Formalizing and extending C* typeinference
(Work in progress)

Gavin Bierman

Microsoft Research Cambridge, UK
gmb®@microsoft.com

Abstract

The current release of ‘Qversion 2.0) introduces a number of
new features intended to increase the expressivity of tiguiage.
The most significant is the addition génerics classes, interfaces,
delegates and methods can all be parameterized on types.

To make using generic methods easietaflows the programmer
to drop the type arguments in method invocations, and thepgem
implements type inferencéto reconstruct the arguments. Unfor-
tunately this part of the published language specificatom little
terse, and hence this feature can often behave in surprigiyg
for the programmer. Moreover, this process is quite difiefeom
the better known one implemented in Java 5.0. In this papeatwe
tempt a formal reconstruction of the type inference proesssis
currently implemented in £2.0. We also consider a number of pro-
pos?d extensions to support new language features thatppilar
in C*3.0.

1. Introduction

automatically. Hence, given the code above it is possibimage
the following invocations of th€hoose method:

int i = Chooser.Choose(5, 213); // Calls Choose<int>
string s Chooser .Choose ("foo", "bar");
// Calls Choose<string>

The main technical problem addressed in this paper is hovwpitom
ers actually perform this type inference process. The pseEused
in C* and Java are actually quite different; this paper concegra
on the lesser-known process employed By C

The type inference process for Java was considered in thexton
of GJ by Bracha et al. [35]. The first version of GJ released for
JSR14 was shown to be unsound by Jeffrey [9]. An alternagise s
tem was proposed by Odersky [12] and was subsequently iedlud
in thejavac compiler. The latest version of the Java language spec-
ification gives a sixteen page formal description of the typer-
ence process using a constraint systen§16,12.2.7-8

Interestingly, the GJ design appears to have been infludncead

C#2.0 introduced a number of new features to the language, mostassumption that there would be no way to explicitly specitype

significant of which was the addition of generics'2® permits
classes, structs, interfaces, delegates and methods trdmgter-
ized on types. Similar extensions were also added to veBsof
Java. The advantages of parametric polymorphism are wellivk

to users of functional programming languages such as Hashe!
ML, and also to users of Eiffel and Ada. In the context of objec
oriented languages such a$a@d Java, generics provide stronger
compile-time type guarantees, require fewer explicit evsions
between types and reduce the need for boxing operationsuand r
time type tests.

There has been considerable theoretical work on addingrigene
to object-oriented languages, such as PolyJ [11], Next@égn [
Pizza [13] and GJ [3]. One aspect of generics which has redeiv
less attention is the inference of type arguments when ingok

a generic method. Both *Cand Java support methods that are
parameterized on types, which can appear in classes whigh ma
themselves be generic or non-generic. Consider the fatipwode

in C*, taken from the language specification §20.6.4].

class Chooser

{

static Random rand = new Random();

public static T Choose<T>(T first, T second) {
return (rand.Next(2) 0)? first: second;
¥
}

In C* a generic method invocation can explicitly specify a type
argument list, or it can omit the type argument list and relyao
process known as “type inference” to determine the typeraegis

argument list. Hence, the GJ inference process is intenaldx t
as complete as possible. However, Javada@sprovide explicit
syntax for supplying type argument lists.

Relatively little attention has been paid to the type infiee
process that appears in*Z0. In contrast to Java, the’Qle-
signers appear to have been focused on simplicity as opgosed
completeness—the type inference process is described agea p
and a half in the current language specificatigiz0]6.4].

However, a brief, informal (and, in this case, a particylaerse)
specification is no substitute for formal rigour. In this pape give
a precise, formal description of both the type system &f.Cand
of the type inference process itself. One contribution & pgaper
is to show how a bidirectional type systéin the sense of Pierce
and Turner [15] can be used and extended to describe botjée t
system and the type inference process. One advantage dfecbid
tional type system is that it directly defines an implemeatatThe
locality property of bidirectional systems such as the amsented
here means that the implementation is quite simple. It intamt
to note that the Java inference processds-local.

The main advantage of the formal description presentedig th
paper is that it enables the exploration of various exterssio

the C' 2.0 type inference process. For example, the inclusion of
A-expressions in £3.0 will require an extension to type inference.

11t is interesting to note that, as formalized, solving thimstraint system
can lead to the generation of infinite types [6, p.465].

2This is sometimes referred to as “local type inferencehalgh we prefer
to use the term “bidirectional” to distinguish between thegesses of type
checking, type synthesis and inference of type arguments.

We show in this paper a number of possible extensions to fandl
A-expressions.

This paper is organized as follows. §& we define a small, feath-
erweight subset of €2.0, FC!, that we use in our formalization.
In §3 we define the type system f&C as a bidirectional type
system. In§3.3 we show how to extend this technique to capture
type inference. Ir§4 we consider a number of extensions to the
type inference process; relaxing the consistency comdifd.1),
handling\-expressions§é.2) and incorporating return type infor-
mation §¢4.3). We conclude i§5 and suggest some future work.

2. Featherweight C* 2.0

In this section we define a core fragment of2@ called Feath-
erweight G2.0, or FC§ for short, that will be used in the formal
specification of the type system and type inference process.
core fragment, whilst lightweight, has a similar computa#il feel

bool Boolean
int Integer
p = Reference Type
L Constructed type
D<7> Delegate type
L= C<7> Constructed Type

The two main categories GTCQ types are value types and reference
types. Value types include the base types; for simplicityshall
consider just twobool andint. We do not include the nullable
types in our core fragment.

FC§ reference types include class types and delegate types. To
simplify the presentation we don’t consider arrays, and wigew

D to range over delegate types afdto range over class types.
Following GJ [8] we permit the shorthardfor C<>. For simplicity

to the full &' language and contains all its essential features, such aswe do not model constraints on generic parameters as separt

generic classes, delegates, state and mutable objestsirtilar in
essence to core subsets of Java such as MJ [2] and Clasqigava
It is important to note thachg is a completely valid subset of'C
in that everchg program is literally an executablée’ @rogram.

2.1 FC! syntax

A FC! program consists of a sequence of zero or more delegate FC

declarations, followed by a sequence of zero or more cladarde
tions. Given arFCﬁ program we assume that there is a unique des-
ignated method within the standard class declarations#raes as
the entry point (theain method). The grammar fcﬁcg programs

is as follows.

FCﬁ programs:
I

pu=ddcd Program

dd :: Delegate Declaration
public delegate o D<X>(7)

cd = Class Declaration
public class C<X>:. {fd md}

fd ::= publicT f; Field declaration
md = Method Declaration
public (virtual|override) o m<X> (7 z){s}

A class declaration consists of zero or more field declanatfol-
lowed by zero or more method declarations. Methods must be de
fined eithervirtual or override and, for simplicity, we re-
quire all fields and methods hgblic. For conciseness, we do
not modelstatic methods and non-virtual instance methods, and
we do not consider other modifiers suchpadvate andsealed.
However, we do support generic class declarations and igener
method declarations.

The grammar foFC% types is as follows.

Types.
I 1
o= Return type
T Denotable type
void Void
T = Denotable types
0 Value type
p Reference type
X Type parameter

v o= Value Type

C*2.0—they play no part in the type inference process and so are
peripheral to the main concerns of this paper. We also assume
predefined superclasdject.

Following FJ [8] we adopt an overloaded ‘overbar notation;
for example,7 f is a shorthand for a possibly empty sequence
T1 f1, v 3T fn

expressions, as for‘Care split into ordinary expressions and
statement expressions. Statement expressions are egpeegst

can be used as statements. The grammars for both forms are as
follows.

Expressions:
I 1
e = Expression
b Boolean
7 Integer
ede Built-in operator
x Variable
null Null
(Me Cast
delegate (T z) {5} Anonymous method expression
e.f Field access
se Statement expression
se 1= Statement expression
me<T> ae Explicit invocation
me ae Implicit invocation
new . ae Object/collection creation
r=e Variable assignment
me ;= Member access expression
e.m Method access
ae = (€) Argument expression

For simplicity, we assume only two classes of literals: kaok and
integers. We assume a number of built-in primitive opestsuch

as ==, | | and&&. In the grammar we write® e, where®d denotes

an instance of one of these operators. We do not considee thes
operators further as their meaning is clear. We assume: ttzaiges
over variable nameg, ranges over field names andranges over
method names. We assume that the set of variables includes th
special variablechis, which can not be used as a parameter of a
method or delegate declaration.

FC§ statements are fairly standard and as follows.

Statements:
I 1

§ = Statement

H Skip
se; Expression statement
if (e) s else s Conditional statement

Tx=e; Explicitly-typed declaration
T=e; Variable assignment
e.f=e; Field assignment
returne; Return statement

return; Empty return

{s} Block

In what follows we assume thﬁcg programs are well-formed,
e.g. no cyclic class hierarchies, correct method body coctsbn,
etc. These conditions can be easily formalized but we ssppre
details for lack of space.

3. FCﬁ2 bidirectional type system

In this section, we formalize the process of both typﬁ(@ﬂ pro-
grams and also the inference of generic method type argsment
The main technical tool we use is a bidirectional type sydtEsn
14]. Such systems explicitly distinguish between tgheckingand
type synthesisWe will see that this technique, whilst originating
from studies of Systerk'<, is actually rather well suited to com-
mercial class-based languages.

First, we need to introduce some additional notation. Weewri

to range ovemethod typeswhich are writtenvX.(7) — 0. A
method group typewhich is just a sequence of method types, is
written using the shorthandl?"_, 1:, by which we meam; A pa A

-+ A un (we will often drop the bounds when not important).

3.1 Subtyping

The subtyping rules fochg are standard and are given below.
I

T1 <! T2 T2 <. T3
[ST-Refl] [ST-Trans]
71 <! T1 T <:T3
class C<X>: . .
[ST—SUb] [ST—ObJect]
5'a = T <: object

C<T> < ([X =T

Rules [ST-Refl] and [ST-Trans] ensure that the subtyping rela-
tion is reflexive and transitive. TH8 T-Object] rules ensures that
object is the root of type hierarchy (values can be boxed as ob-
jects).

3.2 Bidirectional typing judgementsfor ch

Excluding type inference, there are two ways of typing a term
checkingand synthesizingType checking is the process of deter-
mining whether a (given) term can be assigned a particulegiy
type. Type synthesis is the process of automatically deténm

or inferring, a type given a term. We capture these two pse®s
using two relations which we outline below.

3.21 Anintroduction to type checking

The judgement form for typeheckingan expression is written
I' F e1: 7 — e11 and should be read “given typing assumptions
T, the expressiom; can be type checked at type which yields

an expressiore;;.” (For now, the reader can ignore the yielded
expression but the intention is that expressign results from
inserting the inferred type arguments into the originalrespion
61.)

Let us consider some rules for forming valid type checkirdpjr
ments. The simplest rule is where the expression is an figEnti

T1 <! T2

Te:mbFax:m—z
To check whether an identifiercan be assigned a type we first
look in the environment to see what type we know#£0Assuming
this type isri, then the check succeeds if there is a conversion from
71 t0 2. Here’s a particular instance of the rule:

int <: object

I'z:int - x: object —
In other words, if we know that has typeint we can conclude
that it can be assigned typ®ject as there is a conversion from
the former to the later.

A particularly interesting type checking rule is for anorous
method expressions. The Ganguage specification states that an
anonymous method expression is “. .. avalue with no typ21[3].
This is a little misleading; itcan be assigned a type (in many
cases, several?)The rule for type checking an anonymous method
expression is as follows.

dtype(D)(T) =Ta — o T,T:Ta b31: 0 =311

I' - delegate (7, T){51}: D<7> — delegate(7,){511}

There are a number of points of interest in this rule. Firetjce
that theonly type we can check an anonymous method expression
against is a delegate type. Even the following code fails:

object zz = delegate (int z){return z;};

The rest of the rule has a quite straightforward reading.dkes
use of an auxiliary functionrltype, which is a map from delegate
names to their associated type (which is a method type). én th
rule, we use this function to determine the type of the deéega
D, which is, say¥VX .71 — ¢’. We then substitute the given type
arguments for the type parameterX to get a typer, — o (in

the rule we use application as a shorthand). We then typ&dhec
statement sequence using the type#or the parameters (there is

an implicit assumption here that the number of parametetstraa
the number of types, i.¢7,| = |z|) and the return type.

3.2.2 Anintroduction totype synthesis

The judgement form for typsynthesisof expressions is written
T' F e1 — e11: 7 and should be read “given typing assumptions
I, the expressior; can be inferred to have type yielding an
expressiorei1”. (Again, for now, the reader can ignore the yielded
expression.)

As before let us consider some of the rules for forming type sy
thesis judgements. The simplest rule, again, is where aessijon
is an identifier and is as follows.

De:rkFx—uz: T
Thus to synthesize a type for the identifigrwe simply return the
type assumption fat.

It is important to note that there are no rulesfimrl1 expressions
and anonymous method expressions. Weraarsynthesize (deno-
table) types for these expression forms.

3What the standard is perhaps attempting to capture is thee th no way
to synthesizea type for an anonymous method expression.

The rules for forming type checking and type synthesis juugas
are inter-defined. For example, the type checking rule foel fi
access expression is as follows.

Thei—enn:m ftype(ri,f) =12 72 <:T3

I'kei.f:m3—e1n.f
Here we are trying to type check an expressionf at typers. We
first synthesize type for the expression, sayr:. We then use an
auxiliary functionftype to determine the declared type for the field
f for the typer;, saym.. We conclude that the expressien. f can
be assigned the typsg if there is a conversion from, to 3.

3.2.3 Further details

The complete collection of rules for type checking and sgsih
of expressions is given in Figures 1 and 2, respectively.tRer
most part, these rules are pretty straightforward, the megeption
being the rules for typing method invocation expressioh&sE are
explained in detail i1$3.2.4.

We comment on a few of the rules in the figures. RI€-1Inv]
highlights the role of the yielded expression. Here thedgdl
expression has the inferred type arguments inserted iatm#thod
invocation. In rule[TC-ObjCreation] we use some shorthand and
write mtype (11, new) to mean the method group type associated
with the constructors for typa .

The judgement form for type checking a statement is written
s1: 0 — s11. The typeo is the expected return type of the
statement. The key rule is then feeturn statements, and is as
follows

I'Fei: 77— e

[TC-ReturnExp]

'+ returne;;: 7 — returnej;;
We can also generalize this judgement to one that type cheecks
statement sequence in the obvious way. The rules for typekioige
statements and statement sequences are given in Figure 3.

3.2.4 Further details: method invocations

In this section we give the details of typing method invomati
expressions where the type arguments have been expligity.g
We will build on these rules to define a type inference pro¢&ss
method invocations where the type arguments have beeneanitt
in §3.3.

For brevity, we will describe type checking only—the deddibr
type synthesis are almost identical. We will do this in a nanf
stages. First, for convenience, we introduce a new judgefoen
for synthesizinga type for a member access expressionF@i

a member access expression is always a invocation of a method

method group type. This method group type is then the syizes
type for the member access expression.

So far our rule for type checking a method invocation would be
something like the following:

'k me1 ff meir: /\ui 777

'k me1<7> ae: 73 —777
In other words we have generated a method group type forvtoe in
cation expression. Next we instantiate the method typenpeters
of the method types contained in the method group type with th
explicit type arguments. We write this #s.; (7). This operation
returns a method group. Notice that this operation needggb fi
check the arity of the method types before instantiatingtyipe
parameters. For example consider the following methodmtyoe
G:

VX.(X,int) — double
VX,Y.(X,Y) — double
VX,Y.(X,object) — double
VX,Y.(X,Y[]) — double
VX,Y,Z.(X,Y,Z) — double
Hence G(object) = (object,int) — double, Whereas
G(int,string,object) = (int, string, object) — double.

>>> >

Next, we need to check the argument expressieragainst the
expected argument types in the method group. We introduce a
new type checking judgement form, writtéh - ae: A pi —

A u;. This means that the argument expressian,is systemati-
cally checked against the argument types of each methoditlype
the method group. The result is the method group contairtieg t
method types that match.

The single rule for this judgement form is given in Figure H &
called [TC-MethodGroupType]. This is slightly awkward to for-
malize as what we need to capture is the set of successfubtheth
types from a method group type against which the argument ex-
pression can be type checked. We use a success$,setich is
used to index thenaximalsubset of successful method types.

Let us consider an example. We assume a @lassvhich has static
methodsm with the method group typé&r given earlier. We shall
consider type checking the following expression:

Foo.m<object,int>(null,42)

First, we instantiate the type parameters of the methodpgrou
type with the given type argumentspject and int. Hence
G(object, int) returns the method group typé = (object, int) —
doubleA (object,object) — doubleA (object,int[]) —
double.

but in the full C language this is not always true as a field could | N€ argument expressidmull, 42) matches two of these method

have a generic delegate type, and so we could legitimateatg,wr
e.g.e.f<int>(42). We have excluded this possibility H'fC§ but

it would be straightforward to add. This new judgement fosm i
writtenT - me; f me1r: A pi, whereme; is the member access
expression ang\ y; is the synthesized method group type. The
single rule for forming such judgements is as follows.

Tker—en:m miype(ri,m) = A\ i

I'kFeir.m1feir.m: /\Hi
This rule is pretty straightforward: we first synthesize petjor the
receiver,e;, and then look up the declarations for methadfor
this synthesized receiver type. Again we use an auxiliangtion
mtype, Which given a typer and a method namm, returns the

types, so we would expect to form the following type checking
judgement.

I't+ (null,42): M ~ (object,int) — double
A(object,object) — double

At this point G uses overloading resolution to determine which
method would be called (if there is a single valid one). Iis thaper
we do not formalize overloading resolution—it is definedasely
in the C' language specificatior§].4.2]. For simplicity we simply
postulate a (partial) functio®loadRes that returns the argument
expression after being type checked against the choserceatiu
the return type of the chosen method.

To conclude, the type checking rule for a method invocation e
pression is as follows.

I'Fer: 77— e

bool <: T int <: 7 T1 <! T2 T is ref
[TC-Bool] ——— [TC-Int] [TC-Var] [TC-Null]
THb:T—b Phi:Te—1i Nz:nmbximnox T'+null: 7 < null
kel —enn:m1 mi<imt 71<:T2 kel —emnn:m1r ~(rn<im) m1<:m11 71<:T2
[TC-UpCast] [TC-DownCast]
I'F (r)er: 70— (11)err I'F (rder: 72— (11)ern

dtype(D)(T) =Ta — o T,T:Ta b31: 0 =311

[TC-AnonMethExp]
I" - delegate(7,) {s1}: D<7> — delegate(7, z){s11}

Tkei—en:mn ftype(ri, f) =12 72 <:73

[TC-FieldAccess]
FF61.f: T3 — e11.f

Fl—se1:7';>se11|

'+ me1 ff meir: /\,u,i T'kaep: /\,u,i(F) — /\,u]- OloadRes(/\ wj,ae1) = (ae11,0) o <:73

I'F mei<m>aey1: 73 — me11<7> aeqr

[TC-Elnv]

' me1 ff meir: /\Hi Fl—ae1~/\uif—>(/\uj,3> OloadRes(/\uj,g,ael):(aeu,?,a) o <:T3

[TC-lInv]
T'F meq aey: 73 — me11<7> ae’

mtype(t1,new) = /\ wi Dhaer: /\,u,i — /\ 1y OloadRes(/\ wj,ae1) = (ae1r,void) 11 <: 71

[TC-ObjCreation]
I'+-new:i ae1: 71 — newtq aeqq

Tizg:mokFer:m —enn 1<im

[TC-VarAssign|
I'xzo: o apo=e1: T — zo=e11

'kFei:m — e I'Fen: Th — ent
[TC-MethodType]
'k (e1y...,en): (T1,..., ™) — 0O
‘Fl—aels A i — Ay
'taei:ps, -+ Thlaei:ps, |S|=k>1 SC{l,...,n}

[TC-MethodGroupType]
T'Fae;: | AREAN Vel V7= PRARRAY 17

Figure 1. Type checking expressions

A first attempt at defining a type matching rule might be a deela
T Fmer fmeir: A s OloadRes(/\ uj, ae1) = (ae11,) tive rule such as the following.
Phaer: Api(@) = Apj o<:73 dom(8) =X Tlei:S(n)—ei1 - TFen: S(Th) — en1

I'F mei<m> aey: 73 <— me11<T> aeqr

)) L 'k (e1,....en) ~VX.(7T1,...,7n) 50— S8
The rule for type synthesis of an explicit invocation exgies is)))
almost identical and as follows. This rule states that to match the argument expression stgaim

argument types of the method type, we ‘simply’ find a substitu
for all the method type parameterX,, such that each individual
T'Fmer ft merr: A component expressioa;, can be type checked against the resulting
PFaer: Api(T) = Ap; OloadRes(A pj,aer) = (ae11, 13) argument typeS(7;).
I'F mei1<7T> ae; — me11<T> aei1: 73

Of course, matters are not quite so simple. The problem igfjnd
the substitution. Moreover, there may be several such isutibs.
Are they all valid? Which one should be chosen? Is there avaay
Now we can build upon type checking and synthesis to define best one to chose? The process of determining this sulstitist
the type inference process. The key point is that when chgcki the essence of the type inference process.

the argument expression against a method type, we needao als
generate aubstitutior We refer to this process as typeatching

3.3 Typeinference

As mentioned earlier, ©.0 adopts a fairly simple but elegant
solution, albeit one that is not quite so well known. In thst ref
this section we formalize precisely thé Z0 approach, but along
4 A substitution is referred to as “type inferences” in thegaage specifi- the way we point out some of the weaknesses. In later seatiens
cation [§20.6.4]. will propose extensions to address some of these weaknesses

F|—€1;>611:7'1

———[TS-Bool]
I'Hb< b: bool

F|—61:T1;>611

[TS-Cast]

I'i<—4:int

F"Glgellt

[TS-Int] [TS-Var]

De:thkax—z: 7

T1 ftype(T1, f) = T2

'k (el —enn:mn

' sep — sea: 1

' me1 { meqr: /\ui

'k aer: /\Hi(7)‘—’/\ﬂj

[TS-FieldAccess]

FF61.f‘—>ell.f: T2

OloadRes(/\ wj,ae1) = (ae11,73)

[TS-Elnv]

I'F me1<T> ae1 — me11<7> ae11: 73

T'Fme1 ff meyr: /\,u,i

Tt aer ~/\;L¢‘—> </\;Lj,§)

OloadRes(/\ uj,S,ae1) = (ae11,7, 73)

[TS-1Inv]

I'F me1 ae; — me11<T> aei1: 73

I'taer: /\Mi‘—’/\ﬂzj

mtype(L1,new) = /\ I

OloadRes(/\ 1y, ae1) = (ae11, void)

[TS-ObjCreation]

I'Fnew.; ae; < newty aeyq: t1

Tyzo: 7o Fe1: 70 — e11

[TS-VarAssign]

Iyzog: 7o ax0=€1 — xo=e€11: 70

Figure2. Type synthesis for expressions

F|—S1:O"—>S11

I'se; — se11: 11

I'e1: bool — eqq

I'Fsi:o0—=s511 I'Fsy:o— so1

[TC-Skip] [TC-ExpStatement] [TC-Cond]
I'Esir—y 'k sey;: 0 seir; ' if (e1) sy elsesy: 0 — if (e11) s11 else sog
Pkei—eir:m1 ftype(ri, f) =12 T hea:mo—en
[TC-FAss]
I'ktei.f=e2;:0—e11.f=€e21
I'kFei:m—en
- [TC-Return] [TC-ReturnExp]
I' - return;: void — return; ' returne;;: 7 < returneis;
Thep:m < en a:Qdom(F) Iz:7 F81:0 — 3811 I'ksi:o<—s11 I'F353: 0 — sa1
[TC-EDecSeq] [TC-StSeq]

I'Frix=e;S51:0—>7T1T=€11; S11

't s1352: 0 — s11 521

Figure 3. Type checking of statements

We introduce a notion diype matchingor FC!; whose judgement
form for expressions is writteh; A - e; ~ 71 — S. This is read
“given typing assumptionE, the expression; type matches a type
71 with ‘free’ method type parameters containedAn yielding a
substitutionS.” A substitution is simply a (partial) function from a
method type parameter to a type.

For example, we would expect the following to be a valid type
matching judgement.

I X F42 ~ X — {X — int}

The alert reader will have noticed that this judgement foam i
algorithmic as opposed to declarative. A declarative werds
possible, and will be given in a future version of this papie
stick with the algorithmic version here as it follows quitesely
the actual language specification and so will aid comparison

The rules for type matching expressions are given in Figure 4
There are three special casgENI-Null], [TM-Closed], and

[TM-AnonMethExp]) and one general rulg¢{M-OpenExp]). The

rule [TM-Null] simply checks that the type is a reference type
and returns an empty substitution. The r{§EM-Closed] cov-

ers the case when type matching an expression against al close
type. In this case, we simply return an empty substitutione T
rule [TM-AnonMethExp] reflects the (rather strict) restriction that
anonymous method expressions if2@ can be passed as argu-
ments to method invocations, but they do not contributeedype
inference process.

The[TM-OpenExp] rule is where substitutions are actually gener-
ated. Assuming that the type to be matched,contains free vari-
ables, we first synthesize a type for the expressigrsay .. We
then need to ‘matchty with 7.

This ‘matching’ is captured by a function that we writtuich (A, 7p, 7o),
and which returns a substitutiof, if one exists. This substitution
satisfies the equalitys(r,) = 7. (hence Match really imple-
ments a simple form of one-way unification). The getontains

‘MCLtCh(A,Tp,Ta)

Match(A, X, T)

Match(A, 711,72 01)
Match(A, p1,72)

{X — 71}
0

if X e A
otherwise

Match(A, 11, 72)
{Y =71}

where 7.2 < p1[Y = 7]

and

ARep~11 — S

Y = ftv(p1) N A

[TM-Null]

MAFDull~p—0

fio(m)NA =0

T;AFe;~7 =0

[TM-Closed]

[TM-AnonMethExp]

T'; A+ delegate (T ZT) {51} ~ D<7> — 0

flu(m)NA#D The —enn:m

Match(A,11,m72) =8

I'AFep~1p— S

I'taeg ~pur — S

F;Yl—€1 ~ T1 ;»81

;X Fen~Tn— Sn
dom(S1) U -+ - Udom(Sn) =
Consistent(S1,...,Sn)

[TM-OpenExp]

X

' Ceq,..

Ik aer ~ Api = (Au;,S)

I'kaer ~ps, — St I'Faer ~ ps, — Sk

1S|=k>1

[TM-MethodType]

en) ~YX.(T1,...,Th) w0 >SS U---US,

SC{1,...,n}

Phaer~pi Ao Apn = ((ksy Ao Apsy), (St

[TM-MethodGroupType]
»Sk))

Figure4. Type matching of expressions

the generic type parameters of the method to ensure that lye on
generate substitutions for the generic type parameters.

The definition of Match is also given in Figure 4; it is recursively
defined over the structure of its second argument, the tyreps

ter 7,. For completeness we also give the clause for array types.
This recursive definition is a direct formalization of therdtive
process described in the language specificafig.p.4]. The third
clause is least obviousit covers the case where the parameter
type is a constructed type. It is perhaps best motivated bgxan
ample. Imagine that we have a class> that extend®<X,int>
and a clas®<A,B> that extend€<B, A>. Consider the case where
we are matching a parameter typex,Y> against an argument
typeC<string>. The purpose of the third clause is to unwind the
class declarations to produce the substitufdh — int,Y —
string}. The language specification insists that this unwinding
only usestandard implicit conversionsvhich we write as<:*, al-
though inch this relation is identical to the subtyping relatidn.

5|tis formalized declaratively here to match the descripfiothe language
specification. An algorithmic version is possible but is tted for lack of
space.

81n the full C* language the difference is that the standard implicit cenve
sions specifically exclude user-defined implicit conversio

The uniqueness condition in the third clause of the defimitibthe
Match function arises because of generic interfaces (so it could
have been dropped for this fragment). For example, consider
following:

interface I<X>{...}
class C:I<int>,I<object>{...}
void mO<X>(I<X> argil){...}

mO(new C(Q)); //FAILS

Type checking the method invocation md will result in the fol-
lowing call to theMatch function: Match(X, C, I<X>). Without
the uniqueness requirement in the third clause we woulddésc
two instantiations fotX'; namely,int andobject. Hence, ¢re-
jects this method invocation.

We can lift type matching to argument expressions; judgésnere
of the formT" + ae; ~ p — Si. This is read that “given type
assumptiong’, the argument expressiare; can be type matched
against the method type yielding a substitutiors, ”.

The single rule for this judgement [§ M-MethodType] in Fig-
ure 4. This rule has an intuitive operational reading. Tivemiar-
gument expression is of the forife:, ... ,e,) and the method
type isVX.(71,...,7,) — o. We then type match each individ-
ual argument expressien against the parameter typg(where the

set of free method type parameters that we are trying toritiate
is {X}) in turn, yielding a substitutior®;.

C* imposes two conditions on the collection of substitutidhs
The first is that collectively they provide instantiatiorms &ll the
method type parameters. In other words the domain of theaoll
tive substitution must be equal to the type parameters afigtbod
type. This condition on the collective substitution is refel to as
completenes the language specification.

The second condition is referred to @snsistencyThis turns out
to be a very strict condition in practice. It essentiallyuiegs that
if we have inferred multiple substitutions for a type parsne
then these substitutions must igdentical Consider the following
method signature and code fragment:

void myfoo<T>(T argl, T arg2);

myfoo("hello",new object()); //FAILS
myfoo<object>("hello",new object()); //CHECKS

The first method invocation fails as the type inference pssaeill
generate two substitution§T' — string} and{7T — object}.
As these substitutions aret identical, then type inference fails.
The second invocation succeeds, which demonstrates th&tra i
ence could have been made.

In the rule[TM-MethodType] we denote this consistency check
using a predicat€onsistent. We omit its rather routine definition
in the interests of space.

Finally, we lift type matching of an argument expressioniasa
a method type, to a methagtoup type. These judgements are of

of the formT" + ae ~ Aw: — (An;,S). This means that
the argument expressiae is systematically type matched against

each method type in the method group. The result is a pair)of (1
a method group containing the method types that matchedand f

each of these (2) the resulting substitution. The single fort this
judgement form i§TM-MethodGroupType] in Figure 4.

3.4 Conclusion

We have now completely, and formally, specified the typeesyst
and type inference process of our core fragméﬁﬁ,, of C'2.0! We
have utilized the bidirectional approach and defined typekimg
and type synthesis judgements. To define type inference ackede
to add a third judgement: type matching.

4. Extending C*2.0 typeinference
4.1 Reaxing consistency

As demonstrated in the previous section, the consistenugitton
imposed on inferred substitutions is quite restrictivethis section,
we give a simple relaxation of the consistency conditiomighboth
in the spirit of G, and simple to implement.

We shall first give the intuitions behind the proposal anddhe
formalization later. We will consider array types in thissen for
completeness. We shall use the following method signatoresr
informal discussion:

void mi<X>(X argl, X arg2);

void m2<X>(X argl, list<X> arg2);

void m3<X>(list<X> argl, list<X> arg2);
void m4<X>(list<X> argl, X arg2, X arg3);

First, we need to introduce notation to represent multiptesttu-
tions for method type parameters. We shall write these,Xame
ple: {X — {int,object}}. We shall writew to denote multi-
ple substitution composition. For examp{e¥ — int} & {X —

object} = {X — {int,object}}. (We shall refer to a substi-
tution where every type parameter is mapped to a single ty@e a
simplesubstitution.)

The next concept we use exists already fiff@ example, in the
typing of implicit arrays): the notion of aesttype from a given
set of types. The best type is simply one from the set whicthaell
other types in the set can be converted to.

In resolving our multiple substitutions we shall use thisio of
best. The idea is that we consider all the substitutionsdoheype
parameter and pick the best representative from the sételéts
not a single best type, then type inference fails.

This is already sufficient to type simple invocations (thatrently
fail to type in C2.0) such as:

m1(42, new object()); // Infers <object>
m1(42, "hello"); // Fails - no best type

However, as it stands, this issound It is too expressive; the
following succeeds but shouldn't.

m3(new List<int>(), new List<object>()); //Shouldn’t work

As it stands, we would infer the type argumetibject>. The
problem is that € constructed types aievariant—this has been
ignored so far. The solution is quite simple: we record weeth
the substitution applies to a type variable that is in a posit

where a conversion can apply (such as the top level of a method

signature) or not (such as inside a constructed type). Wetatem
the target types of a substitution accordingly, so they &tieadform
{X — 7%}, wherea is either<: (a “convertible substitution”) or
= (an “equality substitution”). Consider the following irsation:

m1(42, new object()); //SUCCEEDS

We generate the substitutiofiX — {int<' object<}}. The
modified consistency rule is that if we have only convertglesti-
tutions then we resolve them by finding the single best typéhis
case, the best type ébject, so the inference process succeeds.

Consider the following:

m3(new List<int>(), new List<object>()); //FAILS

Now we infer the substitutior{ X — {int~,object™}}. The
modified consistency rule is that the equality substitigtiotust be
identical (this is the current rule for*@.0). Hence this invocation
fails the type inference process.

Consider the following:

m2(42, new List<object>());

We infer the substitution{X +— {int<',object™}}, i.e. a
convertibleand an equality substitution. The modified consistency
rule is that the convertible target types must all be coitverto the
(single) equality target type. The example above then sutas
int converts tmbject. So we infer the type argumesxdbject>.

Consider another similar example:

m4 (new List<object>(), 42, "hello");

We infer the substitution{ X — {int<’,object™, string~'}}.
As both int and string convert toobject we infer the type
parameterobject>.

Some further examples are as follows:

m1(42, new int?(84)); //Infers <int?>
m1(42, "hello"); //FAILS

m3(new List<int>(), new List<object>()); //FAILS
m3(new List<Button>(), new List<Control>()); //FAILS

In C* arrays are only covariant for reference types. This shghtl
complicates the type inference process. We thus add a nesv ann
tation for the target type of a substitutios: which denotes a co-
variant substitution. For example, consider the followingthod
signatures:

void mb5<X>(X[] argl, X[] arg2);
void m6<X>(1list<X[]1> argl, list<X[]> arg2);
void m7<X>(1list<X>[] argl, list<X>[] arg2);

Consider the following invocation:
m5(new string[]{}, new object[1{});
We infer the substitutionf X — {string’,object®}}. We add

to our consistency rule to first process the covariant stiistns.
If, as above, we generate covariant substitutions whogettampes

are all reference types, then we rewrite them as convertible sub-

stitutions, and continue as described before. Hence thisca

The final change is to replace tld®nsistent predicate with a par-
tial function (which we shall also call'onsistent). This takes as
input amultiple substitution and returns the correspondgigple
substitution. We also refer to the action of this functiorfrasolv-
ing” a multiple substitution. For example,

Consistent({X — {int<‘, object™, string<'}}) = {X ~ object}
Consistent({Y +— {int™, object™ }}) = undefined
Consistent({Z +— {string®, object=}}) = {X — object}
It is fairly straightforward to turn the informal descripti of the

modified consistency rule given above into a formal definitio
although we do not do so here for lack of space.

4.2 \-expressions

The next version of &version 3.0) will contain a number of new
language features, mostly to support the LINQ frameworK.[10
Interestingly all of these new features can be explainecims
of a type-directed translation from*8.0 to G'2.0; the details of
this translation will appear in a forthcoming paper [1].

One new feature, the-expression, whilst essentially syntactic

tion above would succeed and we would infer the type argument sugar, actually interacts with the type inference procesice,

<object>.
However, consider the following invocation:

m5(new int[]{}, new object[I{});
We infer the substitutiof X — {int°, object®}}. Here we have
generated covariant substitutions where one of the taygestis a
value type. In this case we rewrite all the covariant sulbihs
as equality substitutions (as no conversion exists herehckl,

the invocation above would fail. Likewise the following owation
would also fail:

m5(new sbyte[]{}, new byte[]I{});

The following would succeed, and infer the type argumeintt>.

m5(new int[]{}, new int[]{});

Some further examples are as follows:

m6(new List<string[]>(), new List<object[]1>()) //FAILS
m7 (new List<string>[1{}, new List<object>[1{});
//Infers <object>

Extending the formalization from the previous section isteu
straightforward. We parameterize the type matching fongcti
Match, with an annotationg.

a def X 7@ if X eA
Match®(A, X, 7) = é) J otherwise
Match®(A,m [, 7200) % Match®(A, 71, 72)
Match® (A, p1,712) of {Y — 7=}

where Eﬁ.m <t pl[V =71
and Y = fto(p1) N A

The type matching rul§TM-OpenExp] is also modified to the
following.

I
flu(m)NA#D Thre —en:m Match<~ (A, m,m2)=38

AFer~m1 — S

type inference needs to be changed in tH8.@ compiler. In this
section we show how our treatmentfe} can be extended quite
simply with the addition of\-expressions.

First we extendrC} with new syntax for\-expressions. We follow
C*3.0 and allow the parameter list ohaexpression to be explicitly
or implicitly typed.

e = Expression
(% T) =>e Explicitly typed lambda
@) =>e Implicitly typed lambda

C*3.0 includes a predefined delegate famiitync, which is used
in connection with\-expressions. Similarly, we shall assume the
following global delegate definitions:

delegate R Func<T1,R>(T1 arg);
delegate R Func<T1,T2,R>(T1 argl, T2 arg2);
delegate R Func<T1,T2,T3,R>(T1 argl, T2 arg2, T3 arg3); ...

Type checking\-expressions is relatively straightfoward; the new
rules are as follows:

dtype(D)(T) =To - 71 I, Zo:TokFe1: T — en

I'+ (o) =>e1: D<T> — delegate (7p zo){returnej;;}

dtype(D)(T) =To - 71 I, Zo:TokFe1: T — en

\ '+ (70 To) => e1: D<T> — delegate (7T zo) {returney;;}

Again we observe that, like for anonymous method expression
A-expressions can only be checked against delegate types.

Typesynthesigor A-expressions is also simple: no (denotable) type
can be synthesized! This explains why the following is nqtety
correct in ¢3.0.

var myIdFun = (x) => x; //Type error!

Implicit declarations (those markegar) simply synthesize types
for the defining expression. In this case no type can be syiziba,
so the declaration is type incorrect.

As mentioned earlieiy-expressions interact with the type inference
process. Recall that ruf@ M-AnonMethExp] captures the restric-
tion that anonymous method expressions do not contribibistisur
tions to the type inference process. Whilsexpressions are noth-
ing more than syntactic sugar for anonymous method exjoressi
their bodies arexpressionsand C3.0 leverages that fact to enable
A-expressions to generate substitutiérBhus we could add the
following type matchingrule for explicitly-typed\-expressions.

dtype(D)(T) =71 — 17 I, Z:T;AFe1~T— S

ARG ZT)=>e; ~D<T>— S

In fact, we can be more flexible. The rule above insists that th
explicit parameter type is identical to the delegate argungpe.
We could be more liberal and use the following rule.

dtype(D)(T) =72 — T
Match (A7, 77) =S
;AR (T =>e1 ~ DT> — S1WSe
Some further examples of using this more liberal type matghi
rule for explicitly-typed lambda expressions are as fodow

DZ:T;Abber ~7T— 8

void m8<X>(Func<X,X> argl);
void m9<X>(Func<X,X> argl, X arg2);

m8((object x) => x); //Infers <object>
m8((object x) => "hello"); //Infers <object>
m9((object x) => x, 42); //Infers <object>
m9((int x) => x, new object()); //FAILS

The real problem is type matching implicitly-typedexpressions.
Matters are quite straightforward if all the argument types
closed; the type matching rule is then as follows.

dtype(D)(T) =71 — T
Z:7;AFe;~7— S

AR @) =>e; ~ D<7>— S

froF)NA=0

two stages: First we introduce a notion of partial matchig
write this judgement as follows™; A - e > 7 — &, which is
meant to be read as “partially type matchinggainst type- yields
substitutionsS”.®

The rules for partial type matching are given in Figure 5.yTae
essentially the same as the type matching rules from théqusv
sections. The main difference is the treatment of implietyiped
A-expressions. The rul®TM-ILambdaExp1] defines partial type
matching forA-expressions where the argument type is closed; the
rule[PTM-ILambdaExp2] where the argument type is open. In this
case the substitution is (for the moment) empty.

The other judgement we dub complete matching, which is evritt
A F er ~ 7 — S, which is read as “matching; against
type = completes and yields a substitutiéfi. The rules for these
judgement forms are also given in Figure 5.

The key rules argT M3-ClosedArgExp] and[TM3-OpenArgExp].
They recursively encode the iterative type matching proaEs
scribed earlier. The recursion is driven by the set of typameaters
A. If the set is empty, then tHd M3-ClosedArgExp] rule applies,
i.e. there is no matching to be done.

If the setA is non-empty then the rulfTM3-OpenArgExp] ap-
plies. This uses the partial type matching rules to genamaister-
mediate substitutions. If this substitution is empty, then we have
made no progress and type inference fails. If it is non-entipy
we apply theConsistent function to yield a simple substitution.
We apply this substitution to the argument types and rembege t
type parameters that have now been substituted for, fhoriVe
then recurse using this new type parameter set and arguypent t

It is relatively straightforward to see that these two rude§ine a
terminating recursive function to perform type inference.

The resulting type system is quite expressive, and shouddttee-
tive to the reader familiar to functional languages such askll
or ML. Consider the following example method signature axd e
pression :

void m10<X,Y,Z>(Func<X,Y> argl, Func<Y,Z> arg2, X arg3);

m10((x)=>x, (y)=>y, 42)

How do we deal with open argument types? We can't simply type |n, the first phase of type inference the first and second argteme
match thga body_of tha-expression because we will then have type g not contribute substitutions as their argument typesopem.
assumptions with unbound type parameters. There are a mumbe The third argument contributes the substitutip — int}.

of possibilities, using a more global constraint-basedesys for
example, but many of these (non-local) techniques inteegber
badly with overloading and subtyping. This is certainly araa
requiring further research.

The current proposal forf3.0 is to make the type inference process
iterative Thus type matching an implicitly-typed-expression

In phase two we apply the substitution and so the first parame-
ter type become$unc<int,Y> and hence we can apply rule
[PTM-ILambdaExp1]. This produces the substitutiofly’ —
int}. The second argument does not contribute a substitution to
phase two. In phase three we apply the substitution and ssethe
ond parameter type becomBsnc<int ,Z> and we can apply rule

with an open argument type simply postpones. We consider all [PTM-ILambdaExp1]. This produces the substituti¢iy — int}

the other arguments and generate an intermediate sutostite

and the type inference process then succeeds producingptnart

then apply this to any postponed type matches to see if ady wil gumentlist<int,int,int>.

become enabled (if the argument types have become closed). W

then continue this process until either all the arguments haen

4.3 Returntypes

type matched or where we do not make progress, in which caseln rule [TM3-MethodType| of Figure 5, the return type of the

type inference will fail.

It turns out that this iterative type inference process carek-
pressed with only a small change to the formalization soThe
first change we make from our formalization in the previous se
tions is to the notion of type matching. We break matchingntp i

"There is no reason whyfGould not enable anonymous method expres-
sions to generate subsitutions. This appears to have bésplmentation
decision.

method type plays no part in the generation of substitutidhsre
are circumstances where that is a serious restriction. iGemthe
following method signature and assignment.

class Foo
{
public static List<T> Nil<T>(){return new List<T>();};

81tis only partial in the sense that it includasexpressions which can not
be currently typed.

sAFer >

n@»S

[PTM-Null]

D;AFDullpp— 0
fio(m)NA =0
— [PTM-ClosedExp]
T;AFei 11— 0

[PTM-AnonMethExp]

[; A - delegate (7, T) {51} > D<7> — ()

flu(r)) NA#Q Thep<sen:m Match<(A,71,72)=8
[PTM-OpenExp]

iAFer > — S

dtype(D)(T) =2 > 7 D, Z:T;AFei>7—> 81 Match™ (A, 72,71) = Sa
[PTM-ELambdaExp]

;AR GT) =>e1 > DT> — S WSe

dtype(D)(T) =T2 — 7 ftv(@m)NA=0 DI Z:7AFei>T7—S
[PTM-ILambdaExp1]

;AR @) =>e1 > D<T>— S

ditype(D)(T) =Tz =7 ftv()NA#D

[PTM-ILambdaExp2]
;AR (@) =>e1 > D<7> — ()

;ARFer 11— 81 o AR en>Thn — Sn

[PTM-ArgExp]
AR Cer,.oyen) > (T, yTr) —S1W--- WS,

;AR Cery..

,en) ~ (Tlvann) — S

[TM3-ClosedArgExp]

T;0F Cety.oiven) ~ (71, .., Tn) — 0

e1,...,en) > (11,...,Tn) — S

ST

A#
;A
54
Sc = Consistent(S)

Iy A —dom(Se) F (ex,...,en) ~ Sc[(T1,...,)] — Sf

AR Cet,..open) ~ (11,...,Tn) — ScUSy

[TM3-OpenArgExp]

|FFael~,u,1‘—>S|

;X F Cer,.hen) ~(T1,...,m) — S
[TM3-MethodType]

Tk (e1,...,en) ~YX.(T1,...,Tn) — 0 — S

‘Fkaelma

Api = (A, S) |

I'taer ~ps, — S1 I'Faer ~ ps, — Sk IS|=k=>1 SC{l,...,n}
[TM3-MethodGroupType]

Clkaer ~p1 A Apn = (s, A+~ Aps,, (S1,...,8k))

Figure5. Type matching of argument expressions 80

}

List<int> empty = Foo.Nil(); \\FAILS

The invocation ofNil will fail type inference as we can never
infer a type forT from the (empty) list of arguments. But, in this
case, we could use the fact that the result of the method atiorc
is immediately assigned to the typest<int> to infer the type
argumenkint>.

To implement this, we first need to extend the tgpeckingule for
implicit method invocation to feed in the expected assigypéd (in
this caseys) to the type matching relation.

I 1
T+ mer ft merr: Awi _
I'Faer ~ Api: 13 = (Apy,S)
OloadRes (A pj,S,ae1) = (ae11,7,0)
o <:T3

I' - me1 aey: 73 — me11<T> aeqq |

We now define a variant of the type matching judgement thatstak
in addition a return type. For example, the variant judgenfen
type matching an argument expression against a method tyylel w
be of the fornT" - aeq ~ p: 7 — Si. The rule for this judgement
would be as follows:

r 1
T fv(T) NX Faer ~ (T1,...,T) — S1
Sy = Match:(Y,Tgl,O')
S3 = Consistent(S1 W S2)
dom(S3) =X

IFFaelAJVY.(n,...,Tn)—>U:T21«/>83 |

In other words, we generate substitutiafis from the argument
expression for the free type parameters in the argumens tyyze
are method type parameters. We then see if matching thetexpec
return typer»; against the actual return type of the methoden-
erates a new substitution. This is then combined with sttt
81, and checked for consistency and for completeness.

So, in the example given above, the expression. Nil () would
type and the inferred type argument would<imt>.

5. Conclusionsand work in progress

In this paper we have attempted a formal reconstruction ef th
type inference process as it is implemented #2.0. We used a
bidirectional type system, and extended this with a newniypi
judgement, type matching, to capture the (local) type @iee
process implemented in*C

One advantage of our formalization is that it is a good sgtt;n
consider extensions to the type inference process itsalff@see

the impact of adding new language features. We showed how to

relax the strict consistency conditions currently impletee in
C*2.0. We also considered the difficulties of addixgxpressions
in the style of ¢3.0. We gave a refactoring of our type matching
judgements that implements an iterative type inferenceqe®

As mentioned in the introduction, most work on type infeehas
studied the problem for Java. The Java 5.0 type inferenasepso
is more complete than its counterpart if2® but it is anon
local process. On the other hand, it is more complicated.l&rfu
comparison of the two type inference processes remainsefutu
work.

Work in progress We are currently working on a considerably
more flexible type inference process farterms. Consider the
following method signature

void foo<X,Y>(X argl, Func<Y,X> arg2, Y arg3){...}

and an implicit invocationfoo (42, (x)=>new object(),42).
Using the type inference process discussed in this papeefirtt
phase would deduce the substitutiQX’ — int,Y — int},
from the first and third arguments. The second argumentAthe
expression, doesot contribute as in the first phase its argument
type is open. The rul§TM3-OpenArgExp| applies the substitu-
tions, so we have effectively fixed type paramelérto be int.
The subsequent type check of theexpression argument will fail.
However, if we had not fixed the substitution but postponenhiil

we had considered the second argument, we could have deduced
the substitution obbject for X, and hence the invocation would
succeed. Devising an inference process that is sensitithetde-
pendencies of type parameters induced by function typasiert
work in progress.

In addition, we are also developing declarative version®owf
rules, which builds on the work of Odersky et al. [14] ozloured
local type inference.

Acknowledgements | am grateful to Erik Meijer, Andrew Kennedy,
Claudio Russo, Mads Torgersen, Eric Lippert and the anongmo
referees for their insightful comments on this work.

References

[1] G.M. Bierman, E. Meijer, and M. Torgersen. Lost in traat&in:
Formalizing C 3.0. Unpublished draft paper, To appear.

[2] G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An innatve
core calculus for Java and Java with effects. Technical R&&3,
University of Cambridge, 2003.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mghkhe
future safe for the past: Adding genericity to JavaPhceedings of
OOPSLA1998.

[4] R. Cartwright and G. Steele. Compatible genericity witin-
time types for the Java programming language. Ploceedings
of OOPSLA1998.

[5] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classed arixins. In
Proceedings of POPL1998.

[6] J. Gosling, B. Joy, G. Steele, and G. Brachiehe Java Language
Specification Addison-Wesley, third edition, 2005.

[7] A. Hejlsberg, S. Wiltamuth, and P. GoldeThe G Programming
Language Addison-Wesley, second edition, 2006.

[8] A. lgarashi, B.C. Pierce, and P. Wadler. Featherweigivad A
minimal core calculus for Java and GACM TOPLAS$23(3):396—
450, 2001.

[9] A. Jeffrey. Generic Java type inference is unsound. Netet to
types mailing list, December 2001.

[10] E. Meijer, B. Beckman, and G.M. Bierman. LINQ: Recoiral
objects, relations and XML in the .NET framework. Pmoceedings
of SIGMOD 2006.

[11] A. Myers, J. Bank, and B. Liskov. Parameterized typesifva. In
Proceedings of POPL1997.

[12] M. Odersky. Inferred type instantiation for GJ. Notas® types
mailing list, January 2002.

[13] M. Odersky and P. Wadler. Pizza into Java: Translatirepty into
practice. InProceedings of PORL1997.

[14] M. Odersky, C. Zenger, and M. Zenger. Colored local tygerence.
In Proceedings of POP2001.

[15] B.C. Pierce and D.N. Turner. Local type inferencePhceedings of
POPL, 1998.

