translator
Language

Monoid bag{name(cd)| cd<- CDs,age(cd)>3}
Comprehensions

Definition
for New
Monoids

Monoid
Comprehensions
1 Translator

1
1
1
1

hom[set,bag].(if (age(cd)>3)
Monoid
Definition
Dictionary

Homomorphisms else zero(bag)).cds

Data Parallel Type
Dictionary Checker
Data
Partition hom([set,bag].(if (age(cd)>3)
Information Monoid then unit(bag,{name(cd))}

Homomorphisms else zero(bag)).cds

Figure 1: Software Architecture

2.2 Design

Figure 1 represents our software architecture.
Queries may either be expressed in terms of monoid
comprehensions or in SQL (for which a translator pro-
duces monoid comprehensions). For example, a query
to select “the name of all compact discs produced more

Monoid then unit(bag.{name(cd))}



than three years ago” is shown in section 2.1.
Expressions containing monoid comprehensions are
fed into a translator that produces monoid homomor-
phism code on which optimisations are carried out. At
this stage, the types of each collection monoid which
represent a database object (e.g. cds in a musical
compact disc database), are obtained from the data
dictionary. The result of this process is then fed into
a type—checker which uses the monoid dictionary to
ensure that correct parallel evaluation can be achieved
using our methodology (section 3.3). This parallel
type-checker requires a data dictionary, which includes
descriptions of the data in the database, a monoid
definition dictionary which includes definitions for all
monoids (table 1), and data partitioning information
which stipulates how the data has been partitioned
between processors. This information has a direct in-
fluence on the type-checking process (in section 3.3).
At the end of this process, code expressed in terms of
monoid homomorphisms is suitable for evaluation on
the parallel evaluator.

3 Theoretical Basis

Our high—level language is based on monoid compre-
hensions. In this section we discuss the theoretical
basis for this and also for the lower—level language,
monoid homomorphisms, which is executed by the
back—end parallel query evaluator.

3.1 Monoid Comprehensions

Our query language is based on monoid comprehen-
sions, which are translated into parallel operations ex-
pressed in terms of the monoid homomorphism which
operates on multiple monoid types.

Definition 1. (Monoid). A data type T is ex-
pressed as a monoid M with a unit function M =
(T, zero, unit, merge), where the function merge, of
type, T x T — T, is associative with left and right
identity zero.

If Va, y : merge[T)(z,y) = merge[T](y, x) then we say
that the monoid is commutative.

If. Va : merge[T)(z,z) = x, we say that the monoid
is idempotent.

Definition 2. (Free Monoid). Let T(a) be
determined by the type parameter « (i.e. T is a
type constructor) and (T (a,zero[T],unit[T],merge[T]))
be a monoid. The quadruple (T(a),zero[T],unit[T],
merge[T]) where unit[T] is a function of type o —
T (), is a free monoid.

We divide monoids into two sorts: collection and prim-
itive monoids, as in table 1. Collection monoids which
capture bulk types, such as lists, sets and bags, and
can be freely nested. Primitive monoids capture prim-
itive types such as integers and booleans.

| Collection Monoids

(M| T

| zero | unit(x) | merge | Com/Idem |

set | set(a) {} {x} U C&l

bag | bag(a) | {{}} | {{x}} Y C

list | list(c) (] [x] ++ -

| Primitive Monoids

| M | T |zero | unit(x) | merge | Com/Idem |
sum int 0 X + C
max int 0 X max C&I
all bool true X A C&l
Table 1: Examples of Collection and Primitive
Monoids
A comprehension over the monoid

(T, zero[T),unit[T],merge[T]) is defined by the
following inductive equation:

T{e |} = unit[T](e)

T{e |z + u,r} = hom[S,T]|(Az{e|r }) u

T{e | pred,r} = if pred then T{e | r } else zero[T

where r is a possible (empty) sequence of terms (of
the form x < u or pred) separated by commas, pred is
a predicate, and u is an expression of type S(«a), where
S is a free monoid with S < T'. The expression at the
head of the comprehension (to the left hand side of
the | sign) may contain other comprehension terms.

3.2 Monoid Homomorphism

A monoid homomorphism hom[T,S] from the

free  monoid (T'(@), zero[T], unit[T], merge[T])
to a monoid (S,zero[S],merge[S]) is de-
fined by the following inductive equations:
hom|T, S1(f)zero[T] = zero[S]

(f
hom|T, S](f)unit[T](a) = f(a)
hom|T, S1(f)merge[T|(z,y) =
merge[S](hom[T, S|(f)z, hom[T, S](f)y)

where T=S, where =< 1is the obvious order-
ing on monoid properties, e.g.  {associate} =
{associative, commutative}. For example, a monoid
homomorphism hom[set,sum] that captures the car-
dinality of a set is not valid since set A sum (set
is commutative and idempotent, whereas sum is just
commutative). Conformance to this rule is checked by
the type—checker for parallel evaluation (section 3.3),
since the commutativity and idempotency properties
of a monoid are specified explicitly when the monoid
is defined and are stored in the monoid definition dic-
tionary.



3.3 Type-Checking

In addition to checking that queries are well formed
with respect to the database schema as defined in the
data dictionary, we incorporate a type—checker for par-
allel evaluation which is built into our system. The
function of this type—checker is to ensure that queries
expressed in terms of monoid—homomorphisms make
legitimate transitions and hence that our methodol-
ogy for parallel evaluation yields a correct result. In
order to make such decisions, the type—checker needs
two types of information: the monoid definition ta-
ble, and information on data partitioning. The first
type—checking stage is concerned with ensuring that
the homomorphisms in the query follow acceptable
transitions (i.e. that T' < S is satisfied). For queries
that fail first type—check, we use data partitioning in-
formation to ascertain whether the query is can still
be evaluated correctly.

For example, the query given below selects all tracks
from a database of tracks on CDs:

sum{l | t < tracks, daterecorded(t)<=1992}

The homomorphism in the above query takes a set
(of tracks) and produces a sum from it (i.e. gives
the total number tracks in the database which were
recorded before 1992). Although this query may ap-
pear to be legitimate, in the absence of information
regarding data partitioning, it is rejected. A closer
inspection of the properties of the collection monoid,
set and the primitive monoid, sum, reveals that set
is a commutative, idempotent monoid whereas sum
is only commutative (i.e. the condition 7' < S is not
satisfied). Hence, the query is passed to the second
phase of the type—checking process.

The given query can lead to a correct parallel evalua-
tion if the argument data structures, which are the set
of tracks and CDs, are distributed across the nodes
such that there are no duplicates across nodes (i.e.
the collection can be reconstructed without perform-
ing any duplicate purging). Since data of collection
type set is partitioned across nodes in this way, i.e.
there are no duplicates across nodes, then the eval-
uation can be accepted by the second phase type—
checker, since there are no intermediate partial results
produced which violate this condition.

However, the following query which returns the num-
ber of tracks that have been produced in the same
country as the CD requires further analysis:

sum{1|t+tracks, cd¢cds,
recorded_in(track)=recorded_in(cd)}

The information in the data dictionary regarding each
collection that has been split across multiple nodes
holds information about the attribute upon which
such partitioning has been carried out (if appropri-
ate). In our database of CDs and tracks, information
is stored for each table noting that it has been parti-
tioned on the join attribute, namely cd_id. Clearly,
since none of the filters in the above query contain an
equality on the join attribute, the query is rejected.
This can be traced to the observation that the query
asks for the tracks that have been recorded in the same
town as any CD, not the particular CD title on which
the track appears. Since there may indeed be cases
where potential results are lost, e.g. a track appear-
ing on node 1 is recorded in London and so is a CD on
node 6 but this does not contribute to the final result
since it does lie across a node boundary, the query is
rejected. Our check detects when our mode of evalua-
tion would be incorrect, however contrived the query
example is! Indeed, an efficient parallel implementa-
tion could only be produced if the argument set can
be merged without performing duplicate purging.
The type-checker also has at its disposal the meta data
detailing the way in which each database table has
been partitioned. If, for example, the tracks database
were to be split up on the recorded_in field, then the
type—checker would infer that the monoid type for the
tracks table is in fact partitioned—set if the query
were to involve an recorded_in filter. The query
would thus have been verified to be correct.

4 TImplementation and Experiments
We have implemented a prototype of our system on
a single-user 128-node Fujitsu AP1000 parallel com-
puter. It would be possible to port this to any par-
allel machine on which a subset of nodes have access
to disks. Each node (cell) consists of one processor
running a UNIX-like operating system with no pre—
emptive scheduling. Local disks are attached to 32
cells, although all cells are able to access all 32 of
the local disks. The machine is SIMD in principle,
although it is possible to obtain MIMD behaviour, a
feature which we make use of in our evaluations. We
use the native message—passing libraries, as, at the
time of implementation, no local I/O could be carried
out, on the MPI implementation.

Our experimental data set consists of the Swiss Ra-
dio Corporation’s CD acquisitions catalogue. This
database consists of two tables: a compact discs ta-
ble, and a tracks table with about 30,000 CDs and on
average about 9 tracks per CD. Both tables have been
partitioned horizontally on the key attribute cd_id,
so that all tracks relevant to a CD can be found on



the same node. This is required to address poten-
tial problems with nested queries involving idempo-
tent monoids (e.g. set, which is commutative idempo-
tent), as discussed in section 3.3.

As shown in figure 1 database queries are expressed in
terms of monoid comprehensions, or SQL — in which
case they are subject to translation to monoid com-
prehension first — which are translated into monoid
homomorphisms at which stage suitable type check-
ing is carried out. During this process optimisations
may also be carried out, to produce optimised monoid
homomorphism queries.

The prototype system requires a declarative execution
plan in order to define the form of the evaluation—
tree since, due to the operating system limitations,
we are not able to create processes dynamically on
the cells of the AP1000. This means that the pro-
cess topology is defined at compile-time in the form
of a declarative evaluation map, which defines the
number of processors at each level within the eval-
uation tree. The depth and breadth of the evaluation
tree influences the efficiency of the parallel evaluation.
Changes to a declarative evaluation map may require
re—organisation of the data residing on local disks. If
the number of leaf nodes which process data directly
off their local disks is varied, (e.g from 32 to 16), some
reorganisation of the database partitions is required.
The run—time system takes care of this reorganisation.

The prototype parallel evaluator requires both the
monoid homomorphism code and a declarative evalua-
tion map. Its software architecture is given in figure 2.
The server running on the host broadcasts the monoid
homomorphism program together with a declarative
evaluation map to the 128 cells on the machine. Each
cell then calculates its position in the evaluation tree
using the plan, which always consist of one cell acting
as the root gathering results at the top. Cells which
are at the leaf nodes of the evaluation tree are neces-
sarily equipped with disks on where their data resides.
Each leaf node interprets the homomorphism code and
sends its results to its sole destination cell periodically
during evaluation. Internal cells in the evaluation tree
combine results from a number of leaf-nodes (or other
internal nodes) and forward their results to internal
nodes higher up in the evaluation tree. The functions
which are required to combine results from other cells
at the internal nodes are available in the monoid defi-
nition dictionary, which is part of the run—time system
of each cell. The evaluation is complete when the root
cell has finished combining results from its communi-
cation partners.

Host SUN
Workstation

Data Partition
Information

Monoid
Homomorphisms

COMPLETE

Data + Monoid DATA
Definition Dictionaries SET

Declarative Execution

lan -~

_—

DATA - celll ‘ N

J;/‘*:\.\ HOST
. >

Run-time

PR system.
DATA-cell2 | ,~*T  /
L/

4
/

¥
DATA- celln .

R4

(m) - Signal COMPLETE to HOST

/ . .
/@ S @ (1) Start

/ 2 “AP1000
/ S

celll Internal Node

™ Monoid Hom § H
: Interpreter H
monmd N H Homomorphisms
lomomorphisms : H "
Leaf Node H £ | Interior Node
Run;time 5 Runtime Syste
: = Data + Monoid
Data + Monoid s Communications [spata Definition Dictionaries
Definition Dictionaries | | 3| Layer g
—-—p Declarative Execution

Declarative Execution Plan
Plan Disk Handler

celln

Monoid

_—

DATA- celln

_—

Figure 2: Run-time Software Environment

5 Initial Results

The graph below shows the speedup for typical query
runs on a single table (CDs table), with configurations
containing up to 20 cells. Initial inspections show that
the query with the lowest selectivity (3% of the data
inspected is returned in the result) has the fasted eval-
uation time, whereas the other two evaluations which
are less selective (with selectivities of 14.8% and 85%)
take longer. As would be expected, the speedup is
greater with the query returning fewest results.

The results show that the runs with 19 and 23 cells
do not show a relative performance improvement over
the runs with 17 cells. The information which we have
omitted from the graph gives us an insight into why
this may be so.

Runs with 19 and 23 cells have configurations of
(1,2,16), and (1,2,4,16), where these numbers indicate
the number of cells at each level from the root down
to the leaves within the evaluation tree. The run with
17 cells, which has a configuration of (1,16), does not




0.025

selectivity=3% o
selectivity=14.8% +
selectivity=85% O

0.015

1/Time (Usecs)

0.005

=S

15 20
Number of cells

Figure 3: Speedup graph

perform significantly worse than runs with 19 and 23
cells since the extra-level(s) within the evaluation tree
in the latter runs is/are degrading rather than enhanc-
ing performance. Put another way, the evaluation tree
is too deep for the amount of data and cell configura-
tion in the runs with 19 and 23 cells.

6 Conclusions

This paper has described the theoretical basis, design
and implementation of our model for parallel data pro-
cessing. We have presented a framework for parallelis-
ing database queries based on monoid comprehensions
as a declarative high—level language. Expressions in-
volving monoid comprehensions are translated into ap-
plications of the monoid homomorphism, which is sub-
ject to parallel evaluation in a tree—structured topol-
ogy. Monoid definitions are kept in a monoid defini-
tion dictionary, additions to which can be made in a
modular, organised, simple and provably correct way,
without any need to change any existing code. The
definition of monoids includes functions required to
combine partial results. This enables experimentation
with different implementations of the same combiner
operations. The parallel evaluation of monoid homo-
morphisms is more scalable than that of a master—
slave arrangement, which is sometimes used for paral-
lel database query evaluation. We have implemented
our framework on a Fujitsu AP1000 128-cell parallel
machine using a large commercial dataset.

References
[1] M Afshar and H Khoshnevisan. Mechanical paral-
lelisation of database applications. In Proceedings
of The 1994 ACM Symposium on Applied Com-
puting, pages 436-441. March 1994, Phoenix, Az.

[2] Bacci, Danelutto, Orlando, Pelagatti, and Van-
neschi. P3L: a structured high level parallel
language and its structured support. Concur-
rency: Practice and Experience, 7(3):225-255,
May 1995.

[3] G E Belloch. Programming parallel algorithms.
Communications of the ACM, March 1996.

[4] M Cole. Algorithmic Skeletons: Structure Man-
agement of Parallel Computation. Pitman/MIT,
1989.

[5] S Danforth and P Valduriez. A fad for data inten-
sive applications. IFEFE Transactions on Knowl-
edge and Data Engineering, 4(1):34-51, February
1992.

[6] J Darlington et al. Parallel programming using
skeleton functions. In Proceedings, Parallel Archi-
tectures and Languages, Furope, Lecture Notes in
Computer Science, number 694, 1993.

[7] L Fegaras. A uniform calculus for collection types.
Technical Report 94-030, Department of Com-
puter Science and Engineering, Oregon Graduate
Institute of Science and Technology, OR 97291-
1000, 1994.

[8] P Hatcher, W F Tichy, and M Philippsen. A cri-
tique of the programming language C*. Commu-
nications of the ACM,, 35(6):21-24, June 1992.

[9] M L Heytens. The Design and Implementation of
a Parallel Persistent Object System. PhD thesis,
MIT Laboratory of Computer Science, 1992.

[10] High performance fortran language specification,
version 1.0. Technical Report, May 1993. Rice
University

[11] T Sheard and D Stemple. Automatic verifica-
tion of database transactions. ACM Transactions
on Database Systems, 14(3):322-368, September
1989.

[12] V B Tannen, P Buneman, and L. Wong. Natu-
rally embedded query languages. In Proceedings
of International Conference on Database Theory,

Berlin, Germany, number 646 in Incs, October
1992.

[13] P Trinder. A Functional Database. Prg-82, Ox-
ford University Programming Research Group,
1989. DPhil.



