
A Theory of Typed Coercions and its Applications

Nikhil Swamy
Microsoft Research, USA
nswamy@microsoft.com

Michael Hicks ∗

University of Maryland, College Park
mwh@cs.umd.edu

Gavin M. Bierman
Microsoft Research Cambridge, UK

gmb@microsoft.com

Abstract
A number of important program rewriting scenarios can be recast as
type-directed coercion insertion. These range from more theoretical
applications such as coercive subtyping and supporting overloading
in type theories, to more practical applications such as integrating
static and dynamically typed code using gradual typing, and in-
lining code to enforce security policies such as access control and
provenance tracking. In this paper we give a general theory of type-
directed coercion insertion. We specifically explore the inherent
tradeoff between expressiveness and ambiguity—the more power-
ful the strategy for generating coercions, the greater the possibil-
ity of several, semantically distinct rewritings for a given program.
We consider increasingly powerful coercion generation strategies,
work out example applications supported by the increased power
(including those mentioned above), and identify the inherent am-
biguity problems of each setting, along with various techniques to
tame the ambiguities.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.4 [Processors]: Compilers

General Terms Design, Languages, Theory

Keywords coercion insertion, nonambiguity, type-directed trans-
lation, provenance, gradual typing

1. Introduction
For nearly two decades, researchers have considered the problem of
type-directed coercion insertion, in which data of one type can be
automatically coerced to another type, without explicit intervention
by the programmer [Breazu-Tannen et al. 1991, Barthe 1996, Luo
1996]. For example, suppose a value of type lazy α, called a thunk,
represents a suspended computation that when evaluated will have
type α. When needed, a thunk’s underlying value is acquired by
passing it to the function force : lazy α → α. Rather than require
the programmer to manually insert calls to force , the programmer
can use lazy α values as if they were α values, and coercion in-
sertion will add the needed calls to force automatically. Coercion
insertion has been proposed to support numeric and other represen-
tational conversions, both in mainstream programming languages
and type theories, and overloading, among other applications.

∗Work performed while this author was visiting Microsoft Research, Cam-
bridge, and the University of Cambridge Computer Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $10.00

We became interested in the coercion insertion problem while
developing the Fable calculus [Swamy et al. 2008]. In that work
we showed how to precisely enforce a broad range of security poli-
cies, including access control and noninterference-style informa-
tion flow policies, by mediating access to security-relevant objects
using what amounts to sophisticated coercions. For fine-grained,
end-to-end security policies like information flow tracking, we
found that manually inserting the necessary calls was tedious and
resulted in confusing and complicated code. Thus it seemed nat-
ural to apply coercion insertion to add security checks automati-
cally. Unfortunately, we found existing work on coercion insertion
suffered from being too inexpressive or unpredictable because of
ambiguous rewriting.

In this paper, we develop a new theory of type-directed coercion
insertion for the simply-typed lambda calculus that consists of two
interrelated judgments:

Coercion generation: Σ ` t�d t
′ ; c

Type-directed coercion insertion: Σ; Γ `d,d′ e ; m : t

Both judgments are parameterized by a coercion set Σ con-
sisting of the name and type of each primitive coercion, e.g.,
force:∀α.lazy α→ α.

The coercion generation judgment is used to construct coercion
terms c of type t→ t′ built from primitive coercions in Σ. We study
several definitions of the coercion generation judgment, each iden-
tified by an index d. The most powerful definition permits primitive
coercions to have polymorphic types (though source terms do not),
and may construct coercion terms by composing primitive coer-
cions transitively (e.g., Σ ` t1 �d t3 ; c via c1 : t1 → t2 and
c2 : t2 → t3) and component-wise according to type structure,
as in coercive subtyping (e.g., Σ ` t1 × t2 �d t

′
1 × t′2 ; c via

c1 : t1 → t′1 and c2 : t2 → t′2). No prior system has incorpo-
rated all three of these elements into coercion generation with the
same degree of flexibility; e.g., Luo allows only primitive, poly-
morphic coercions [Luo and Kießling 2004, Luo 2008]; and while
the coercions of Saı̈bi [1997] include elements of our structural
and polymorphic judgments, his restrictions on the use of polymor-
phism make them unsuitable for our applications. As we demon-
strate in §6.3, we have found the combination of the three to be
crucial for implementing coercions that track information prove-
nance [Cheney et al. 2007] whereby our framework inserts calls to
these coercions automatically.

On the other hand, we show that weaker definitions of coercion
generation are useful for avoiding potentially ambiguous rewrit-
ings, and may be preferred for some applications. With different
coercion generation definitions we show our system can implement
many applications, including overloaded operators (§2), equality-
witnessing coercions (used in dynamic software update safety
checking [Stoyle et al. 2007]) (§4.3), coercive subtyping [Luo
1996] (§5.3), forms of dynamic and gradual typing [Henglein
1994, Siek and Taha 2006] (§5.5), and transparent proxies for fu-
tures [Pratikakis et al. 2004] (§6.1). In several cases, we are the

first to demonstrate that coercion insertion can be used to imple-
ment these applications.

The coercion insertion judgment Σ; Γ `d,d′ e ; m : t is used
to rewrite a term e by inserting generated coercions; e.g., to rewrite
a source term f 1 to (force f) 1. The indices d, d′ identify the co-
ercion generation definition(s) to be used. For a given Σ there may
be many ways to rewrite a term, in which case we say that coer-
cion insertion is ambiguous. Ambiguity is a problem when different
rewritings may have different run-time semantics, since program-
mers can no longer reason about the meaning of their source pro-
gram. We find treatment of ambiguous rewriting in prior work lack-
ing in two ways. First, rather than avoid ambiguity, several systems
attempt to argue that all possible rewritings are confluent, and thus
semantically equivalent. However, not all useful coercions exhibit
the necessary equivalences to make such arguments. For example,
coercions that cause a loss in precision may not have inverses, e.g.,
(int2float ◦ float2int) x 6= x, for all x. Additionally, when co-
ercions and/or the source language include effects, such as I/O or
run-time failure, different rewritings can be distinguished based on
the order of evaluation. Second, prior work often does not consider
the root causes of ambiguity due to Σ; for example, a Σ containing
two coercions of type t → t′ is problematic because any rewriting
that uses the first coercion could just as well use the second. Work
that does consider this problem is overly restrictive.

Our work addresses both of these limitations. To address the
first problem, we employ a purely syntactic notion of ambiguity.
We show that our syntactic restrictions make our system no less
expressive than a system without such restrictions (which would
instead rely on more limited confluence arguments).

For the second problem, we develop necessary and sufficient
conditions that can be used to check, for a given Σ and coercion
generation judgment, whether coercion insertion will be strongly
unambiguous, meaning that every possible term rewriting is unam-
biguous (i.e., there is exactly one rewriting). Saı̈bi [1997] and Luo
and Kießling [2004] also develop sufficient conditions, but they are
overly strong, ruling out useful rewritings that would actually be
unambiguous. Interestingly, we have found some useful coercion
sets Σ that are not strongly unambiguous for some definitions of co-
ercion generation—there will be ambiguous rewritings for at least
some terms e. For these cases, the programmer must indicate via
annotations which rewriting is preferred.

In summary, the primary contribution of this paper is a frame-
work for type-directed coercion insertion that is extremely expres-
sive, and yet carefully accounts for the problem of ambiguous
rewritings (§2 and §3). We develop increasingly powerful defini-
tions for coercion generation and use them to show how our frame-
work can be used to encode many interesting applications (§4–§6),
suggesting our approach to type-directed coercion insertion may be
a worthwhile addition to mainstream programming languages.

2. Type-directed coercion insertion
We explore the type-directed coercion insertion problem for the
simply typed lambda calculus; its syntax is given at the top of
Figure 1. While we ultimately wish to support coercion insertion
for a polymorphically-typed term language, simply-typed source
terms nevertheless present significant challenges, and are relevant
in many contexts, as we show throughout the paper. Types consist
of base types B, function types t1 → t2, and product types
t1 × t2, corresponding to the usual source language terms e. We
also include type ascriptions e:t and type casts 〈t〉e, which the
programmer can use to direct the program rewriting and avoid
ambiguity, as we discuss below.

Our coercion insertion judgment is written Σ; Γ `d,d′ e ; m :
t. Here, Σ is a set of primitive coercions of the form f :t1 → t2,
where f is an identifier with type t1 → t2. Primitive coercions are

the building blocks used to rewrite source language terms e. The
result of coercion insertion is a (type-correct) target language term
m, paired with its type, to which e can be rewritten.

Coercions are produced by a coercion generation judgment,
Σ ` t �d t

′ ; c, a relation that states that a term of type t
may be coerced to a term of type t′ by applying coercion term c.
An extremely simple definition of coercion generation, which we
call Base, is shown in Figure 2. A coercion c is either drawn di-
rectly from Σ (CB-Prim) or is the identity coercion id t ≡ λx:t.x
(CB-Id). Sections 4, 5, and 6 consider progressively more pow-
erful definitions of coercion generation, where each definition of
Σ ` t �d t

′ ; c is distinguished by an index d (Base has index
b). More powerful definitions enable more applications, but com-
plicate reasoning about ambiguity. To tame such problems, we may
use different definitions of coercion generation when rewriting par-
ticular sub-terms, as we explain below. As such, the coercion in-
sertion judgment Σ; Γ `d,d′ e ; m : t is parameterized by two
indices, d and d′, to indicate the forms of coercion generation to be
used.

The inference rules for coercion insertion are shown at the mid-
dle of Figure 1. Rule (T-Var) simply produces the source variable
x paired with its type; no coercion is applied. The rule (T-As) re-
turns a rewritten term of the ascribed type t; later we illustrate how
ascriptions can be used to locally resolve ambiguity. (T-Abs) and
(T-Pair) simply rewrite the subterms as appropriate.

The rules (T-Cast), (T-Proj) and (T-App) capture the cases
where a source term may have generated coercions inserted to pro-
duce a type-correct target term. In contrast to (T-As) which does
not insert a coercion, (T-Cast) first rewrites the subterm e to a target
term m of type t′ and generates a coercion from t′ to the required
type t. If the generated coercion is the identity coercion, then we
do not bother to insert it (this is captured using the 〈〈·〉〉· notation
defined at the bottom of the figure). (T-Proj) rewrites the subterm e
to a target term m of type t and inserts a generated coercion from t
to a product type t1×t2. The (T-App) rule has the same basic form,
except that both the functional component e1 and the argument e2

may have coercions applied.
These rules obey a design pattern: a source term is rewritten

so that its type matches that required by the context in which it
appears. If the context imposes no constraint, then no coercion is
inserted. For example, (T-Var) simply returns x with its given type,
rather than rewriting x by inserting a coercion from x’s given type
to some other type. Such eager coercion would result in no addi-
tional expressive power—the only time a coercion is needed for
type-correctness is when x appears in an elimination position, as
in proji(x) or x e which requires x to have some type t1 × t2
or t1 → t2. We expect this basic pattern of inserting coercions
at elimination positions should apply to many other standard pro-
gramming language features, such as references, conditionals, and
datatypes with pattern matching.

Note that, though not in elimination position, we also allow co-
ercions to be applied to function arguments. The reason is that ap-
plying structural coercions, introduced in §5, to function terms may
lead to ambiguity. Hence, we parameterize the coercion insertion
judgment with two coercion generation forms, d and d′, one for
function (and pair) terms, one for function arguments.

2.1 Examples

Simple coercions. With the coercion set Σ and environment Γ
defined as below,

Σ = ftoi :Float → Int
Γ = f :Int → Int , x:Float

we can rewrite the term f x using the Base coercion generation
judgment according to Σ; Γ `b,b f x ; (f (ftoi x)) : Int . This

Types t, s ::= B | t1 → t2 | t1 × t2
Source terms e ::= x | e:t | 〈t〉e | λx:t.e | e1 e2 | (e1, e2) | proji(e)
Target terms c,m ::= x | f | λx:t.m | m1 m2 | (m1,m2) | proji(m)

Primitive coercions Σ ::= · | Σ, f :t1 → t2
Typing context Γ ::= · | Γ, x:t

Σ; Γ `d,d′ e ; m:t Coercion generation def. d, d′ ::= b (Base) | r (Trans) | s (Struct) | p (PolyTrans) | q (PolyStruct)

T-Var
Σ; Γ `d,d′ x ; x : Γ(x)

T-As
Σ; Γ `d,d′ e ; m : t

Σ; Γ `d,d′ e:t ; m : t
T-Cast

Σ; Γ `d,d′ e ; m : t′

Σ ` t′ �d′ t ; c

Σ; Γ `d,d′ 〈t〉e ; 〈〈c〉〉m : t

T-Abs
Σ; Γ, x:t `d,d′ e ; m : t′

Σ; Γ `d,d′ λx:t.e ; λx:t.m : t→ t′
T-Pair

Σ; Γ `d,d′ e1 ; m1 : t1
Σ; Γ `d,d′ e2 ; m2 : t2

Σ; Γ `d,d′ (e1, e2) ; (m1,m2) : t1 × t2

T-Proj

Σ; Γ `d,d′ e ; m : t
Σ ` t�d t1 × t2 ; c

Σ; Γ `d,d′ proji(e) ; proji(〈〈c〉〉m) : ti
T-App

Σ; Γ `d,d′ e1 ; m1 : t1 Σ ` t1 �d t
′
1 → t′2 ; c

Σ; Γ `d,d′ e2 ; m2 : t2 Σ ` t2 �d′ t
′
1 ; c′

Σ; Γ `d,d′ e1 e2 ; (〈〈c〉〉m1) (〈〈c′〉〉m2) : t′2

〈〈c〉〉m = m if c ≡ id t
(c m) otherwise

Figure 1. Type-directed coercion insertion for the simply-typed lambda calculus

judgment states that applying f to x can be made type correct by
leaving f alone and rewriting the argument x to be ftoi x. In fact,
this is the only possible type-correct rewriting for this program.

Overloading. Luo [2008] has shown that coercions can be used
to implement simple forms of overloading. Suppose we extend the
Σ and Γ from above as follows:

Σ′ = ptof :P → Float → Float → Float ,
ptoi :P → Int → Int → Int ,Σ

Γ′ = plus:P ,Γ

Here, Γ′ includes a binary operator plus:P , where P is some dis-
tinguished base type, and the coercion set Σ′ includes two coer-
cions that allow plus to be applied both to a pair of Floats as
well as a pair of Ints. We can prove Σ′; Γ′ `b,b plus x x ;

((ptof plus) x x) : Float . This is perhaps the expected re-
sult, but is not the only possibility—another possible rewriting is
((ptoi plus) (ftoi x) (ftoi x)) : Int . It is not hard to see that
each rewritten term has a different type, so the ambiguity can be re-
solved via a type ascription: source term (plus x x):Float would
produce the first and (plus x x):Int would produce the second.

Note that (ftoi ((ptof plus) x x)) : Int is not a possible
rewriting. As mentioned previously, this is because applying a co-
ercion to the application itself has no impact on the type correctness
of the rewritten term; i.e., (ptof plus) x x is already type-correct.
The programmer could force this result using a type cast in the
source term, writing it 〈Int〉(plus x x).1

2.2 Type correctness

The goal of type-directed coercion insertion is to produce only
type-correct target terms m that can be formed by rewriting a
source term e. Additionally, we want to show that every well-
typed source program e is also well-typed according to our coercion
insertion judgment. We formalize these statements as follows, and

1 Note that there are two rewritings for this term:
(ftoi ((ptof plus) x x)) : Int and ((ptoi plus) (ftoi x) (ftoi x)) :
Int . A type ascription can be used in the source term to further
constrain the rewriting, i.e. 〈Int〉((plus x x):Float) rewrites to
(ftoi ((ptof plus) x x)) : Int .

CB-Prim
f :t→ t′ ∈ Σ

Σ ` t�b t
′ ; f

CB-Id
Σ ` t�b t ; id t

Figure 2. Basic coercion generation (Base)

prove them for each coercion generation definition d developed
subsequently: 2

Theorem 1 (Soundness).
∀Σ,Γ, e,m, t, d, d′.Σ; Γ `d,d′ e ; m : t ⇒ Σ,Γ ` m : t.

Theorem 2 (Sufficiency).
∀Σ,Γ, e, t, d, d′.Γ ` e : t ⇒ Σ; Γ `d,d′ e ; e : t.

These propositions presume a standard type-checking judgment
Γ ` m : t on source and target terms. The context used to check
the term m in the first judgment is Σ,Γ, the concatenation of the
original primitive coercion list Σ and the original typing context Γ.
The second proposition claims that when a source term e is typable,
one possible rewriting of coercion insertion judgment includes the
unmodified e.

3. Non-ambiguity
We would like to ensure that rewriting is unambiguous—there
should be a single meaning attributable to e. We do this syntacti-
cally. Specifically, we state that a derivation is unambiguous when
it produces at most one type-correct rewriting.

Definition 3 (Non-ambiguity). Given Σ,Γ, d, d′, a term e can be
unambiguously rewritten if there exists a unique m, t such that
Σ; Γ `d,d′ e ; m : t.

Our first example in §2.1 is unambiguous by this definition,
while the second example is not.

2 The proofs of all theorems for the fragment of our system in which
d, d′ ∈ {b, r, s} are available as Coq proof scripts at http://research.
microsoft.com/~nswamy/papers/coercion-proofs.tgz. Proofs of
theorems for our polymorphic system can be found in a companion techni-
cal report [Swamy et al. 2009].

A syntactic notion of ambiguity has the benefit that we need
not reason about the semantics of coercions, which is particularly
useful in the presence of side effects. For example, suppose our ftoi
coercion can sometimes fail, e.g., if its argument is NaN. Given the
type-incorrect source term

let y = (λz:Int .NaN) 0 in (e; 1 + y)

we could rewrite it to apply ftoi to either NaN within the body of
the lambda term, or to y in the final expression 1 + y. If e contains
side effects, then the semantics of the two rewritten programs will
be visibly different—the call to ftoi will fail prior to the execution
of e in the first case, but after it in the second. Our system avoids
this potential problem by preferring a single rewriting, and in this
case produces only the second.

3.1 Strong non-ambiguity

Definition 3 considers non-ambiguity for a single term. We are also
interested in non-ambiguity at the level of the rewriting system
itself, i.e., for all terms. We refer to this property as strong non-
ambiguity.

Definition 4 (SNA(Σ, d, d′): Strong non-ambiguity).

∀Γ, e,m1, t1,m2, t2.
Σ; Γ `d,d′ e ; m1 : t1 ∧ Σ; Γ `d,d′ e ; m2 : t2
⇒ (m1 = m2 ∧ t1 = t2)

Strong non-ambiguity depends on the particular forms of co-
ercion generation and the set of primitive coercions Σ—for some
definitions of coercion generation, and some Σ, coercion insertion
will be strongly unambiguous, but for others it will not. For the
second example in §2.1, Base coercion generation (Figure 2) used
with the given Σ′ causes coercion insertion to not be strongly un-
ambiguous, evidenced by the fact that our example term plus x x
has two possible rewritings. On the other hand, it turns out that with
the Σ from the first example, Base is strongly unambiguous: there
is no possibility of producing multiple rewritings for any program
under Σ = ftoi :Float → Int .

3.2 Establishing strong non-ambiguity

Strong non-ambiguity is a property of the program rewriting sys-
tem, but we can prove that it can be characterized by three con-
straints (NACπ , NAC×, and NACapp) on the coercion generation
judgment, for a given Σ.

The most obvious constraint is that coercion generation must be
a partial function from pairs of types to coercions—given some
Σ, coercion generation should produce at most one term c that
coerces values between given source and target types t and t′.
In later sections, we show how this constraint can be decided by
viewing a coercion term as a path in a graph. We can formalize this
requirement as follows:

Definition 5 (NACπ(d,Σ): unique coercion paths).
∀t, t′, c, c′.Σ ` t�d t

′ ; c ∧ Σ ` t�d t
′ ; c′ ⇒ c = c′

To guarantee strong non-ambiguity, we require two further con-
straints that arise from the way terms are rewritten by the coercion
insertion judgment.

First, when rewriting a term proji(e) using the (T-Proj) rule,
if there is more than one product type to which to coerce e, the
rewriting could be ambiguous. For example, it could be that Σ `
t�d t1×t2 ; c and Σ ` t�d t

′
1×t′2 ; c′, and as such (assuming

e has type t), we could rewrite proji(e) to both proji(c e):ti and
proji(c

′ e):t′i. Thus we must require that any type t can be coerced
to at most one product type t1 × t2—we formalize this condition
as follows:

Coercion paths π ::= {t1, . . . , tk}

CC-Id
Σ `π t�r t ; id t

CC-PrimTrans

f :t→ t′′ ∈ Σ

Σ `π]{t
′′} t′′ �r t

′ ; c

Σ `π t�r t
′ ; c ◦ f

CC-InitPath
Σ `{t} t�r t

′ ; c

Σ ` t�r t
′ ; c

Figure 3. Transitive composition of coercions (Trans)

Definition 6 (NAC×(d,Σ): unique coercion to a product type).
∀t, t1, t2, t′1, t′2, c, c′.

Σ ` t�d (t1 × t2) ; c ∧ Σ ` t�d (t′1 × t′2) ; c′ ⇒
t1 = t′1 ∧ t2 = t′2

A similar situation arises when rewriting a term e1 e2 using the
(T-App) rule. Assume that e1 is rewritten to a term of type t1 and e2

is rewritten to a term of type t2. To preserve strong non-ambiguity
there must be only one way to coerce the type t1 to a function type
t′ → t′′ (where t2 can be coerced to t′). This property is defined as
follows:
Definition 7 (NACapp(d, d′,Σ): unambiguous applications).
∀t1, t2, t3, t4, t5, t6, c1, c2, c3, c4.
Σ ` t1 �d (t3 → t5) ; c1 ∧ Σ ` t2 �d′ t3 ; c3 ∧
Σ ` t1 �d (t4 → t6) ; c2 ∧ Σ ` t2 �d′ t4 ; c4
⇒ (t3 = t4 ∧ t5 = t6)

The theorem below establishes that these three conditions are
both necessary and sufficient for strong non-ambiguity.

Theorem 8 (Strong non-ambiguity).
∀Σ, d, d′.SNA(Σ, d, d′) ⇔
NACπ(d,Σ) ∧ NACπ(d′,Σ) ∧ NAC×(d,Σ) ∧ NACapp(d, d′,Σ)

Additional conditions similar to these may be needed to handle
other language features. For example, a condition analogous to
NACapp would be needed to handle assignments to references
e1 := e2. On the other hand, no additional condition is needed
to support conditionals; NACπ is sufficient.

It is easy to check that our overloading example Σ = ptof :P →
Float → Float → Float , ptoi :P → Int → Int → Int is
strongly unambiguous. However, if the coercion ftoi :Float → Int
is included in Σ then NACapp(b, b,Σ) no longer holds, so ambigu-
ous derivations become possible, as we have seen. In subsequent
sections we present algorithms that either precisely decide or ap-
proximate these NAC constraints for particular coercion generation
definitions.

4. Composing primitive coercions
We can increase the number of rewritable programs by increas-
ing the power of the coercion generation judgment. However, as
expressive power increases so, too, does the likelihood of am-
biguous rewritings. In this and the next two sections we define
more powerful coercion generation judgments that can generate
compound coercions. In this section we consider Trans, which
may generate compound coercions by transitive composition (e.g.,
Σ ` t1 �d t3 ; c via c1 : t1 → t2 and c2 : t2 → t3);
in §5 we consider Struct, which extends Trans to generate com-
pound coercions component-wise, according to type structure (e.g.,
Σ ` t1×t2 �d t

′
1×t′2 ; c via c1 : t1 → t′1 and c2 : t2 → t′2); and

in §6 we consider PolyTrans and PolyStruct, which extend Trans

and Struct, respectively, to support primitive coercions with poly-
morphic types. In each section we explore substantial applications
enabled by this added power, and consider conditions that are suf-
ficient to ensure strong non-ambiguity.

4.1 Generating composite coercions

A natural extension to the Base judgment is to allow the sequential
composition of primitive coercions. We call this extended relation
Trans; its rules are given in Figure 3. Coercion terms c consist of
the identity coercion id t and/or the composition of some number
of primitive coercions, written c ◦ f (equivalent to λx.c (f x)).
Coercion generation Σ ` t �r t

′ ; c is given by a single top-
level rule (CC-InitPath), which in turn appeals to the judgment
Σ `π t�r t

′ ; c, whose definition is rather straightforward. (We
discuss the parameter π shortly.)

While the idea of generating composite coercions appears a
simple extension, it adds potential for some subtle ambiguities. The
rules in Figure 3 are designed to prevent two forms of ambiguity
that we call syntactic ambiguity (SA) and cyclical ambiguity (CA).
Fortunately, both can be avoided with no loss to expressive power.

Syntactic ambiguity would arise from having a general rule of
transitivity instead of embedding it as in rule (CC-PrimTrans). For
example, suppose we have Σ = f :A → B, g:B → C. Then to
coerce A to C, Trans offers one possibility: Σ ` A �r C ;

(idC ◦ g) ◦ f . However if we had extended Base with a general
rule of transitivity:

Strawman-Trans
Σ ` t�b t

′ ; c Σ ` t′ �b t
′′ ; c′

Σ ` t�b t
′′ ; c′ ◦ c

then we would be able to generate many different coercions: Σ `
A �b C ; (idC ◦ g) ◦ f , Σ ` A �b C ; idc ◦ (g ◦ f), Σ `
A�bC ; (idc◦(idc◦g))◦f , Σ ` A�bC ; (idc◦g)◦(idb◦f),
etc. While each of these coercions is semantically equivalent, and
we could endeavor to prove that this is the case, we find it cleaner
to force syntactic and semantic ambiguity to correspond, and then
focus on eliminating the former. To this end, our rules force a left-
associative composition of coercions, with exactly one application
of the identity coercion at the end.3

As an example of cyclical ambiguity consider the coercion set
Σ = f :A→ B, b:B → A. Then in our strawman judgment we can
prove both Σ ` A�bA ; idA and Σ ` A�bA ; b◦f (and Σ `
A�bA ; b◦f ◦b◦f , ad infinitum). Clearly Σ is the source of the
problem, as it contains coercions that can be composed in cycles.
However, we cannot simply rule out Σ such as this one, since
doing so would rule out useful applications (we give an example
in §4.3). Instead, we disallow cyclic compositions by using a path
parameter π, which records the domain type of each primitive
coercion composed in sequence; rule (CC-InitPath) initializes the
path with the original source type t. The (CC-PrimTrans) rule adds
the intermediate type t′′ to the path if it is not already present, since
addition is via the disjoint union operator]. Thus no composed
coercion ever “visits” the same type twice.

4.2 Strong non-ambiguity

To use the Trans relation to rewrite terms, we write our coercion
insertion judgment as Σ; Γ `r,r e ; m : t. In order for rewriting
to be strongly unambiguous, we need to check the NAC constraints
of §3.2. One natural way to do so is to view Σ as a graph on types.

Definition 9 (Coercion Graph). A coercion set Σ induces a coer-
cion graph GΣ = (V,E), where (t, t′) ∈ E iff ∃f.Σ(f) = t→ t′

3 We could use a device similar to 〈〈c〉〉m from Figure 1 to eliminate the
trailing idt.

Σ = conX :X → Int , absX :Int → X,
conY :Y → X, absY :X → Y

Γ = y:Y, f :X → X → X

Σ; Γ `r,r f y 1 ; f (idX ◦conY y) (idX ◦absX 1) : X

Figure 4. Proteus Abs/con example derivation

and V =
⋃

(t,t′)∈E{t, t
′}. We write Reachable(Σ, t, t′) when-

ever a (possibly empty) sequence of edges from t leads to t′ in GΣ.

NACπ(r,Σ) holds iff a depth-first search started from each
node in the graph produces no cross or forward edges. Such edges
indicate two potential paths, and thus two possible compositions
of primitive coercions, from the source node’s type to the type
of the forward or cross edge’s target node. Back edges are not
problematic—they indicate the potential for cycles, which are ruled
out by the judgment’s π parameter. NAC×(r,Σ) can be decided
by constructing the set Pt = {t1 × t2 | Reachable(Σ, t, t1 ×
t2)}, for every node’s type t in GΣ, and checking |Pt| ≤ 1.
To decide NACapp(r, r,Σ), we compute the set At = {t2 |
∃t1, t′.Reachable(Σ, t, t1 → t2) ∧ Reachable(Σ, t′, t1)}, for
each node type t ∈ GΣ, and check |At| ≤ 1. The construction
of At and Pt can be interleaved with the depth-first traversals of
GΣ. Thus, the complexity of deciding strong non-ambiguity for the
Trans judgment is O(n2) where n = |Σ|.
4.3 Application: Proteus abs/con insertion
An interesting example of the program rewriting enabled by Trans
arises from dynamic software updating (DSU). DSU is a technique
by which a running program can be updated with new code and data
without interrupting its execution. A core problem in DSU arises
from timing; particular updates are legal only at certain times.

In prior work [Stoyle et al. 2007] we defined a language
Proteus which supported type equations for named types, e.g.,
typename X = t where t is the definition of X (and may itself
be, or contain, abstract type names). A named type’s definition can
be updated on-the-fly provided that no actively running function
references the old representation. Proteus employs an explicit coer-
cion conX to witness the use of a value of type X as one of type t,
while coercion absX witnesses the reverse. An update to type X is
permitted so long as the text of actively running functions contains
no mention of absX or conX coercions.

As such explicit coercions are rather cumbersome, Proteus sup-
ports a custom algorithm that takes a source program with (abstract)
type equations and automatically inserts the needed coercions. This
coercion insertion algorithm can be expressed precisely using our
coercion insertion framework. An example is shown in Figure 4.
We can show that the algorithm is strongly unambiguous, by the
proposition below.

Proposition 10 (Abs/con strongly unambiguous). Assuming a set
of base types X1, X2, ...Xn, let Σ =

⋃
1≤i≤n{conXi :Xi →

ti, absXi :ti → Xi}. Then SNA(r, r,Σ).

Equality coercions like abs/con are also useful in type-preserving
compilation, inserted as proofs of term equality in the typed in-
termediate language [Sulzmann et al. 2007]. We conjecture our
system could be used in this setting as well.

5. Structural coercions
This section presents Struct, a coercion generation definition that
extends Trans to also produce lifted coercions over function and
product type constructors; we call such synthesized coercions

structural coercions. For example, given coercions f :t1 → s1

and g:t2 → s2, Struct can generate coercions from t1 × t2 to
s1 × s2 and from s1 → t2 to t1 → s2. Struct adds further sources
of potential ambiguity, and we employ several devices to eliminate
them without unduly compromising expressiveness—we show that
Struct is expressive enough to represent a canonical form of coer-
cive subtyping. Furthermore, we define efficiently decidable, suf-
ficient conditions for proving strong non-ambiguity. This section
concludes with examples that use structural coercions to encode
forms of dynamic and gradual typing [Henglein 1994, Siek and
Taha 2006].

5.1 Coercion generation

The definition of Struct in Figure 5 begins with a top-level rule
(CS-Init), which initializes two indices a and π for controlling am-
biguity. After first explaining the general structure of the remaining
rules we consider these ambiguity controls in detail.

The (CS-Id) and (CS-PrimTrans) rules are analogous to the
versions of these rules in Figure 3. (CS-Id) generates the identity
coercion for a type t, while (CS-PrimTrans) allows a primitive
coercion f to be composed transitively with some (potentially
complex) coercion c generated in the second premise.

The (CS-FunTrans) rule constructs a coercion from a function
type t1 → t2 to some target type t′ by first assembling a coercion
to another function type t′1 → t′2, and then composing it with a
coercion from t′1 → t′2 to t′. As in structural subtyping, coercion
generation on functions is contravariant in the argument and covari-
ant in the return type. So, in the first premise of (CS-FunTrans), we
construct a coercion c1 from t′1 to t1, and, in the second premise,
a coercion c2 from t2 to t′2. The third premise defines a term c
that, when applied to a function f of type t1 → t2, will coerce
it to type t′1 → t′2 by waiting until f is eventually applied and,
at that point, applying the coercions c1 and c2 to the arguments
and return value of f , respectively. Note that both c1 and c2 are
constructed by making use of the Struct relation. This allows us to
use the structural rules to an arbitrary depth when coercing higher-
order function types; e.g., with the appropriate coercion set Σ, (CS-
FunTrans) allows us to generate coercions between types of the
form (t1 → t2)→ t3 �s (t′1 → t′2)→ t′3.

The rule (CS-PairTrans) is similar to (CS-FunTrans) and pro-
vides structural coercions for product types. The coercions c1 and
c2 are covariant on each component of the product type—again,
these may themselves make use of the structural rules in order to
construct coercions between nested products.

5.2 Eliminating cyclical and syntactic ambiguity

The Trans judgment was formulated to remove possible syntactic
and cyclical ambiguities. Both forms of ambiguity are also present
in the Struct relation and we employ similar devices to eliminate
them. For cyclical ambiguity, the judgment is indexed by a path π
that is initialized in (CS-Init), and, just as before, every rule (except
(CS-Id)) checks and augments π.

To avoid syntactic ambiguity, the associativity of coercion com-
position is normalized in (CS-PrimTrans) as in Trans, and the same
device is applied by (CS-FunTrans) and (CS-PairTrans) since these
rules also employ transitivity.

Struct employs an additional index a on the turnstile to elimi-
nate a form of syntactic ambiguity new to Struct. Without restric-
tion it is possible to construct multiple coercions between the same
constructed types by using different interleavings of structural co-
ercion rules and transitivity. As an illustration, consider how we
could coerce a product type t1× t2 to another product type s1× s2

using (CS-PairTrans) with Σ = f :t1 → s1, g:t2 → s2:

CS-PairTrans

Σ ` t1 �s s1 ; f Σ ` t2 �s s2 ; g
c = λx:t1 × t2.(f proj1(x), g proj2(x))

Σ `π]{s1×s2}	 s1 × s2 �s s1 × s2 ; ids1×s2

Σ `π⊕ t1 × t2 �s s1 × s2 ; ids1×s2 ◦ c
Without the a index to prevent us, we could also construct the
coercion thus:

(2)

Σ ` t1 �s t1 ; id t1 Σ ` t2 �s s2 ; g
c = λx:t1 × t2.(proj1(x), g proj2(x))

Σ `π]{t1×s2} t1 × s2 �s s1 × s2 ; c′

c′ = ids1×s2 ◦ (λx:t1 × s2.(f proj1(x), proj2(x)))

Σ `π t1 × t2 �s s1 × s2 ; c′ ◦ c
Here, c′ is produced by another application of (CS-PairTrans). If
f and g were effectful (suppose each printed a message) and we
assume left-to-right evaluation order, then the first case, when the
constructed coercion is evaluated f would print its message first,
then g, while in the second case, g would print first, then f .

To avoid this issue, we observe that in many circumstances
(characterized precisely by Theorem 11, below), if we can prove
Σ ` t�s t

′ ; c by applying structural rules (CS-PairTrans) and/or
(CS-FunTrans) in succession, as in the second case above, we can
also prove Σ ` t �s t

′ ; c′ via a derivation that uses a single
structural rule followed by a non-structural rule, as in the first case.
Therefore, we augment Struct’s rules with an index a to prevent
structural rules from being used in succession. In particular, in the
conclusion of (CS-PairTrans) and (CS-FunTrans) we require the
index a = ⊕; in the last premise of these rules, we require the
index a = 	. For our example above, this device forces the first
rewriting. Non-structural rules may still occur in succession; (CS-
PrimTrans) places no limit on the index of its second premise.

There is one final source of syntactic ambiguity which arises
because the rules in Figure 1 permit inserting coercions on both the
left and right-hand-side of applications. To illustrate, suppose we
have Σ = ftoi : Float → Int and Γ = f :Int → Int , x:Float .
Then the term (f x) can be rewritten to (f (ftoi x)) and to
((λg:Int → Int .λy:Float .g (ftoi y)) f) x). The choice depends
on whether we rewrite the left-hand or right-hand-side of the ap-
plication. In general, if we can rewrite a function’s argument, as in
the former case, we could have rewritten the function using (CS-
FunTrans), as in the latter case.

To avoid this syntactic ambiguity, we may use the Struct rules
on either the left- or right-hand-side of an application, but not
both. We choose to use Struct only on the right-hand-side because
applying it on the left-hand-side would create another problem.
In particular, for some Σ the Struct rules can coerce a type t to
infinitely many function types, all with the same domain type t′.
For example, with Σ = f :t → (t′ → t), we can construct
t�s (t′ → t), t�s (t′ → (t′ → t), t�s (t′ → (t′ → (t′ → t))),
etc. A similar problem can arise when rewriting a term proji(x)—
for certain Σ, there may be an infinite number of product types to
which a given type can be coerced.

To control the choice of coercion generation during rewriting,
we parameterize the rewriting judgment by two indices d and d′,
writing it Σ; Γ `d,d′ e ; m : t. Following the reasoning
outlined above, we use the judgment Σ `r,s e′ ; m : t, which
indicates that Trans is used to rewrite terms e that appear within a
projection or on the left-hand-side of function applications, while
Struct is used to rewrite terms on the right-hand-side of function
applications. Consider an application e e′ where the subterm e
is rewritten to a term of type t and e′ is rewritten to type t′. By
restricting to the use of Trans, there are finitely many function types
that t can be coerced to. It is then decidable to use Struct to generate
a coercion from t′ to the domain of each function type.

Index on turnstile (alternation of structural rules) a ::= 	 | ⊕

CS-Init
Σ `{t}⊕ t�s t

′ ; c

Σ ` t�s t
′ ; c

CS-Id
Σ `πa t�s t ; id

CS-PrimTrans
f :t→ t1 ∈ Σ Σ `π]{t1}

a′ t1 �s t
′ ; c

Σ `πa t�s t
′ ; c ◦ f

CS-FunTrans

Σ ` t′1 �s t1 ; c1 Σ ` t2 �s t
′
2 ; c2

c = λf :t1 → t2.(λx:t′1.c2 (f (c1 x)))

Σ `π]{t
′
1→t

′
2}

	 t′1 → t′2 �s t
′ ; c′

Σ `π⊕ t1 → t2 �s t
′ ; c′ ◦ c

CS-PairTrans

Σ ` t1 �s t
′
1 ; c1 Σ ` t2 �s t

′
2 ; c2

c = λx:t1 × t2.(c1 proj1(x), c2 proj2(x))

Σ `π]{t
′
1×t

′
2}

	 t′1 × t′2 �s t
′ ; c′

Σ `π⊕ t1 × t2 �s t
′ ; c′ ◦ c

Figure 5. Generating structural coercions (Struct)

5.3 Expressiveness

While the additional devices outlined above eliminate problematic
ambiguities for Struct, we may be concerned that they also unduly
reduce its expressiveness. The theorem below establishes that this
is not the case in many common situations. We compare our system
to a standard declarative formulation of subtyping for the lambda
calculus, in which subtyping can be applied to any term, and uses
of transitivity are unrestricted. The rules are essentially standard,
and we elide them. To simplify the proof, we write this judgment
Σ; Γ ` e : t, where each coercion f :t → t′ ∈ Σ is read as a
subtyping relation t <: t′ between base types; typically subtyping
between base types would be expressed as distinct rules. As is
usual with subtyping systems, we do not consider base subtyping
relations between structured types. Thus, for this theorem, we do
not permit primitive coercions of the form f :(t1 → t2) → t′ ∈ Σ
and denote this constraint on Σ as BaseCoercions(Σ).

Theorem 11 (Expressiveness of structural coercions).

∀Σ,Γ, e, t.BaseCoercions(Σ) ∧ Σ; Γ ` e : t⇒
∃m, t′, c.Σ; Γ `r,s e ; m:t′ ∧ Σ ` t′ �s t ; c

This theorem establishes that our coercion insertion system is
at least as expressive as a system that provides a standard form of
structural subtyping. One interesting point to note is that our coer-
cion insertion system produces a term typable at t′, a subtype of the
type t produced by the subtyping system. This is an artifact of the
restriction in our system that inserts coercions only in elimination
forms. Of course, a top-level coercion cast can always be used to
produce a term of the desired super-type of t′.

5.4 Strong non-ambiguity

Proving strong non-ambiguity for the coercion insertion judg-
ment Σ; Γ `r,s e ; m : t requires establishing NAC×(r,Σ),
NACapp(r, s,Σ), NACπ(r,Σ), and NACπ(s,Σ) defined in §3. It
turns out to be particularly difficult to decide NACπ(s,Σ) for arbi-
trary Σ. One difficulty (as mentioned in §5.2) is that using the Struct
relation, one can coerce a type t to infinitely many other types. Fur-
thermore, given a coercion set Σ = f1:t1 → t′1, . . . , fn:tn → t′n,
it is possible to derive a Struct coercion Σ ` t �s t

′ ; c, where
neither t nor t′ are among the types ti, t′i that are mentioned in
Σ. Thus, the simple strategy of enumerating all possible coercion
paths between types that are mentioned in Σ, which worked well
for Trans (§4.2), cannot be applied to Struct. In the remainder of
this section, we show how to approximate NACπ(s,Σ) by impos-
ing a slightly stronger constraint on Σ that is efficiently decidable.

Our approach is to reduce the problem of deciding NACπ(s,Σ)
to deciding a related property of the simpler Trans relation. We
begin by introducing some convenient notation to describe the
structure of a coercion derivation. We write Σ ` t�r t1 �s t

′ ; c
when we can decompose a derivation Σ ` t �s t

′ ; c into
a segment Σ ` t �r t1 ; cr that uses transitive rule (CS-

1. t �r . . . �r (T t1 t2) �s (T t′1 t′2) �r . . . �r t′

¬2. t �r . . . �r . . . �r . . . �r . . . �r t′

¬3. t �r . . . �r (S s1 s2) �s (S s′1 s′2) �r . . . �r t′

NAC∗π(s,Σ) ⇐⇒
∀T, t1, t2, t′1, t′2, t, t′, S, s1, s2, s

′
1, s
′
2.

Σ ` t�r (T t1 t2) �s (T t′1 t
′
2) �r t

′ ∧
Σ 6 `(T t1 t2) �r (T t′1 t

′
2) ∧

{T, t1, t2, t′1, t′2} 6= {S, s1, s2, s
′
1, s
′
2} ⇒

Σ 6 `t�r t
′ ∧ Σ 6 `t�r (S s1 s2) �s (S s′1 s

′
2) �r t

′

Figure 6. NAC∗π(s,Σ): non-redundant subtyping paths

PrimTrans), and a segment Σ ` t1 �s t
′ ; cs that uses one

of the structural rules (CS-FunTrans) or (CS-PairTrans). We elide
the coercion term c when it is unimportant. This notation extends
naturally to composition of longer sequences of coercions; e.g.,
we sometimes write Σ ` t1 �r t2 �s t3 �r t4 etc. Finally, for
compactness, we write the application of a binary type constructor
T t1 t2 to stand for either the type t1 × t2 or t1 → t2.

Our reduction of NACπ(s,Σ) relies on the assumption that
NAC×(r,Σ) holds. Under the constraint NAC×(r,Σ), the problem
of deciding the uniqueness of arbitrary subtyping paths is consid-
erably easier. If, for the moment, we focus only on product types,
we can decide NACπ(s,Σ) by only considering coercion deriva-
tions of the form Σ ` t �r t1 × t2 �s t

′
1 × t′2 �r t

′. That is, un-
der NAC×(r,Σ), the only viable coercion generation derivations
that use a structural rule begin with a (possibly empty) prefix that
coerces t to (t1 × t2) using (CS-PrimTrans); then, a single appli-
cation of a structural rule coerces (t1 × t2) to (t′1 × t′2); and, fi-
nally, a (possibly empty) transitive suffix coerces the latter type to
the goal t′. A coercion derivation that is not of this form, such as
Σ ` t �r (t1 × t2) �s (t′1 × t′2) �r (s1 × s2) �s (s′1 × s′2), vi-
olates NAC×(r,Σ), since it includes a primitive coercion between
distinct pair types, i.e., Σ ` t′1 × t′2 �r s1 × s2.

Using this insight, we formulate a necessary condition for
strong non-ambiguity, NAC∗π(s,Σ), in Figure 6. The grey box at
the top of the figure illustrates the condition on Σ that we aim to de-
cide. On the first line, we show a derivation from t to t′ that makes
use of the Struct judgment in the form (T t1 t2) �s (T t′1 t

′
2).

Whenever Σ admits such a derivation, for non-ambiguity, we re-
quire that the use of the structural rule in the first derivation is
essential to coercing t to t′. We want to rule out derivations, such
as the one shown on line 2, which can coerce t to t′ using primi-
tive coercions only. Additionally, we require that derivations of the
form shown on line 3 are also not admitted by Σ, i.e., there must
be at most one way to use structural rules to coerce t to t′.

Σ = b:Bool → Dyn, b̄:Dyn → Bool ,
i :Int → Dyn, ī :Dyn → Int ,
f :(Dyn → Dyn)→ Dyn, f̄ :Dyn → Dyn → Dyn
p:(Dyn ×Dyn)→ Dyn, p̄:Dyn → Dyn ×Dyn

Σ; · `r,s (λx:Dyn.x) 1 ; (λx:Dyn.x) (i 1) : Dyn
Σ; · `r,s 1 true ; ((f̄ ◦ i) 1) (b true) : Dyn

Figure 7. Dynamic typing: coercion set and example derivations

Deciding NAC∗π(s,Σ) is relatively straightforward. As in §4.2,
we construct a coercion graph GΣ, and for each pair of types
t1 and t2 in the graph, we identify the sets of types R1 =
{(T t t′) | Reachable(GΣ, t1, (T t t′))} and R2 = {(S s s′) |
Reachable(GΣ, (S s s′), t2)}. Next, for each pair of types t, t′

in the cartesian product R1 × R2, we check that at most one pair
is related by the Struct judgment. That is, we construct the set
R = {c | Σ ` t �s t

′ ; c ∧ t, t′ ∈ R1 × R2} and check that
|R| ≤ 1. If R contains more than one element, then Σ must violate
NAC∗π(s,Σ). If R is a singleton, and if t′ is reachable from t in
GΣ, then once again, we have detected a violation of NAC∗π(s,Σ).

In a system that includes only product types, it is possible to
show that the conditions NAC∗π(s,Σ), NAC×(r,Σ), NACπ(r,Σ)
and NACapp(r, s,Σ) are both necessary and sufficient for strong
non-ambiguity. A similar property can be shown in a setting with
only function types. However, when we include both function
and product types in the same system (or, for that matter, struc-
tural coercions for arbitrary type constructors) then the four NAC-
conditions above are necessary, but not sufficient, for strong non-
ambiguity. The problem is that our reduction of coercion deriva-
tions to a form that contains a Trans prefix, a single application of
a Struct coercion, followed by a Trans suffix is not valid when both
function and product types are present. For example, the derivation
Σ ` t�r(t1×t2)�s(t

′
1×t′2)�r(s1 → s2)�s(s

′
1 → s′2) is admis-

sible since the primitive coercion Σ ` (t′1× t2)�r (s1 → s2) does
not violate NAC×(r,Σ). To remedy this, we propose a strength-
ening of NAC× and NACapp to NACT (r,Σ), a condition that
requires that each type t be coercible to at most one type of the
form (T t1 t2). The definition below makes this condition precise.
The theorem that follows establishes that efficiently decidable con-
ditions NAC∗π(s,Σ) and NACT (r,Σ) are a conservative approxi-
mation of the necessary condition for non-ambiguity, NACπ(s,Σ).

Definition 12 (NACT (d,Σ): coercions to a type constructor).
∀t, T, t1, t2, S, s1, s2, c, c

′.
Σ ` t�d (T t1 t2) ; c ∧ Σ ` t�d (S s1 s2) ; c′ ⇒
T = S ∧ t1 = s1 ∧ t2 = s2 ∧ c = c′

Theorem 13 (Sufficiency of NAC∗π(s,Σ)).

∀Σ,Γ.NACπ(r,Σ)∧NACT (r,Σ)∧NAC∗π(s,Σ)⇒ NACπ(s,Σ)

5.5 Application: Dynamic and Gradual typing
A typical implementation of the untyped lambda calculus (e.g.,
for Scheme) tags each class of run-time value, and the interpreter
checks for the appropriate tag before the value can be used. For
example, the interpreter reduces the application (λx.x) 1 after it
confirms the left term λx.x has a function tag, but fails to reduce
(1 true) when it finds that 1 has a non-function tag.

Henglein [1994] observed that tagging and untagging opera-
tions can be made explicit in a typed source language, where a
standard untyped term is automatically translated to a typed term
prior to evaluating it. The translation can avoid some redundant tag
checks, improving on a naı̈ve interpreter that would always implic-
itly perform a check. We can implement this idea directly.

The typed language extends a standard typed lambda calculus
with the type Dyn for classifying untyped terms, along with a
pair of coercions for each type constructor tc. The first converts
a term of type tc(Dyn, ...,Dyn) to Dyn by tagging it with tc. The
second converts Dyn back to tc(Dyn, ...,Dyn) by removing the
expected tag tc, but fails if the term has some other tag instead.
The Σ shown in Figure 7 enumerates such coercions: f and f̄ for
the→ constructor; p and p̄ for the × constructor; b and b̄ for the
Bool base type (a nullary constructor); and i and ī for the Int base
type.

Given a term in the source language ê ::= x | λx:Dyn.ê |
(ê1, ê2) | proji(ê), the same as our typed language e, but with-
out explicit casts or ascriptions and where all bound-variable type
annotations are Dyn , we perform coercion insertion using Σ from
Figure 7. Derivations for the above examples appear at the bot-
tom of the figure (with the trailing ids in the composed coercions
elided for perspicuity). It is easy to see that coercion insertion will
always succeed, and thus all dynamically-typed terms will be ac-
cepted, since Σ permits any type to be coerced to any other type. It
is also worth noting that the translation eliminates some unneces-
sary tag checks. For the first example, an interpreter would naı̈vely
tag the lambda term and then immediately untag it at the applica-
tion, whereas our translation leaves the term alone. We have not
proved that our translation optimally eliminates tag checks (pro-
ducing a minimal completion in the terminology of Henglein), but
plan to explore this issue in future work.

It is fairly easy to prove that the Σ of Figure 7 satisfies
NAC×(r,Σ), NACapp(r, s,Σ), NACπ(r,Σ), and NACπ(s,Σ),
and thus, by Theorem 8, Σ admits only strongly unambiguous
rewritings. However, our choice of Σ here also reveals the impre-
cision of our approximation of NACπ(s,Σ) using NACT (r,Σ)
and NAC∗π(s,Σ). In particular, although we have NACπ(s,Σ), be-
cause f̄ and p̄ are both in Σ, NACT (r,Σ) does not hold. While it is
relatively straightforward to weaken NACT (r,Σ) to account spe-
cially for coercion sets that resemble the particular Σ here, a precise
necessary and sufficient condition for non-ambiguity, which is still
efficiently decidable for arbitrary Σ, remains an open question.

Gradual Typing. Siek and Taha [2006] introduced gradual typ-
ing as an approach to allowing programmers to mix dynamic and
statically typed code. We can encode Siek and Taha’s approach
by viewing it as a generalization of the dynamic typing problem
just considered. First, we allow source terms to be annotated with
types other than Dyn; i.e., our source language becomes ê ::= x |
λx:t.ê | (ê1, ê2) | proji(ê), where t is as in Figure 1 and base
types include Dyn , Int , and Bool , as above. Second, we initialize
the π parameter for coercion generation to prevent transitive com-
positions of coercions via Dyn . In particular, for Trans we change
(CC-InitPath) as follows (and make a similar change to (CS-Init)
for Struct):

CC-InitPath’

t′ = Dyn ⇒ π = {t}
t′ 6= Dyn ⇒ {t,Dyn}

Σ `π t�r t
′ ; c

Σ ` t�r t
′ ; c

With this change, for Struct we have that for all t, Σ ` Dyn �s

t ; c and Σ ` t �s Dyn ; c′ for some c, c′, but we do not
have Σ ` t �s t

′ ; c′′ for all t′, thanks to our initialization of
π. As a result, Struct coercion generation matches Siek and Taha’s
type consistency relation, and thus ensures that terms not ascribed
a Dyn type receive a useful degree of static checking, identifying
some type errors and optimizing away some unnecessary coercions.

Consider once again our examples from Figure 7. For (1 true),
the rewriting hinges on proving Σ ` Int �r Dyn → Dyn ; c,
where c ≡ id ◦ f̄ ◦ i. But Σ 6` Int �r Dyn → Dyn ; c
for our modified definition because Dyn in the initial π prevents

Open types τ ::= α | b | τ1 → τ2 | τ1 × τ2
HM types σ ::= ∀~α.τ
HM Coercions Σ ::= · | Σ, f :σ | Σ, f :t
Target language c,m ::= . . . | f [~t]
Coercion path π ::= {c1, . . . , cn, t1, . . . , tk}
Substitutions θ ::= {(α1, t1), . . . , (αn, tn)}
Index on relation pq ::= p (PolyTrans) | q (PolyStruct)

FV(τ1) = ~α

` ∀~α.τ1 → τ2

CPQ-PrimTrans

f : ∀~α.τ1 → τ2 ∈ Σ τ1 ≈ t : θ

t2 = θ(τ2) Σ `π]{t2,f}a′ t2 �pq t
′ ; c

Σ `πa t�pq t
′ ; c ◦ (f [θ(~α)])

Figure 8. Polymorphic coercions (PolyTrans and PolyStruct)

composing f̄ and i. Thus we would reject this type-incorrect source
term. The second example is the same with either definition. But
if we annotate the bound variable we eliminate the need for the
inserted coercion: Σ; · `r,s (λx:Int .x) 1 ; (λx:Int .x) 1 : Int .

6. Polymorphic coercions
This section presents the final enhancement to our coercion gener-
ation definition: the addition of primitive coercions with Hindley-
Milner (HM)-style polymorphic types. The added expressiveness
of HM types means we can program with object proxies—e.g.,
thunks and related constructs as described in the Introduction—as
if they were the underlying objects themselves, and coercions will
be inserted as necessary to mediate access. We illustrate the util-
ity of HM coercions by encoding provenance tracking, such that
a proxy is used to track the provenance of its underlying object.
Provenance tracking is particularly important in queries to curated
scientific databases [Cheney et al. 2007].

6.1 Coercion generation
We extend both the Trans and Struct coercion generation defini-
tions so that primitive coercions in Σ can have HM polymorphic
types ∀~α.τ , where open types τ are as types t but may contain
(quantifiable) type variables α. We call the extended coercion gen-
eration definitions PolyTrans and PolyStruct. For both systems, co-
ercion insertion produces target terms m that may contain instanti-
ated coercion applications f [~t]. The source language e is the sim-
ply typed lambda calculus, as before (Figure 1). Polymorphically
typed source language terms create significant complication, so we
leave their consideration to future work.

The PolyStruct judgment is identical to Struct, except for one
additional rule, (CPQ-PrimTrans) shown in Figure 8—all the rules
in the resulting judgment are indexed by q. PolyTrans is defined
likewise as an extension to Trans, using index p.4 Rule (CPQ-
PrimTrans) has three differences from (CS-PrimTrans). First, to use
a polymorphic coercion with type ∀~α.τ1 → τ ′1, the second premise
requires that t, the source type of the coercion, is unifiable with
τ1 according to substitution θ. Next, the third premise applies θ
to τ2 to produce closed type t2 which is then used in the fourth
premise to, as before, transitively produce a coercion to the target
type t′, adding t2 to the path π. That t2 is closed implies dom(θ) ⊇
FV (τ2); to ensure this is always the case, polymorphic types σ in
rng(Σ) must satisfy the condition ` σ, which requires all bound

4 Technically, the version of (CPQ-PrimTrans) for PolyTrans is written
Σ `π t �p t′ ; c; the indices a and a′ that subscript the turnstile in
the rule definition in Figure 8 are dropped.

type variables occur in the domain of a polymorphic coercion. The
alternative of allowing θ(τ2) to contain free type variables adds
significant complication to the rules, while the ` σ restriction is
satisfied by most applications we have considered. Finally, notice
in the last premise we also add f to the path π; we explain why
below.

PolyStruct has the same problem as Struct in that for some Σ it
could be used to generate an infinite number of function or product
type coercions from a given source type (Section 5.2). To avoid
this problem, as before, we can limit the use of PolyStruct to the
right-hand side of a function application, i.e., by only considering
a coercion insertion judgment of the form Σ `p,q e ; m : t (or
Σ `p,p e ; m : t, but not Σ `q,q e ; m : t).

Interestingly, notice that without adding f to π in the fourth
premise of (CPQ-PrimTrans), it is also possible for PolyTrans to
generate an infinite number of product and function coercions.
For example, with f : ∀α.α → (α × α), we can generate
Σ ` Int �p Int × Int ; f [Int], and Σ ` Int �p (Int ×
Int) × (Int × Int) ; (f [Int × Int]) ◦ (f [Int]), and so on.
Adding f to π ensures that in a transitively generated coercion
chain c1◦. . .◦f [~t]◦. . .◦cn, no c ∈ c1 . . . cn will be f [~t′]. Note that
f may still appear in structural coercions used to construct some ci
within the chain, since π is reset when generating coercions for
the component types. Eliminating this restriction, should doing so
become necessary, remains future work.

Example: Dynamic proxies. Polymorphic coercions are use-
ful for implementing dynamic proxies, such as thunks (for lazy
evaluation) and futures (for parallel evaluation) [Pratikakis et al.
2004]. Coercions for thunks can be defined as follows: Σ =
lazy :∀α.(Unit → α) → Lazy α, force:∀α.Lazy α → α. The
lazy coercion injects a thunk Unit → α into a Lazy α, while
force converts a Lazy α to a α by evaluating it. Thus we have

Σ; · ` (λy:Lazy Int .y + 1) (λx:Unit .e) ;

(λy:Lazy Int .(force[Int] y) + 1) (lazy λx:Unit .e) : Int

Notice that the programmer must indicate the expression e to eval-
uate lazily by “thunkifying” it manually. We could imagine instead
using something like OCaml’s lazy e annotation from which a syn-
tax manipulation tool like camlp4 would perform the thunkification
and insert the lazy coercion. Coercion insertion complements such
an approach, since a tool like camlp4 cannot automatically insert
calls to force since doing so precisely requires type information.

6.2 Strong non-ambiguity

Each of the necessary and sufficient strong non-ambiguity con-
straints presented in Section 3 also apply to rewritings that make
use of polymorphic coercions. Developing an efficient algorithm
for deciding these conditions is an open problem. Here we discuss
some of the difficulties presented by this problem.

To decide NACπ(p,Σ), we need to detect when two coer-
cions in Σ overlap. Consider, for example, a set Σ that contains
f :∀α.α → (α × Int), g:Int → (Int × Int), and h:∀α.α →
(Int × α). This set is ambiguous since the type of g is an instance
of the type of f . However, simply removing g from Σ does not
eliminate the ambiguity, since, although neither f nor h is an in-
stance of the other, there are still two ways to coerce an Int to a
pair (Int× Int). When the structural rules of PolyStruct are added,
the problem is harder still.

Deciding NAC×(p,Σ) (and also NACapp(p, q,Σ)) is also chal-
lenging. For example, f , above, provides a way to coerce one prod-
uct type to another, i.e., Σ ` (Int×Int)�p ((Int×Int)×Int) ;

f [Int×Int]. To detect a violation of NAC×, one must find instanti-
ations of coercions’ type variables that enable coercion paths from
a type t to distinct product types. While the offending instantiation

enzymes
pid name mw prov
1 flavodoxin 19.7 PLib1
2 ferrodoxin 12.3 PLib2

.

xrefs
rid pid
1 1
1 2

.

reactions
rid name prov
1 G(1) Lab1
2 R(8) Lab2

.

Query: Sum of enzyme weights in each reaction
Reaction name Sum weights

name name prov weight weight prov
G(1) Lab1 19.7 + 12.3 PLib1, PLib2
R(8) Lab2
.

Figure 9. A query on a database of biochemical reactions

for α in our example is relatively easy to find, we have not devel-
oped a general decision procedure for this purpose.

Despite the lack of an algorithm for deciding SNA(p, q,Σ),
with only a little guidance from the programmer even ambiguous
sets of polymorphic coercions can be put to good use. The next ex-
ample illustrates how a form of dynamic information flow tracking
can be encoded as an instance of polymorphic coercion insertion.
Through the careful placement of a few type ascriptions, a pro-
grammer can direct the coercion insertion process to ensure that
the program is always unambiguously rewritten.

6.3 Application: Provenance tracking

Cheney et al. [2007] have developed a semantics for tracking prove-
nance in database queries, an application that is useful for both se-
curity and reliability. In this section, we borrow one of their ex-
amples and show how we can automatically rewrite queries with
coercions that do the provenance tracking.

Figure 9 illustrates a database of biochemical records over
which we wish to run queries and Figure 10 shows how we
model this scenario. The database contains three tables: enzymes,
reactions and xrefs. We represent each table as a list of tuples, and
the typing environment at the top of Figure 10 binds variables for
each of the tables.5

The enzymes table has three main columns: a primary key pid,
the name of the protein in the enzyme, and the molecular weight
mw of that protein. A final column, prov, records the provenance
of the information in each row, e.g., the first row in the enzymes
table was obtained from the protein library “PLib1”. Our encoding
of this table in Figure 10 gives enzymes the type List (Prov protein).
The type abbreviation protein expands to a tuple with three fields,
matching the first three columns of the table. The whole row is
given type Prov protein—our encoding represents a t-typed value
that is tagged with provenance metadata using the type Prov t. We
leave the representation of the provenance metadata unspecified;
here we think of it as a String.

The second table records a collection of biochemical reactions
with a primary key rid and the name of the reaction. As with
the enzymes table, each row in reactions is tagged with its prove-
nance, say, the name of the laboratory that provided this informa-
tion. In Figure 10, we represent this table using a value of type
List Prov(Int ×String).

A final table, xrefs, cross-references the reactions and enzymes
tables, indicating all the proteins involved in a particular reaction.

Our goal is to run a query that, for each reaction, computes
a result that pairs the name of the reaction with the sum of the
molecular weights of all the proteins that are used in that reaction.
Of course, this query must also track provenance. So, as shown

5 For this example, we assume that base types also include type constructor
applications like List t and Prov t. We do not assume the presence of any
structural rules that allow coercions to be lifted into these types.

in Figure 9, the query result includes a row that pairs the reaction
name “G(1)” with the name of the laboratory “Lab1”; and the sum
19.7 + 12.3 paired with “Plib1, PLib2”, to indicate that the result
involved data from both these sources.

Our coercion insertion approach allows a programmer to focus
solely on the core query semantics, without worrying about insert-
ing coercions to track provenance. Programmers need only specify
simple general purpose combinators for provenance tracking and
our system can automatically retro-fit a query with provenance-
tracking semantics. For example, a value of type Prov t can be
used by the programmer at type t, and our system will insert the
appropriate coercion. We first describe the structure of the source
query (at the bottom-left of Figure 10) and then discuss the specific
coercions that we use to rewrite the program. Our example uses
the convenience of let-bindings, but we are careful to annotate all
λ-bindings with their types. We also make use of if-expressions.
A translation from this extended syntax to our core calculus is
straightforward.

We write our query as a function over a single row in the reac-
tion table and then, at line 13, apply this function to the reactions ta-
ble. In the body of the query, we project out the rid and name fields
from the reaction and then construct an aggregate query which is
supposed to perform a summation of all the molecular weights of
proteins by consulting the xrefs and enzymes tables. The result of
the query is the name of the reaction paired with the aggregate
query applied to the xrefs table.

The aggregate query is written in the style of a function that can
be used to fold over a list. Its first argument sum is an accumulator;
the second argument is a row from the xrefs table. In the body of the
aggregate query, we first check if the reaction id in the xref record
matches the reaction being processed by the query, i.e., this is the
equivalent of checking a join constraint. If the check succeeds,
we look up the related protein, project out its weight and add it
to the accumulator. Notice that the typing environment provides a
function lookup that retrieves a row in the enzymes table based on
its primary key and a plus function to add floating point numbers.

We rewrite this query using a Σ that includes primitive poly-
morphic coercions to manipulate the Prov t and List t types. No-
tice that all of these coercions satisfy our well-formedness restric-
tion on HM types. The lift function injects an arbitrary type α into
the Prov α type (by pairing it with some default provenance in-
formation). The lower coercion allows nested provenance wrap-
pers to be collapsed. The coercion asfun allows a function f that
has been lifted into the Prov (α → β) type to be applied to a
provenance-tracked value x of type Prov α. Since the value re-
turned by a function depends both on the provenance of the func-
tion and the provenance of the argument, asfun is expected to tag
the resulting β-value with the provenance of both f and x. (It is
interesting to note that the lift and asfun functions together make
our Prov t type an idiom [Lindley et al. 2008].) The asprod co-
erces a provenance-tracked product into a product of provenance-
tracked values. Finally, the coercion set includes functions rmap
and foldl, both standard combinators on lists. Notice, however,
that the order of arguments in these functions is important; we
cannot swap the first two arguments in rmap, for example, since
6` ∀α, β.List α→ (α→ β)→ List β.

The coercion set Σ that we use for this example does not satisfy
the necessary conditions for non-ambiguity. For example, a product
type t1 × t2 can be coerced both to itself and, via asprod ◦ lift, to
Prov t1 × Prov t2.Nevertheless, with a single type ascription for
the entire query (shown on line 13 of the source program), the pro-
grammer can pick one of the several possible rewritings to resolve
the ambiguity. For brevity, we leave out the type instantiations on
polymorphic coercions.

Typing environment Γ: Tables declared as lists of records rather than products for clarity; a type abbreviation, and some utility functions.

enzymes:List (Prov protein)
reactions:List (Prov (rid:Int × name:String))
xrefs:List (rid:Int × pid:Int)

protein ≡ (pid:Int × (name:String ×mw:Float))
lookup:Int → List (Prov protein)→ Prov protein
plus:Float → Float → Float ,neq :Int → Int → Bool

Coercion set Σ: Prov t is the type of a t-value tagged with provenance metadata; we omit the data constructors for List t and Prov t.

lift :∀α.α→ Prov α
asfun:∀α, β.Prov (α→ β)→ Prov α→ Prov β
rmap:∀α, β.(α→ β)→ List α→ List β

lower :∀α.Prov (Prov α)→ Prov α
asprod :∀α, β.Prov (α× β)→ Prov α× Prov β
foldl :∀α, β.(α→ β → α)→ α→ List β → α

Source program Target (rewritten) program
1 let query =
2 λreaction:(Int ×String).
3 let rid = proj1 reaction in
4 let name = proj2 reaction in
5 let aggregate=
6 λsum:Prov Float. λxref:(Int ×Int).
7 if neq (proj1 xref) rid then sum else
8 let pid = proj1 xref in
9 let protein = lookup pid enzymes in

10 let wgt = proj2 (proj1 protein) in
11 plus wgt sum in
12 (name, aggregate 0 xrefs) in
13 query reactions : List Prov (Prov String ×Prov Float)

1 let query (∗ (Int ×String)→ (Prov String ×Prov Float) ∗) =
2 λreaction:(Int ×String).
3 let rid = proj1 reaction in
4 let name = proj2 reaction in
5 let aggregate (∗ Prov Float→ (Int ×Int)→Prov Float ∗) =
6 λsum:Prov Float. λxref:(Int ×Int).
7 if neq (proj1 xref) rid then sum else
8 let pid = proj2 xref in
9 let protein = lookup pid enzymes in

10 let wgt = proj2 (asprod (proj1 (asprod protein))) in
11 (asfun ((asfun ◦ lift) plus) wgt) sum in
12 (lift name, (foldl aggregate) (lift 0) xrefs) in
13 ((rmap ◦ asfun◦ lift) query) reactions : List Prov (Prov String ×Prov Float)

Figure 10. Equipping database queries with provenance tracking

We describe the rewritten query, given in the lower right of the
figure, from inside out, starting with the body of the aggregate
query. The first rewrite occurs at line 10. To project the mw
field from protein, we first coerce the Prov protein to a prod-
uct Prov Int ×(Prov(String ×Float)) using asprod, then coerce it
again before projecting out the weight at the type Prov Float. To
add two Prov Float values, at line 11 we need to lift the plus func-
tion into the Prov idiom using lift and then asfun. Since plus is
curried, the partial application (asfun ◦ lift plus) wgt is given the
type Prov (Float→Float). With another application of the asfun
we may apply sum to get a value of type Prov Float. The type of
the rewritten aggregate query is shown as a comment on line 5.

To apply the aggregate query to the xrefs table, we coerce it
using foldl to Prov Float→ List (Int ×Int)→Prov Float. We ap-
ply the result to the constant 0 lifted into the Prov Float type, and
again to the xrefs table itself. By lifting name into the Prov type,
we can give query the type shown as a comment on line 1. Ap-
plying query to reactions is similar to the application of plus at
line 11. The coercion rmap ◦ asfun ◦ lift coerces query to the type
List (Prov (Int ×String))→ List (Prov (Prov String ×Prov Float))
which is the type necessary to apply it to run the query over
reactions table.

It is worth considering the precision that our method provides
when tracking provenance. Swamy et al. [2008] have shown that
this encoding of provenance is sufficient to establish dependency
correctness, a property due to Cheney et al. [2007]. This is an ex-
tremely strong property and can be used to track both explicit and
implicit dependences, in a manner related to noninterference-based
information flow [Sabelfeld and Myers 2003]. However, if not used
carefully, our encoding can produce provenance results that claim,
for example, that an element of a result set depends on all other data
in the database. Suppose, for example, that instead of using lookup
primitive on the protein table, we performed a scan of the table
(using rmap) to explicitly search for the entry with a primary key
pid. According to dependency correctness, every aggregate molec-
ular weight in the result would depend (negatively) on every row
in the enzymes table. While this is technically correct, it is not very

useful. Handling negative and implicit dependences is a challenge
even faced by custom provenance tracking system, e.g., in the sys-
tem of Cheney et al. [2007]. Our approach allows programmers to
provide special functions like lookup to control how aggressively
provenance information is tracked through a query.

7. Related work
Compared to the prior work on coercive subtyping our work in-
cludes, first, a more careful treatment of ambiguity and, second,
provides greater expressiveness. With regards to the first, the struc-
ture of our judgments allows us to treat ambiguity purely syntac-
tically, which makes it indifferent to the semantics of coercions,
e.g., even if they are effectful. All prior work we know of either
allows ambiguous rewritings but proves they are confluent (typi-
cally assuming coercions, or the source language, is not effectful),
or preferentially selects a particular rewriting in an ad hoc way
(e.g., a program that type checks without any coercions is left un-
touched), which is less intuitive [Henglein 1994, Luo 1996, 1999,
Luo and Luo 2005, Luo 2008]. Our conditions for strong nonambi-
guity are necessary and sufficient; prior works find sufficient con-
ditions (e.g., Saı̈bi [1997], and Luo and Kießling [2004]), but these
are more restrictive than necessary, ruling out some useful, unam-
biguous rewritings.

Our coercions are more expressive in that they include tran-
sitivity, structural rules, and polymorphism. We have not found
this combination, with the same degree of flexibility, in the liter-
ature. For example, the coercion calculus of [Henglein 1994] in-
cludes structurally and transitively-composed coercions, and work
by Luo and Luo [2005], building on the works of Aczel [1995] and
Barthe [1996], does likewise. More recently, Luo [2008] has con-
sidered HM polymorphism, but without transitivity or structural
rules. Saı̈bi’s coercion system for Coq does support transitivity,
structural rules, and polymorphism, but he imposes a “uniformity”
restriction that severely limits the use of polymorphism; e.g., co-
ercions of the form ∀α, β.Prov(α → β) → Prov α → Prov β
cannot be expressed in his system.

Another difference in expressiveness when comparing our ap-
proach to coercive subtyping is that we wish to handle applications
where coercions may have operational effect—this is partly the rea-
son why it is particularly important to ensure that coercion inser-
tion is unambiguous. Traditional coercive subtyping treats subtyp-
ing as an identity coercion [Sulzmann et al. 2007, Breazu-Tannen
et al. 1991], or expects coercions to be total functions [Saı̈bi 1997].
This makes prior works unsuitable for applications such as prove-
nance and gradual typing where the coercions necessarily have
computation effect (to store provenance tracking information in the
database, or for downcasts to fail). Henglein [1994] considers dy-
namic typing as a coercion insertion problem (Section 5.5) where
inserted coercions perform dynamic checks that may fail. He devel-
ops a rewriting system that aims to produce a canonical, optimally
safe rewriting, assuming a particular semantics for coercions. Thus
his work is less general than ours, but provides a stronger guarantee
for this application.

We consider a simply-typed source language while other works
consider source terms with dependent types [Saı̈bi 1997], Fsub
source terms [Breazu-Tannen et al. 1991], or ML [Luo and Kießling
2004]. Simply-typed source terms are useful in and of themselves,
for example to apply this to rewriting database queries, or to retrofit
monomorphic C code with security checks [Ganapathy et al. 2006].
Nevertheless, extending our work to handle a polymorphic source
language is significant future work.

8. Conclusions and future work
In this paper we have defined a general framework for type-directed
coercion insertion. One of the innovations of our framework is to
directly address the problem of ambiguity and separately define
mechanisms to curb ambiguity. We developed various versions of
coercion generation that differ in the expressivity they provide to
the rewriting system. To justify our work we have shown how
a number of purpose-built rewriting schemes ranging from DSU
to type systems to provenance tracking can be seen as specific
instances of our general-purpose system.

In future work we should like to further explore the applicabil-
ity of our work to type-directed rewriting problems considered in
the literature, such as other forms of gradual typing [Wadler and
Findler 2009, Siek et al. 2009] and hybrid typing [Flanagan 2006].
We should also like to consider our framework in the richer set-
ting of dependent types. This is not just out of theoretical curiosity;
our original motivation for this work, Fable [Swamy et al. 2008],
is a dependently typed language for enforcing user-defined secu-
rity policies. Indeed, the encoding of provenance tracking in §6.3
is closely related to an encoding that is used in Fable, although Fa-
ble’s type system enables the provenance of a value to be made
evident in its type, not just in its runtime representation.

Acknowledgments
The authors would like to thank Jeff Foster, Phil Wadler, Dimitrios
Vytiniotis, Iulian Neamtiu, Polyvios Pratikakis, Peter Sewell, and
the anonymous reviewers for helpful comments that led to signif-
icant improvements in the paper’s presentation. Hicks was sup-

ported in part by NSF grants CCF-0541036, CCF-0524036, and
CNS-0346989 and by Microsoft Research, Cambridge, while on
sabbatical during the Fall of 2009, when much of this work was
carried out.

References
P. Aczel. A notion of class for type theory, 1995. Unpublished manuscript.
G. Barthe. Implicit coercions in type theories. In Proc. of Types workshop,

1996.
V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as

implicit coercion. Information and Computation, 93:172–221, 1991.
J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency analysis.

In Proc. of DBPL, 2007.
C. Flanagan. Hybrid type checking. In Proc. of POPL, 2006.
V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authoriza-

tion policy enforcement. Proc. of Security and Privacy, 2006.
F. Henglein. Dynamic typing: syntax and proof theory. Science of Computer

Programming, 22:197–230, 1994.
S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are

meticulous, monads are promiscuous. In Proc. of MSFP, 2008.
Z. Luo. Coercions in a polymorphic type system. Mathematical Structures

in Computer Science, 18(4):729–751, 2008.
Z. Luo. Coercive subtyping in type theory. In Proc. of CSL, 1996.
Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–

130, 1999.
Z. Luo and R. Kießling. Coercions in Hindley-Milner systems. In Proc. of

Types, 2004.
Z. Luo and Y. Luo. Transitivity in coercive subtyping. Information and

Computation, 197(1-2):122–144, 2005.
P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies for Java futures.

In Proc. of OOPSLA, 2004.
A. Sabelfeld and A. C. Myers. Language-based information-flow security.

JSAC, 21(1):5–19, 2003.
A. Saı̈bi. Typing algorithm in type theory with inheritance. In Proc. of

POPL, 1997.
J. G. Siek and W. Taha. Gradual typing for functional languages. In Proc.

of Scheme and Functional Programming Workshop, 2006.
J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-

order casts. In Proc. of ESOP, 2009.
G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis

Mutandis: Safe and flexible dynamic software updating. ACM TOPLAS,
29(4), 2007.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly.
System F with type equality coercions. In Proc. of TLDI, 2007.

N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing
user-defined security policies. In Proc. of Security and Privacy, 2008.

N. Swamy, M. Hicks, and G. Bierman. A theory of typed coercions and its
applications. Technical Report MSR-TR-2009-69, Microsoft Research,
2009.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proc.
of ESOP, 2009.

