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Operational Properties of Lily, a PolymorphicLinear Lambda Calculus with Recursion ?G.M. Bierman a A.M. Pitts b C.V. Russo ba Department of Computer Science, Warwick University, Coventry CV4 7AL, UKb Computer Laboratory, Cambridge University, Cambridge CB2 3QG, UKAbstractPlotkin has advocated the combination of linear lambda calculus, polymorphismand �xed point recursion as an expressive semantic metalanguage. We study itsexpressive power from an operational point of view. We show that the naturallycall-by-value operators of linear lambda calculus can be given a call-by-name seman-tics without a�ecting termination at exponential types and hence without a�ectingground contextual equivalence. This result is used to prove properties of a logi-cal relation that provides a new extensional characterisation of ground contextualequivalence and relational parametricity properties of polymorphic types.1 IntroductionWhen giving denotational semantics of programming languages using domaintheory, use is often made of metalanguages in which to phrase the seman-tic descriptions [16,14]. The attraction of such an approach is that it allowsthe semantically relevant constructs and proof principles inherent in the do-main theory to be abstracted from the often quite complicated mathematicaldetails. Restricting attention to the denotational semantics of deterministiclanguages (i.e. excluding the use of various kinds of powerdomain), Plotkin [23]makes a convincing case for polymorphic linear lambda calculus with recursionas an expressive denotational metalanguage. In particular, the powerful na-ture of impredicative polymorphism permits the plethora of domain-theoreticconstructs to be de�ned in terms of remarkably few primitive type-formingoperations, namely 8-types, 8�: � , linear function types, � ( � 0, and expo-nential types, !� : see Fig. 1, which uses the domain-theoretic terminologyof [8]. (Plotkin [23] chooses to make intuitionistic function types primitiverather than exponential types; we prefer to express the former in terms of !? Research supported by UK EPSRC grant GR/M04716.This is a preliminary version. The �nal version can be accessed atURL: http://www.elsevier.nl/locate/entcs/volume41.html



Bierman, Pitts and RussoLifting �? , !�Functions � ! � 0 , !� ( � 0Strict functions � Æ! � 0 , � ( � 0Smash product � 
 � 0 , 8�:(� ( � 0( �)( �Coalesced sum � � � 0 , 8�: !(� ( �)( !(� 0( �)( �Product � � � 0 , 8�:((� ( �)� (� 0( �))( �Separated sum � + � 0 , !� � !� 0Existential 9 �: �(�) , 8�:(8�: �(�)( �)( �Truth values T , 8�: !�( !�( �Flat naturals N? , 8�: !�( !(!�( �)( �Inductive ��: �(�) , 8�: !(�(�)( �)( � (� +ve in �(�))Co-inductive ��: �(�) , 9 �: !(�( �(�)) 
 � (� +ve in �(�))Recursive rec�: �(�; �) , ��: �(��: �(�; �); �) (� +ve in �(�; �),� �ve in �(�; �))Fig. 1. Lily as a denotational metalanguageand( using Girard's famous decomposition: � ! � 0 = !� ( � 0.) The de�ni-tions in Fig. 1 only have weak properties if one works up to �-convertibility ofterms. To get stronger properties, such as category-theoretic universal prop-erties, it should suÆce to work with a notion of equality of terms that makes8-types relationally parametric in the sense of Reynolds [24]. In theory, oneway to generate such a notion of equality is via a suitable model: Plotkin [23]sketches one using strict, inductive partial equivalence relations on a domainmodel of the untyped lambda calculus. However, in practice, as far as weknow, the details of this relationally parametric model of polymorphic linearlambda calculus with recursion have not been worked out in detail. We takea di�erent 1 and more computational approach: we make polymorphic linearlambda calculus with recursion into a programming language (we call it Lily)by endowing it with an operational semantics; we choose a particular notion ofcontextual equivalence derived from the operational semantics; and we provethat this notion of term equality is relationally parametric with respect to asuitable notion of binary relation. This strategy has been applied successfullyby the second author to the combination of polymorphism with PCF [21] andwith call-by-value PCF [20]. However, it is not so easy to apply the strategy1 It should also be noted that Lily's exponential types give a more re�ned treatment ofusage and strictness properties than does lifting (�)? in the domain model, because thelatter happens to have an extra contraction property that we do not assume for !-types inLily. 2



Bierman, Pitts and Russoto linear lambda calculus, as we now explain.Recall that two terms of a programming language are contextually equiv-alent if interchanging them in any complete program does not a�ect the ob-servable results of evaluating the program. Even if we �x the operationalsemantics of the language, we may or may not get di�erent notions of con-textual equivalence depending upon what we decide constitutes a `completeprogram' and what we observe of evaluation. Consider the classic example ofcall-by-name PCF. Taking programs to be closed terms of ground type andobserving convergence to ground values, we get the notion of ground contextualequivalence studied in the seminal paper by Plotkin [22]; whereas if we ob-serve termination of evaluation of closed terms of any type we get a di�erent,lazy contextual equivalence analogous to that for the `lazy' lambda calculus ofAbramsky [1]. Lazy contextual equivalence for linear lambda calculi is studiedin [5,4]. For Lily we work with ground, rather than lazy, contextual equiva-lence, in order for the de�nitions in Fig. 1 to be correct; for example, with lazycontextual equivalence the linear function type � ( � 0 would not represent adomain of strict continuous functions � Æ! � 0, but rather its lift (� Æ! � 0)?.Before the work presented here, very little was known about the propertiesof ground contextual equivalence for linear lambda calculus: see [4, Sect. 7].For example it was not even known whether it is di�erent from lazy contextualequivalence (we show that it is|see Example 3.7). Roughly speaking, whatwas lacking was a suÆciently powerful analysis of the properties of linear func-tions whose codomains are `observable' types (ones at which ground contextualequivalence distinguishes divergent terms from ones in canonical form). Weprovide such an analysis, and much more besides. The contributions of thispaper are as follows.A Strictness Theorem. The conventional wisdom [2, p 16] is that oper-ational semantics of linear lambda calculus is `naturally' call-by-value insome parts (e.g. for(, 
, and �) and call-by-name in others (e.g. for !,!,and �). We show that the naturally call-by-value operators can be given acall-by-name semantics without a�ecting termination at exponential types(Theorem 2.3) and hence without a�ecting ground contextual equivalence.This technical result turns out to be the key to developing a rich operationaltheory for Lily.A Parametric Logical Relation. Using the Strictness Theorem, we showthat Lily ground contextual equivalence coincides with a particular logicalrelation (Theorem 3.2), involving parameters that are `admissible' term-relations similar to those used previously by the second author [20,21]. Asa corollary we obtain new extensionality results for linear lambda calculus(Corollary 3.5). The logical relation also allows us to prove results thatvalidate the de�nitions in Fig. 1 and indicate the expressive power of Lily'scombination of linear lambda calculus with impredicative polymorphismand �xpoint recursion (see Remark 3.8, Example 3.9 and Remark 3.10).3



Bierman, Pitts and RussoA Common Intermediate Language for Strict and Lazy. From a pro-gramming language perspective Lily has the potential to be a commonintermediate language for both strict and lazy functional programming. Torealise that potential one would need to work at a more intensional levelthan we do in most of this paper (cf. [27]). However we do indicate howto replace the call-by-name semantics of terms involving exponential typesin Lily (which subsumes �xpoint recursion) with a call-by-need semanticswithout a�ecting ground contextual equivalence (see Sect. 4). Details willappear elsewhere, along with an exploration of translations of the pure coreof ML and Haskell into Lily.2 A Strictness TheoremLily combines a term calculus for Plotkin's dual intuitionistic linear logic [3]with �xpoint recursion and impredicative polymorphism. In the presence ofthe latter it turns out that we can cut down to just linear function and ex-ponential types without losing expressive power. The types and terms of theLily language are given in Fig. 2, together with its type assignment relation.We �nd it convenient to employ a syntactic distinction between intuitionisticvariables x 2 IVar , that may be duplicated and discarded, and linear vari-ables a 2 LVar , that must be used exactly once. 8�:( ), �a : �:( ), ��:( ),!(x = ( ) : �), and let !x = M in ( ) are variable-binding constructs and weidentify types and terms up to renaming of bound variables. The notationsftv( ), �v( ), 
v( ) are used to denote the sets of free type variables, free in-tuitionistic variables and free linear variables of an expression. We use thenotation �[�=�] to indicate capture-avoiding substitution.Recursively de�ned thunksA syntactic novelty of Lily is the absorption of �xpoint recursion intothe terms of exponential type. A recursively de�ned thunk !(x = M : �)is a canonical form introducing a recursively de�ned non-linear term as asuspended computation. The corresponding eliminator let !x = M in M 0evaluates the termM to such a recursive thunk, substitutes an unfolding of thethunk's body for the intuitionistic variable x and evaluates the body M 0 (seeFig. 3 below; and see Sect. 4 for an alternative, call-by-need semantics). Sincea thunk's body may be duplicated during the evaluation of the let construct,potentially duplicating linear variables, the typing rules ensure that thunkscontain no free linear variables. We can get conventional �xpoint terms byde�ning fix x : �:M , let !x = !(x = M : �) in M(1)and non-recursive thunks (of type !�) by de�ning!M , !(x = M : �) (x =2 �v(M)):(2) 4



Bierman, Pitts and Russo
Types � ::= � type variable (� 2 TyVar)� ( � linear function type8�: � 8-type!� exponential typeTerms M ::= a linear variable (a 2 LVar)x intuitionistic variable (x 2 IVar)�a : �:M abstractionMM application��:M generalisationM � specialisation!(x = M : �) recursively de�ned thunklet !x = M1 in M2 exponential eliminatorType assignment relation � ; � `� M : � is inductively generated by thefollowing rules. (� is a �nite function from intuitionistic variables to typeswith domain dom(�); � is a �nite function from linear variables to types withdomain dom(�), and � is a �nite set of type variables.)ftv(�; � ) � � x 62 dom(�)�; x : � ; ; `� x : � ftv(�; �) � �� ; a : � `� a : �� ; �; a : � `� M : � 0 a 62 dom(�)� ; � `� �a : �:M : � ( � 0� ; �1 `� M1 : � ( � 0 � ; �2 `� M2 : � dom(�1) \ dom(�2) = ;� ; �1;�2 `� M1M2 : � 0� ; � `�;� M : � � 62 � [ ftv(�;�)� ; � `� ��:M : 8�: � � ; � `� M : 8�: � ftv(� 0) � �� ; � `� M � 0 : � [� 0=�]�; x : � ; ; `� M : � x 62 dom(�)� ; ; `� !(x = M : �) : !�� ; �1 `� M1 : !� �; x : � ; �2 `� M2 : � 0x 62 dom(�) dom(�1) \ dom(�2) = ;� ; �1;�2 `� let !x = M1 in M2 : � 0Fig. 2. Lily syntax and type assignment5



Bierman, Pitts and RussoConversely, recursively de�ned thunks could have been expressed in terms ofnon-recursive thunks and �xpoints, by taking !(x = M : �) to be !(fix x : �:M)(see Corollary 3.6). There is perhaps not much to choose between the twoformulations. We prefer the compactness of the one we have presented. Iteasily generalises to mutually recursive thunks !(x1 = M1 : �1; : : : ; xn = Mn :�n) whose type !(�1; : : : ; �n) is equivalent to !�1 
 � � � 
 !�n.Ground contextual equivalenceRecall from the Introduction that we wish to identify terms if they givethe same evaluation behaviour in all contexts of ground type, such as typesof booleans and natural numbers. But there are no such types in Lily as wehave de�ned it! In fact this ground contextual equivalence is the same as thecontextual equivalence determined by observing the termination properties ofevaluation at exponential types !� (and then the ground types are de�nable,modulo ground contextual equivalence, as in Fig. 1). To see this, consideradding to Lily a type bool together with truth-values and conditionals� ; ; `� true : bool � ; ; `� false : bool� ; �1 `� M1 : bool dom(�1) \ dom(�2) = ;� ; �2 `� M2 : � � ; �2 `� M3 : �� ; �1;�2 `� if M1 then M2 else M3 : �Then for any closed term M of exponential type !� , let !x = M in true is aclosed term of type bool that evaluates to true if and only if M evaluates (inthe operational semantics to be described below) to some thunk. Conversely,for any closed term B of type bool, B evaluates to true if and only if theclosed term if B then !(x = x : �) else 
 (!�) of type !� evaluates to somethunk. Here 
 is a generic divergent term
 , let !x = !(x = x : 8�: �) in x(3)whose type is 8�: �. (Using the macro in equation (1) for �xpoint expressions,this takes on the more familiar form 
 = fix x : (8�: �): x.) Thus contextualequivalence based upon observing convergence to true at type bool is thesame as that based upon observing convergence to canonical form at expo-nential types. (This is di�erent from observing convergence at all types: seeExample 3.7 below.)When de�ning a contextual equivalence for linear lambda calculi one hasto re�ne the traditional formulation, in which `holes' in contexts have implicitparameters (namely the binding variables within whose scope the hole lies),since it matters whether these parameters are linear or not. The �rst authordiscusses one such re�nement in [4, Sect. 3.1] using second-order variablesto give a more explicit treatment of holes (see also [19,5,15]). An attractivealternative (because it doesn't require the introduction of extra syntactic ma-chinery) is to avoid the use of contexts completely and de�ne the equivalence6



Bierman, Pitts and Russoto be the largest substitutive congruence relation on well-typed open termshaving the required convergence property for closed terms of exponential type.This `relational' approach to contextual equivalence is taken in [10,21] and willbe used in the full version of this paper. However, in order to simplify theexposition in this extended abstract, we will restrict attention to ground con-textual equivalence of closed terms (of closed types), for which we can side-stepthese issues about contexts and use the following de�nition. It depends uponthe notion of a closed termM of closed exponential type converging to (some)canonical from, which we write as M +! and de�ne below (see Corollary 2.4).De�nition 2.1 (Ground contextual equivalence for closed terms) LetTyp denote the set f� j ftv(�) = ;g of closed types; and for � 2 Typ, letTerm(�) denote the set fM j ; ; ; `; M : �g of closed terms of type � . GivenM;M 0 2 Term(�), we write M =gnd M 0 : � to mean:� for any x;N; � 0 satisfying x : � ; ; `; N : !� 0, it is the case that N [M=x]+! ifand only if N [M 0=x]+! ; and� for any a;N; � 0 satisfying ; ; a : � `; N : !� 0, it is the case that N [M=a]+! ifand only if N [M 0=a]+! .Operational semanticsFigure 3 gives two possible evaluation relations for closed Lily terms, dif-fering in their treatment of the application of a linear function to an argument.The strict (or call-by-value) relation +s corresponds to the `natural' opera-tional interpretation of intuitionistic linear logic advocated by Abramsky [2,p 16] and used by others (such as [27,4]); whereas the other relation, +n , usedfor a linear lambda calculus by Crole in [5], gives all constructs a non-strict(or call-by-name) semantics. The two relations give rise to two terminationrelations strict termination relation: M +s , 9 V:M +s Vnon-strict termination relation: M +n , 9 V:M +n V:These are di�erent relations, as the following simple example shows.Example 2.2 Choose any closed types �; � 0 2 Typ. De�neE , �a : �: �f : � ( � 0: f a:Then E (
 �) 2 Term((� ( � 0)( � 0) and E (
 �)+n but E (
 �) 6+s . (Here
 is the generic divergent term de�ned at (3).)However, as the following slightly surprising theorem shows, the two termi-nation relations do coincide if we restrict our attention to terms of exponentialtype.Theorem 2.3 (Strictness Theorem) For all �; � 0 2 Typ, M 2 Term(�),and open terms of exponential type, ; ; a : � `; N : !� 0N [M=a]+n , 9 V:M +s V & N [V=a]+n :7



Bierman, Pitts and RussoCommon rules:�a : �:M + �a : �:M ��:M + ��:M !(x = M : �) + !(x = M : �)M + ��:M 0 M 0[�=�] + VM � + VM1 + !(x = M : �) M2[(let !x = !(x = M : �) in M)=y] + Vlet !y = M1 in M2 + VStrict evaluation,M +s V , is inductively generated by the common rules plusM1 +s �a : �:M M2 +s V M [V=a] +s V 0M1M2 +s V 0Non-strict evaluation, M +n V , is inductively generated by the commonrules plus M1 +n �a : �:M M [M2=a] +n VM1M2 +n VFig. 3. Evaluating closed Lily termsHence in particular for M 2 Term(!� ), M +n ,M +s .Proof (sketch) The intuition for why the theorem holds is that if N [M=a]converges (under either semantics), then its canonical form must be a thunkof type !� 0, and this thunk must be a residual of one of the original thunksin N [M=a]. Since none of those thunks can mention a linear variable (bythe typing rule for thunks), the residual thunk cannot suspend any linear ar-guments, so each linear argument within N [M=a] must have been evaluatedbefore reaching the canonical form. Thus, when evaluating to a thunk, itmakes no di�erence to termination behaviour whether we choose to postponeor force the evaluation of function arguments, since, in either case, the ar-guments must be evaluated before reaching the canonical form. That's theintuition, but we found it surprisingly hard to give a formal proof. In thisextended abstract we merely sketch the structure of our proof. Among theterms N having a free linear variable a, we single out those for which a occursin a position where it will be immediately evaluated in the non-strict seman-tics. The structure of these evaluation contexts can be analysed as a nestedstack F [a] = F1[F2[� � �Fn[a] � � �]] of `frames' Fi[�] of the form (�M), (� �),or (let !x = � in M). The advantage of this frame stack formulation is thatit permits us to give a direct inductive de�nition of the non-strict terminationrelation F [M ]+n that follows the syntactical structure of the frame stack Fand the term M . Arguing by structural induction for this relation, we provethat for F [N ] of exponential type and containing a free linear variable a it isthe case that (F [N ])[M=a]+n ) 9 V:M +s V & (F [N ])[V=a]+n :8



Bierman, Pitts and Russo(There are two subcases, proved simultaneously, according to whether a occursin F , or in N . It is of course crucial that we are restricting attention to termsF [N ] of exponential type; for example, a base case of the induction is when Fis the empty frame stack and N is in canonical form, of exponential type, andhence necessarily not involving a, rendering this case trivial.) Taking F to bethe empty frame stack in the above implication, we obtain the left-to-righthalf of the theorem. The other half of the theorem we deduce from a result ofindependent interest, namely a version of the Mason-Talcott `ciu' theorem [12]for Lily ground contextual equivalence. For � 2 Typ and M;M 0 2 Term(�)de�ne ciu-equivalence, M =ciu M 0 : � , to mean that for all closed frame stacksF mapping from � to an exponential type, we have F [M ]+n , F [M 0]+n .Then it is the case that =ciu coincides with =gnd and hence in particular isa congruence. (There are by now a number of means for establishing thiskind of result; we prefer one that is an adaptation of the method of provingcongruence due to Howe [9].) Using the congruence property of =ciu it issimple enough to prove M +s V ) N [M=a] =ciu N [V=a]by induction on the derivation ofM +s V . The right-to-left half of the theoremfollows from this and the de�nition of =ciu. 2Corollary 2.4 If we take the notion of convergence at exponential type, M +!,used in the de�nition of ground contextual equivalence (De�nition 2.1) to beeither M +s or M +n , we get the same equivalence relation on Lily terms.Remark 2.5 (`Computational' types) Do other types apart from expo-nentials enjoy the strictness property of Theorem 2.3? Call a type � `compu-tational' if for all � 2 Typ, M 2 Term(�) and open terms ; ; a : � `; N : � itis the case that N [M=a]+n , 9 V:M +s V & N [V=a]+n :Thus the theorem says that !� 0 is computational, for any � 0 2 Typ. Using thede�nitions in Fig. 1, we conjecture that all closed types in the grammar givenby � ::= � j !� j �
 � j �� � j � + � j T j N?j ��: �(�) j ��: �(�) j rec�: �(�; �)are computational.3 A Parametric Logical RelationWe are going to show that ground contextual equivalence of Lily terms, =gnd(De�nition 2.1), coincides with a certain logical relation that, by construc-tion, has various extensionality and parametricity properties that we wish toestablish for =gnd. The following de�nition gives some operations on binaryrelations between Lily terms that we need to achieve this.9



Bierman, Pitts and RussoDe�nition 3.1 For each closed type � 2 Typ, let Test(�) denote the set ofclosed linear function abstractions �a : �:M of type � ( !� 0 for some � 0 2 Typ.For �; � 0 2 Typ, de�ne the set of term-relations to beRel(�; � 0) , f r j r � Term(�)� Term(� 0) gand the set of test-relations to beRel�(�; � 0) , f s j s � Test(�)� Test(� 0) g :We de�ne the following operations on term-relations and test-relations:� Given r 2 Rel(�; � 0), de�ne r> 2 Rel�(�; � 0) to ber> , f (V; V 0) j 8(M;M 0) 2 r: V M +! , V 0M 0 +! g :� Given s 2 Rel�(�; � 0), de�ne s> 2 Rel(�; � 0) to bes> , f (M;M 0) j 8(V; V 0) 2 s: V M +! , V 0M 0 +! g :� Given r1 2 Rel(�1; � 01) and r2 2 Rel(�2; � 02),de�ne r1( r2 2 Rel(�1( �2; � 01( � 02) to ber1( r2 , f (M;M 0) j 8(M1;M 01) 2 r1: (MM1;M 0M 01) 2 r2 g :� Given a family (R(r) 2 Rel(� [�=�]; � 0[�0=�0]) j �; �0 2 Typ; r 2 Rel(�; �0))of term-relations, de�ne 8r: R(r) 2 Rel(8�: � ; 8�0: � 0) to be8r: R(r) , f (M;M 0) j 8�; �0 2 Typ; r 2 Rel(�; �0): (M �;M 0 �0) 2 R(r) g :� Given r 2 Rel(�; � 0), de�ne !r 2 Rel(!� ; !� 0) to be!r , f (!(x = M : �); !(x0 = M 0 : � 0)) j (fix x : �:M; fix x0 : � 0:M 0) 2 r g :(Fixpoint terms such as fix x : �:M were de�ned in (1).)The operation r 7! r>> derived from the above de�nition is a closureoperation on term-relations whose �xed points r = r>> turn out to have goodproperties (they respect =gnd and are suitable for a syntactic version of �xpointinduction) that we exploit to get the following theorem. We omit its proof inthis extended abstract, because it is quite involved; although the structure ofthe proof is similar to [21, Sect. 4] the details are di�erent. 2Theorem 3.2 (Relational parametricity for =gnd) For each Lily type �and each list ~� = �1; : : : ; �n of distinct type variables containing the freetype variables of � , we de�ne a function from tuples of term-relations, ~r =r1; : : : ; rn, to term-relationsr1 2 Rel(�1; � 01); : : : ; rn 2 Rel(�n; � 0n) 7! �� (~r=~�) 2 Rel(� [~�=~�]; � [~� 0=~�0])by induction on the structure of � using the operations of De�nition 3.1, asfollows:��i(~r=~�) , ri2 For one thing, the Strictness Theorem 2.3 is needed in several places; for another, the use of linearfunction abstractions rather than evaluation contexts as `tests' in De�nition 3.1 means we have to workharder to prove the theorem|the reward being a richer collection of >>-closed relations and hence a betterability to prove properties of =gnd. 10



Bierman, Pitts and Russo��1(�2(~r=~�) , ��1(~r=~�)( ��2(~r=~�)�8�: � (~r=~�) , 8r:�� (~r; r>>=~�; �)�!� (~r=~�) , (!�� (~r=~�))>>:When � is closed, we can take ~� and ~r to be empty and get �� , �� (;=;) 2Rel(�; �). Then for all M;M 0 2 Term(�)(M;M 0) 2 �� ,M =gnd M 0 : � :As part of the proof of the above theorem, one needs to establish thefollowing technical property of the parametric logical relation which we stateseparately because it is useful in its own right.Lemma 3.3 For each Lily type � , with free type variables in ~� say, if eachterm-relation r in ~r satis�es r = r>>, then so does �� (~r=~�).Corollary 3.4 (Kleene equivalences) For � 2 Typ, write Val(�) for thesubset of Term(�) consisting of the closed terms in canonical form|the termswhich appear of the right-hand side of the evaluation relations in Fig. 3, namelyabstractions, generalisations and recursively de�ned thunks (cf. Fig. 2). IfM;M 0 2 Term(�) are Kleene equivalent, i.e. satisfy 8V 2 Val(�):M +n V ,M 0 +n V , then M =gnd M 0 : � . (Similarly for +s .) Hence(�a : �:M)N =gndM [N=a] : � 0(��:M) �=gndM [�=�] : � [�=�]let !y = !(x = N : �) in M =gndM [(fix x : �: N)=y] : � 0:Moreover, if M;M 0 2 Term(�) are doth divergent (say M 6+s and M 0 6+s), thenM =gnd M 0 : � .Proof. It follows from Lemma 3.3 and the de�nition of (�)> that �� (~r=~�)respects Kleene equivalence. Hence so does =gnd; and being re
exive, thisimplies that it also contains Kleene equivalence. 2Corollary 3.5 (Extensionality properties of =gnd)M =gnd M 0 : � ( � 0 , 8V 2 Val(�):M V =gnd M 0 V : � 0(4) M =gnd M 0 : 8�: � , 8� 2 Typ:M � =gnd M 0 � : � [�=�](5) M =gnd M 0 : !� , (M 6+! &M 0 6+!) _ 9 x;N; x0; N 0:M +s !(x = N : �) &M 0 +s !(x0 = N 0 : �) &fix x : �: N =gnd fix x0 : �:N 0 : �
(6)
Proof. These properties follow by combining Theorem 3.2 with Lemma 3.3,the de�nition of �, and the Strictness Theorem 2.3. For example, to prove (4)�rst observe thatM =gnd M 0 : � ( � 0 , 8N 2 Term(�):(M N;M 0N) 2 �� 0(7) 11



Bierman, Pitts and Russoholds by a standard argument for such logical relations, using the facts that=gnd coincides with � and that ��(� 0 = �� ( �� 0 . By Lemma 3.3, �� 0 =(�� 0)>> and so the right-hand side of equation (7) is equivalent to8N 2 Term(�): 8(F; F 0) 2 (�� 0)>: F (M N)+! , F 0 (M 0N)+! :(8)By the Strictness Theorem 2.3 (and Corollary 2.4)F (M N)+! , 9 V:N +s V & F (M V )+!and similarly for F 0. Therefore (8) is equivalent to8V 2 Val(�):8(F; F 0) 2 (�� 0)>: F (M V )+! , F 0 (M 0 V )+!i.e. to 8V 2 Val(�):(M V;M 0 V ) 2 (�� 0)>>, i.e. to 8V 2 Val(�):(M V;M 0 V ) 2�� 0. So replacing the right-hand side of equation (7) with this and applyingTheorem 3.2 again, we get the desired extensionality property (4) of terms oflinear function type. 2Corollary 3.6 Any recursively de�ned thunk, !(x = M : �) 2 Val(!� ), canbe expressed as a non-recursive thunk (2) of a �xpoint term (1) up to groundcontextual equivalence:!(x = M : �) =gnd !(fix x : �:M) : !�:(9)So in particular every element of Val(!�) is ground contextually equivalent to!N for some N 2 Term(�).Proof. By the extensionality property (6) in Corollary 3.5, equation (9) holdsif fix x0 : �: fix x : �:M =gnd fix x : �:M : �where x0 =2 �v(fix x : �:M); but this does hold, by unfolding the left-handside using the last Kleene equivalence in Corollary 3.4:fix x0 : �: fix x : �:M =gnd (fix x : �:M)[(fix x0 : �: fix x : �:M)=x0]= fix x : �:M: 2Example 3.7 (Ground and lazy contextual equivalences di�er) Con-sider the generic divergent term 
 (see equation (3)) and the generic familyof divergent terms 
0:
 , fix x : (8�: �): x 
0 , ��: fix x : �: x:These are both closed terms of type 8�: �. For any � 2 Typ it is not hard to seethat 
 � 6+s and 
0 � 6+s . Hence 
 � =gnd 
0 � : � , by Corollary 3.4. Thereforeby the extensionality property (5) in Corollary 3.5 we have 
 =gnd 
0 :8�: �. However, these two terms are evidently not equated by lazy contextualequivalence, where one observes convergence in contexts of all types, not justof exponential types; for 
0 is in canonical form whereas 
 diverges, so thatwe can observe a di�erence between them using the identity context. Similarexamples can be given using function types and property (4) rather than using8-types, thus settling an open problem in [4, Sect. 7].12



Bierman, Pitts and RussoRemark 3.8 (Relational parametricity for 8-types) As a consequence ofTheorem 3.2, terms of 8-types enjoy relational parametricity properties mod-ulo ground contextual equivalence. For since any M 2 Term(8�: � ) satis�esM =gnd M : 8�: � , by the theorem we have (M;M) 2 �8�: � . Hence fromDe�nition 3.1 we get that for any �; �0 2 Typ and r 2 Rel(�; �0) satisfyingr = r>>, it is the case that (M �;M �0) 2 �� (r=�). Then one can use thede�nition of �� (r=�) to infer properties of M . Of course, to use this methodone needs a rich source of term-relations satisfying r = r>>. Such a sourcearises from the fact that the graph f(M;M 0) j F M =gnd M 0 : �0g of anylinear function F 2 Term(�( �0) is such a term-relation. This allows one toestablish many `free theorems' [28] to do with (di)naturality properties of theLily type constructors with respect to linear functions (which play the rolein this theory that strict continuous functions do in domain theory). Indeed,if we make de�nitions of types as in Fig. 1, the expected category-theoreticproperties of these types can be established up to ground contextual equiva-lence. Example 3.9 shows this for coalesced sums; the categorical propertiesof the other type constructors in Fig. 1 will be treated in the full version ofthis paper.Example 3.9 (Categorical coproducts) Consider the category whose ob-jects are closed Lily types, � 2 Typ, and whose morphisms from � to � 0 areground contextual equivalence classes of closed Lily terms of type � ( � 0.The composition of morphisms represented by M 2 Term(� ( � 0) and M 0 2Term(� 0( � 00) is the morphism represented by M 0 Æ M 2 Term(� ( � 00),where M 0 ÆM , �a : �:M 0 (M a):The identity morphism for � is represented by Id � 2 Term(� ( � ), whereId � , �a : �: a:(The validity of �-conversion for ground contextual equivalence (Corollary 3.4)and the extensionality property (4) in Corollary 3.5 are needed to see thatthese de�nitions do yield a category.) For closed types �1; �2 2 Typ, we claimthat �1 � �2 , 8�: !(�1( �)( !(�2 ( �)( �(10)is the coproduct of �1 and �2 in this category, with coproduct injections repre-sented by Inl 2 Term(�1( �1 � �2) and Inr 2 Term(�2( �1 � �2), whereInl , �a1 : �1:��: �b1 : !(�1 ( �): �b2 : !(�2( �):let !x1 = b1 in let !x2 = b2 in x1 a1Inr , �a2 : �2:��: �b1 : !(�1 ( �): �b2 : !(�2( �):let !x1 = b1 in let !x2 = b2 in x2 a2:To establish this claim, �rst note that given any object � 2 Typ and any13



Bierman, Pitts and Russomorphisms represented by Fi 2 Term(�i ( � ) (i = 1; 2), then[F1; F2] , �a : �1 � �2: a � (!F1)(!F2)represents a morphism from �1 � �2 to � satisfying8<: [F1; F2] Æ Inl =gnd F1 : �1( �[F1; F2] Æ Inr =gnd F2 : �2( �(11)(using Corollaries 3.4 and 3.5). So we just have to see that [F1; F2] is theunique such morphism. It is now that we use the relational parametricityproperties of 8-types mentioned in Remark 3.8. We can show, for any G 2Term(�1 � �2 ( � ) and M 2 Term(�1 � �2), thatG(M(�1 � �2)(!Inl)(!Inr)) =gnd M � !(G Æ Inl) !(G Æ Inr) : �(12)(where we are using the notation for non-recursive thunks introduced in equa-tion (2)). Postponing the proof of this naturality property for a moment, letus see how it yields the required uniqueness property of �1 � �2, namely(G1 Æ Inl =gnd G2 Æ Inl : �1( �) & (G1 Æ Inr =gnd G2 Æ Inr : �2( �)) (G1 =gnd G2 : �1 � �2 ( �):(13)Given any Fi 2 Term(�i ( � ) (i = 1; 2), taking G = [F1; F2] in equation (12)and using equations (11), we get[F1; F2](M(�1 � �2)(!Inl)(!Inr)) =gnd M � (!F1) (!F2) : �and hence by de�nition of [F1; F2] (and validity of �-conversion for =gnd)(M(�1 � �2)(!Inl)(!Inr)) � (!F1) (!F2) =gnd M � (!F1) (!F2) : �:So for any � 2 Typ and Vi 2 Val(!(�i ( �)), using Corollary 3.6 to express Vias !Fi for suitable (�xpoint) expressions Fi, we deduce that(M(�1 � �2)(!Inl)(!Inr)) � V1 V2 =gnd M � V1 V2 : �:Therefore by Corollary 3.5 we haveM =gnd M(�1 � �2)(!Inl)(!Inr) : �1 � �2(14)for any M 2 Term(�1 � �2). So given any G1; G2 2 Term(�1 � �2 ( �) andany V 2 Val(�1 � �2), from equations (14) and (12) we getGi V =gnd Gi (V (�1 � �2)(!Inl)(!Inr)) =gnd V � !(Gi Æ Inl) !(Gi Æ Inr) : �:So if G1 and G2 satisfy the antecedent of equation (13), we get G1 V =gndG2 V : � for all V , and so the conclusion of equation (13) holds by Corol-lary 3.5 (together with the congruence properties of =gnd that are inherent inits de�nition).Thus the coproduct property of �1 � �2 is a consequence of property (12).To prove (12), consider the term-relationr , f (M;M 0) j GM =gnd M 0 : � g 2 Rel(�1 � �2; �):As in Remark 3.8, applied to the particular 8-type that de�nes �1� �2 in (10),14



Bierman, Pitts and Russoeach M 2 Term(�1 � �2) satis�es(M(�1 � �2);M �) 2 (!(��1 ( r))>>( (!(��2 ( r))>>( r:(15)It is not hard to see that (Inl ; G Æ Inl) 2 ��1 ( r and that ��1 ( r =(��1 ( r)>> (the latter because r = r>>); from these facts it follows that(!Inl ; !(G Æ Inl)) 2 !(��1 ( r) and hence (!Inl ; !(G Æ Inl)) 2 (!(��1 ( r))>>.Similarly, we have (!Inr ; !(G Æ Inr)) 2 (!(��2 ( r))>>. So from (15) we get(M(�1 � �2)(!Inl)(!Inr) ; M � !(G Æ Inl) !(G Æ Inr)) 2 rfrom which (12) follows by de�nition of r.Remark 3.10 (De�ning types up to ground contextual isomorphism)Instead of making a de�nitional extension of Lily as in Fig. 1, one can con-sider extending the syntax and semantics of Lily with term-formers, typingand evaluation rules for tensor product, sum, product, existential, inductive,co-inductive, and recursive types. One can prove the key Theorems 2.3 and 3.2for this extended version of Lily (and in doing so, one sees for which of theterm-formers is it the case that strict and non-strict operational semanticsare equivalent for =gnd: for example tensor products M 
 M 0 can be eval-uated strictly, but pairs (M;M 0) cannot). Then one can use the relationalparametricity property mentioned in Remark 3.8 to prove the following de�n-ability result for types.We say that two types � and � 0 are ground contextually isomorphic if thereare functions I 2 Term(� ( � 0) and J 2 Term(� 0( �) whose compositionsJ Æ I and I Æ J are ground contextually equivalent to the identity functionsfor � and � 0 respectively. Then in the extended version of Lily, the newtypes are all de�nable in terms of (, 8 and ! up to ground contextualisomorphism, using the formulas on the right-hand side in Fig. 1.Details of the proof (which is quite involved, especially when it comes torecursive types, where ideas due to Freyd [7] and Plotkin [6] are needed) willappear in the full version of this paper.4 A Lazy Version of LilyIn Sect. 2, we investigated the equivalence of call-by-value and call-by-nameevaluation strategies for arguments to linear functions. Nothing is gained byadopting a call-by-need (or lazy) strategy for linear function application, sincea linear argument is either suspended, or evaluated exactly once. However,in the operational semantics in Fig. 3, when evaluating let !y = M1 in M2,the value of M1 is eliminated by substituting the same unfolding of its bodyfor each occurrence of y in M2. As there is no restriction on the number ofoccurrences, this duplicates computations that could be shared. For Lily tomerit serious consideration as an intermediate language for both strict and lazysource languages, we should provide a call-by-need operational semantics forsuch terms. Furthermore, to apply the results of this paper to this Lazy Lily15



Bierman, Pitts and Russowe must show that ground contextual equivalence is una�ected by the switchfrom call-by-name to call-by-need semantics.Environments A ::= [] empty[x = M ]A binding:Call-by-need evaluation, hM;Ai # hV;A0i, is inductively generated by thefollowing rules: h�a : �:M;Ai # h�a : �:M;Aih��:M;Ai # h��:M;Aih!(x = M : �); Ai # h!(x = M : �); AihM1; A1i # h�a : �:M;A2i hM [M2=a]; A2i # hV;A3ihM1M2; A1i # hV;A3ihM;A1i # h��:M 0; A2i hM 0[�=�]; A2i # hV;A3ihM �;A1i # hV;A3ihM;A1 [x = M ]A2i # hV;A3 [x =M 0]A4ihx;A1 [x = M ]A2i # hV;A3 [x = V ]A4ihM1; A1i # h!(x = M : �); A2i x = fresh(dom(A2))hM2[x=y]; [x =M ]A2i # hV;A3ihlet !y = M1 in M2; A1i # hV;A3iFig. 4. Lazy Evaluation of closed Lily termsFig. 4 de�nes an evaluation relation for Lazy Lily in the style of [11]. Anenvironment (or heap) is an association list mapping (distinct) intuitionisticidenti�ers to suspended terms, similar to an explicit substitution. (The no-tation A1 [x =M ]A2 denotes the (list) concatenation of A1 and [x =M ]A2.)The lazy evaluation relation # relates con�gurations pairing a term andan initial environment to con�gurations pairing a canonical form and a �nalenvironment. The variable x is evaluated by looking up its suspended termMin the initial environment, evaluating that term in the same environment, andthen returning its value V along with the �nal environment, updated to recordthe value of x. Since the environment is threaded through a derivation, theresult of the �rst computation ofM is cached and recalled in subsequent refer-ences to x: the computation is shared. Evaluating a let !y = M1 in M2 termevaluates M1 to a canonical form !(x = M : �), binds the body of this thunkto a fresh renaming of y (creating a cycle in the environment), and continueswith the evaluation of the renamed body M2[x=y]. Assuming that the initial16



Bierman, Pitts and Russocon�guration is closed with respect to the domain of the environment|a prop-erty that is preserved by evaluation|choosing an x that is fresh for dom(A2)avoids the capture of free variables.Formulating the lazy semantics is easy, but proving it correct for the non-strict semantics is not. The correctness results in [11] are with respect toa denotational model. To get a more direct operational proof, we hoped tomake use of the `small-step' abstract machine semantics formulated by Ses-toft [26] and the operational techniques in [15] that are based on it. As itturned out, the `big-step' style of [11] proved more amenable. Seaman andIyer [25] give an operational proof of correctness for Lazy PCF using this styleof operational semantics, but their semantics only shares the evaluation offunction arguments, not recursive terms, whose evaluations are duplicated byunfolding (as for the call-by-name relation +n in Fig. 3). Moreover, Seamanand Iyer report that they were unable to extend their proof technique to asemantics that shares evaluations of recursive terms. The problem is thatsharing these computations creates cycles in the environment, violating anotherwise decreasing measure that they use in their inductive proof. Fortu-nately, we have identi�ed a more robust measure that allows us to extend theproof technique to the setting of both Lazy Lily and Lazy PCF with sharedrecursion. Since linearity is not the issue, and the result for Lazy PCF is ofwider interest, this result will be reported elsewhere. (The rules in Fig. 4 arevery similar to those of Seaman and Iyer [25] for Lazy PCF; to cater for cycles,our variable rule evaluates the suspended term with respect to the entire envi-ronment A1 [x = M ]A2, not just the remainder A2: this is just the alternativesemantics of �xpoints proposed, but not proved correct, in [25].)5 ConclusionThe material presented in this paper establishes some powerful techniques andresults for exploring the surprisingly great expressive power that arises fromthe combination of linear lambda calculus, polymorphism and recursion. Inprincipal, one can give semantics to a wide range of programming languagesvia compositional translations into the Lily language, using its versions ofthe standard constructs of Scott-Strachey denotational semantics (Fig. 1) andusing the results presented here as the basis for proofs of correctness propertiesof the translations. In fact Lily terms modulo ground contextual equivalencegive a more re�ned treatment of strictness and usage properties than doesthe model based on domains and strict continuous functions|for lifting (�)?in the latter has a contraction property that we have not built into Lily's !-types. Accordingly, much remains to be done to explore the properties of suchtranslations. For example, it would be interesting to explore properties of Lilyversions of the semantics of Idealised Algol given by O'Hearn [17]; or of the lazystate threads of Peyton Jones and Launchbury [18] (to make computationale�ects implicit in translations to Lily, one could consider combining it with17
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