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Abstract
The current release of C] (version 2.0) introduces a number of
new features intended to increase the expressivity of the language.
The most significant is the addition ofgenerics; classes, interfaces,
delegates and methods can all be parameterized on types.

To make using generic methods easier, C] allows the programmer
to drop the type arguments in method invocations, and the compiler
implements “type inference” to reconstruct the arguments. Unfor-
tunately this part of the published language specification is a little
terse, and hence this feature can often behave in surprisingways
for the programmer. Moreover, this process is quite different from
the better known one implemented in Java 5.0. In this paper weat-
tempt a formal reconstruction of the type inference processas it is
currently implemented in C]2.0. We also consider a number of pro-
posed extensions to support new language features that willappear
in C]3.0.

1. Introduction
C]2.0 introduced a number of new features to the language, most
significant of which was the addition of generics. C]2.0 permits
classes, structs, interfaces, delegates and methods to be parameter-
ized on types. Similar extensions were also added to version5.0 of
Java. The advantages of parametric polymorphism are well-known
to users of functional programming languages such as Haskell and
ML, and also to users of Eiffel and Ada. In the context of object-
oriented languages such as C]and Java, generics provide stronger
compile-time type guarantees, require fewer explicit conversions
between types and reduce the need for boxing operations and run-
time type tests.

There has been considerable theoretical work on adding generics
to object-oriented languages, such as PolyJ [11], NextGen [4],
Pizza [13] and GJ [3]. One aspect of generics which has received
less attention is the inference of type arguments when invoking
a generic method. Both C] and Java support methods that are
parameterized on types, which can appear in classes which may
themselves be generic or non-generic. Consider the following code
in C], taken from the language specification [7,§20.6.4].

����� Chooser
{

���� �� Random rand = ��� Random();

	
� ��� ���� �� T Choose<T>(T first, T second) {
���
�� (rand.Next(2) == 0)? first: second;

}
}

In C] a generic method invocation can explicitly specify a type
argument list, or it can omit the type argument list and rely on a
process known as “type inference” to determine the type arguments

automatically. Hence, given the code above it is possible tomake
the following invocations of theChoose method:

��� i = Chooser.Choose(5, 213); // Calls Choose<int>
��� �� s = Chooser.Choose("foo", "bar");

// Calls Choose<string>

The main technical problem addressed in this paper is how compil-
ers actually perform this type inference process. The processes used
in C] and Java are actually quite different; this paper concentrates
on the lesser-known process employed by C].

The type inference process for Java was considered in the context
of GJ by Bracha et al. [3,§5]. The first version of GJ released for
JSR14 was shown to be unsound by Jeffrey [9]. An alternative sys-
tem was proposed by Odersky [12] and was subsequently included
in thejavac compiler. The latest version of the Java language spec-
ification gives a sixteen page formal description of the typeinfer-
ence process using a constraint system [6,§15.12.2.7-8].1

Interestingly, the GJ design appears to have been influencedby an
assumption that there would be no way to explicitly specify atype
argument list. Hence, the GJ inference process is intended to be
as complete as possible. However, Java 5.0doesprovide explicit
syntax for supplying type argument lists.

Relatively little attention has been paid to the type inference
process that appears in C]2.0. In contrast to Java, the C] de-
signers appear to have been focused on simplicity as opposedto
completeness—the type inference process is described in a page
and a half in the current language specification [§20.6.4].

However, a brief, informal (and, in this case, a particularly terse)
specification is no substitute for formal rigour. In this paper we give
a precise, formal description of both the type system of C]2.0 and
of the type inference process itself. One contribution of this paper
is to show how a bidirectional type system2 in the sense of Pierce
and Turner [15] can be used and extended to describe both the type
system and the type inference process. One advantage of a bidirec-
tional type system is that it directly defines an implementation. The
locality property of bidirectional systems such as the one presented
here means that the implementation is quite simple. It is important
to note that the Java inference process isnon-local.

The main advantage of the formal description presented in this
paper is that it enables the exploration of various extensions to
the C] 2.0 type inference process. For example, the inclusion of
λ-expressions in C] 3.0 will require an extension to type inference.

1 It is interesting to note that, as formalized, solving this constraint system
can lead to the generation of infinite types [6, p.465].
2 This is sometimes referred to as “local type inference”, although we prefer
to use the term “bidirectional” to distinguish between the processes of type
checking, type synthesis and inference of type arguments.



We show in this paper a number of possible extensions to handle
λ-expressions.

This paper is organized as follows. In§2 we define a small, feath-
erweight subset of C]2.0, FC]

2, that we use in our formalization.
In §3 we define the type system forFC]

2 as a bidirectional type
system. In§3.3 we show how to extend this technique to capture
type inference. In§4 we consider a number of extensions to the
type inference process; relaxing the consistency condition (§4.1),
handlingλ-expressions (§4.2) and incorporating return type infor-
mation (§4.3). We conclude in§5 and suggest some future work.

2. Featherweight C] 2.0
In this section we define a core fragment of C]2.0 called Feath-
erweight C]2.0, orFC]

2 for short, that will be used in the formal
specification of the type system and type inference process.This
core fragment, whilst lightweight, has a similar computational feel
to the full C] language and contains all its essential features, such as
generic classes, delegates, state and mutable objects. It is similar in
essence to core subsets of Java such as MJ [2] and ClassicJava[5].
It is important to note thatFC]

2 is a completely valid subset of C]

in that everyFC]
2 program is literally an executable C] program.

2.1 FC
]
2 syntax

A FC]
2 program consists of a sequence of zero or more delegate

declarations, followed by a sequence of zero or more class declara-
tions. Given anFC]

2 program we assume that there is a unique des-
ignated method within the standard class declarations thatserves as
the entry point (themain method). The grammar forFC]

2 programs
is as follows.

FC
]
2 programs:

p ::= dd cd Program

dd ::= Delegate Declaration
	
� ��� ������� σ D<X>(τ x)

cd ::= Class Declaration
	
� ��� ����� C<X>:ι {fd md}

fd ::= 	
� ��� τ f; Field declaration
md ::= Method Declaration

	
� ��� (� ���
��|����� ���) σ m<X>(τ x){s}

A class declaration consists of zero or more field declarations fol-
lowed by zero or more method declarations. Methods must be de-
fined either� �����	 or 
���� ��� and, for simplicity, we re-
quire all fields and methods be��	��. For conciseness, we do
not model���� �� methods and non-virtual instance methods, and
we do not consider other modifiers such as� ����� and���	�� .
However, we do support generic class declarations and generic
method declarations.

The grammar forFC]
2 types is as follows.

Types:

σ ::= Return type
τ Denotable type
���� Void

τ ::= Denotable types
γ Value type
ρ Reference type
X Type parameter

γ ::= Value Type

���� Boolean
��� Integer

ρ ::= Reference Type
ι Constructed type
D<τ> Delegate type

ι ::= C<τ̄> Constructed Type

The two main categories ofFC]
2 types are value types and reference

types. Value types include the base types; for simplicity weshall
consider just two:�

	 and ���. We do not include the nullable
types in our core fragment.

FC]
2 reference types include class types and delegate types. To

simplify the presentation we don’t consider arrays, and we write
D to range over delegate types andC to range over class types.
Following GJ [8] we permit the shorthandC for C<>. For simplicity
we do not model constraints on generic parameters as supported in
C]2.0—they play no part in the type inference process and so are
peripheral to the main concerns of this paper. We also assumea
predefined superclass
�����.

Following FJ [8] we adopt an overloaded ‘overbar’ notation;
for example,τ f is a shorthand for a possibly empty sequence
τ1 f1, . . . ,τn fn.

FC]
2 expressions, as for C], are split into ordinary expressions and

statement expressions. Statement expressions are expressions that
can be used as statements. The grammars for both forms are as
follows.

Expressions:

e ::= Expression
b Boolean
i Integer
e ⊕ e Built-in operator
x Variable
�
 �� Null
(τ)e Cast������� (τ x){s} Anonymous method expression
e.f Field access
se Statement expression

se ::= Statement expression
me<τ> ae Explicit invocation
me ae Implicit invocation
��� ι ae Object/collection creation
x = e Variable assignment

me ::= Member access expression
e.m Method access

ae ::= (e) Argument expression

For simplicity, we assume only two classes of literals: booleans and
integers. We assume a number of built-in primitive operators, such
as == , || and&&. In the grammar we writee⊕e, where⊕ denotes
an instance of one of these operators. We do not consider these
operators further as their meaning is clear. We assume thatx ranges
over variable names,f ranges over field names andm ranges over
method names. We assume that the set of variables includes the
special variable�� ��, which can not be used as a parameter of a
method or delegate declaration.

FC]
2 statements are fairly standard and as follows.

Statements:

s ::= Statement



; Skip
se; Expression statement
�� (e) s ���� s Conditional statement
τ x = e; Explicitly-typed declaration
x = e; Variable assignment
e.f = e; Field assignment
���
�� e; Return statement
���
��; Empty return
{s} Block

In what follows we assume thatFC]
2 programs are well-formed,

e.g. no cyclic class hierarchies, correct method body construction,
etc. These conditions can be easily formalized but we suppress the
details for lack of space.

3. FC
]
2 bidirectional type system

In this section, we formalize the process of both typingFC]
2 pro-

grams and also the inference of generic method type arguments.
The main technical tool we use is a bidirectional type system[15,
14]. Such systems explicitly distinguish between typecheckingand
type synthesis. We will see that this technique, whilst originating
from studies of SystemF≤, is actually rather well suited to com-
mercial class-based languages.

First, we need to introduce some additional notation. We write µ
to range overmethod types, which are written∀X.(τ) → σ. A
method group type, which is just a sequence of method types, is
written using the shorthand

�n
i=1

µi, by which we meanµ1 ∧µ2 ∧
· · · ∧ µn (we will often drop the bounds when not important).

3.1 Subtyping

The subtyping rules forFC]
2 are standard and are given below.

[ST-Refl]
τ1 <: τ1

τ1 <: τ2 τ2 <: τ3
[ST-Trans]

τ1 <: τ3

����� C<X> : ι
[ST-Sub]

C<τ> <: ι[X := τ ]

[ST-Object]
τ <: ������

Rules [ST-Refl] and [ST-Trans] ensure that the subtyping rela-
tion is reflexive and transitive. The[ST-Object] rules ensures that

����� is the root of type hierarchy (values can be boxed as ob-
jects).

3.2 Bidirectional typing judgements for FC
]
2

Excluding type inference, there are two ways of typing a term:
checkingandsynthesizing. Type checking is the process of deter-
mining whether a (given) term can be assigned a particular (given)
type. Type synthesis is the process of automatically determining,
or inferring, a type given a term. We capture these two processes
using two relations which we outline below.

3.2.1 An introduction to type checking

The judgement form for typecheckingan expression is written
Γ ` e1 : τ ↪→ e11 and should be read “given typing assumptions
Γ, the expressione1 can be type checked at typeτ , which yields
an expressione11.” (For now, the reader can ignore the yielded
expression but the intention is that expressione11 results from
inserting the inferred type arguments into the original expression
e1.)

Let us consider some rules for forming valid type checking judge-
ments. The simplest rule is where the expression is an identifier:

τ1 <: τ2

Γ, x : τ1 ` x : τ2 ↪→ x

To check whether an identifierx can be assigned a typeτ2 we first
look in the environment to see what type we know forx. Assuming
this type isτ1, then the check succeeds if there is a conversion from
τ1 to τ2. Here’s a particular instance of the rule:

��� <: ������

Γ, x : ��� ` x : ������ ↪→ x

In other words, if we know thatx has type��� we can conclude
that it can be assigned type
����� as there is a conversion from
the former to the later.

A particularly interesting type checking rule is for anonymous
method expressions. The C] language specification states that an
anonymous method expression is “. . . a value with no type” [§21.3].
This is a little misleading; itcan be assigned a type (in many
cases, several!).3 The rule for type checking an anonymous method
expression is as follows.

dtype(D)(τ ) = τa → σ Γ, x : τa ` s1 : σ ↪→ s11

Γ ` �������(τa x){s1} : D<τ> ↪→ �������(τa x){s11}

There are a number of points of interest in this rule. First, notice
that theonly type we can check an anonymous method expression
against is a delegate type. Even the following code fails:

������ zz = ������� (��� z){���
�� z;};

The rest of the rule has a quite straightforward reading. It makes
use of an auxiliary functiondtype , which is a map from delegate
names to their associated type (which is a method type). In the
rule, we use this function to determine the type of the delegate
D, which is, say,∀X.τ1 → σ′. We then substitute the given type
argumentsτ for the type parametersX to get a typeτa → σ (in
the rule we use application as a shorthand). We then type check the
statement sequence using the typesτa for the parametersx (there is
an implicit assumption here that the number of parameters matches
the number of types, i.e.|τa| = |x|) and the return typeσ.

3.2.2 An introduction to type synthesis

The judgement form for typesynthesisof expressions is written
Γ ` e1 ↪→ e11 : τ and should be read “given typing assumptions
Γ, the expressione1 can be inferred to have typeτ , yielding an
expressione11”. (Again, for now, the reader can ignore the yielded
expression.)

As before let us consider some of the rules for forming type syn-
thesis judgements. The simplest rule, again, is where an expression
is an identifier and is as follows.

Γ, x : τ ` x ↪→ x : τ

Thus to synthesize a type for the identifierx, we simply return the
type assumption forx.

It is important to note that there are no rules for��		 expressions
and anonymous method expressions. We cannot synthesize (deno-
table) types for these expression forms.

3 What the standard is perhaps attempting to capture is that there is no way
to synthesizea type for an anonymous method expression.



The rules for forming type checking and type synthesis judgements
are inter-defined. For example, the type checking rule for a field
access expression is as follows.

Γ ` e1 ↪→ e11 : τ1 ftype(τ1, f) = τ2 τ2 <: τ3

Γ ` e1.f : τ3 ↪→ e11.f

Here we are trying to type check an expressione1.f at typeτ3. We
first synthesizea type for the expressione1, sayτ1. We then use an
auxiliary functionftype to determine the declared type for the field
f for the typeτ1, sayτ2. We conclude that the expressione1.f can
be assigned the typeτ3 if there is a conversion fromτ2 to τ3.

3.2.3 Further details

The complete collection of rules for type checking and synthesis
of expressions is given in Figures 1 and 2, respectively. Forthe
most part, these rules are pretty straightforward, the mainexception
being the rules for typing method invocation expressions. These are
explained in detail in§3.2.4.

We comment on a few of the rules in the figures. Rule[TC-IInv]
highlights the role of the yielded expression. Here the yielded
expression has the inferred type arguments inserted into the method
invocation. In rule[TC-ObjCreation] we use some shorthand and
write mtype(ι1, ��� ) to mean the method group type associated
with the constructors for typeι1.

The judgement form for type checking a statement is writtenΓ `
s1 : σ ↪→ s11. The typeσ is the expected return type of the
statement. The key rule is then for������ statements, and is as
follows

Γ ` e1 : τ ↪→ e11

[TC-ReturnExp]
Γ ` ���
�� e1; : τ ↪→ ���
�� e11;

We can also generalize this judgement to one that type checksa
statement sequence in the obvious way. The rules for type checking
statements and statement sequences are given in Figure 3.

3.2.4 Further details: method invocations

In this section we give the details of typing method invocation
expressions where the type arguments have been explicitly given.
We will build on these rules to define a type inference process(for
method invocations where the type arguments have been omitted)
in §3.3.

For brevity, we will describe type checking only—the details for
type synthesis are almost identical. We will do this in a number of
stages. First, for convenience, we introduce a new judgement form
for synthesizinga type for a member access expression. InFC]

2

a member access expression is always a invocation of a method,
but in the full C] language this is not always true as a field could
have a generic delegate type, and so we could legitimately write,
e.g.e.f<���>(42). We have excluded this possibility inFC]

2 but
it would be straightforward to add. This new judgement form is
writtenΓ ` me1 ⇑ me11 :

�
µi, whereme1 is the member access

expression and
�

µi is the synthesized method group type. The
single rule for forming such judgements is as follows.

Γ ` e1 ↪→ e11 : τ1 mtype(τ1, m) =
�

µi

Γ ` e1.m ⇑ e11.m :
�

µi

This rule is pretty straightforward: we first synthesize a type for the
receiver,e1, and then look up the declarations for methodm for
this synthesized receiver type. Again we use an auxiliary function
mtype , which given a typeτ and a method namem, returns the

method group type. This method group type is then the synthesized
type for the member access expression.

So far our rule for type checking a method invocation would be
something like the following:

Γ ` me1 ⇑ me11 :
�

µi ???

Γ ` me1<τ> ae : τ3 ↪→???
In other words we have generated a method group type for the invo-
cation expression. Next we instantiate the method type parameters
of the method types contained in the method group type with the
explicit type arguments. We write this as

�
µi(τ). This operation

returns a method group. Notice that this operation needs to first
check the arity of the method types before instantiating thetype
parameters. For example consider the following method group type
G:

∀X.(X, ���) → ��
� �� ∧
∀X, Y.(X, Y ) → ��
� �� ∧
∀X, Y.(X, ������) → ��
� �� ∧
∀X, Y.(X, Y []) → ��
� �� ∧
∀X, Y, Z.(X, Y, Z) → ��
� ��

Hence G(
�����) = (
�����, ���) → �
��	�, whereas
G(���, ��� ���, 
�����) = (���, ��� ���, 
�����) → �
��	�.

Next, we need to check the argument expressionae against the
expected argument types in the method group. We introduce a
new type checking judgement form, writtenΓ ` ae :

�
µi ↪→�

µj . This means that the argument expression,ae, is systemati-
cally checked against the argument types of each method typein
the method group. The result is the method group containing the
method types that match.

The single rule for this judgement form is given in Figure 1 and is
called [TC-MethodGroupType]. This is slightly awkward to for-
malize as what we need to capture is the set of successful method
types from a method group type against which the argument ex-
pression can be type checked. We use a success set,S, which is
used to index themaximalsubset of successful method types.

Let us consider an example. We assume a classFoo which has static
methodsm with the method group typeG given earlier. We shall
consider type checking the following expression:

Foo.m<������,���>(�
 ��,42)

First, we instantiate the type parameters of the method group
type with the given type arguments,
����� and ���. Hence
G(
�����, ���) returns the method group typeM = (
�����, ���) →
�
��	�∧(
�����, 
�����) → �
��	�∧(
�����, ���[]) →
�
��	�.

The argument expression(��		,42) matches two of these method
types, so we would expect to form the following type checking
judgement.

Γ ` (�
 ��,42) : M ; (������, ���) → ��
� ��
∧(������, ������) → ��
� ��

At this point C] uses overloading resolution to determine which
method would be called (if there is a single valid one). In this paper
we do not formalize overloading resolution—it is defined precisely
in the C] language specification [§7.4.2]. For simplicity we simply
postulate a (partial) functionOloadRes that returns the argument
expression after being type checked against the chosen method and
the return type of the chosen method.

To conclude, the type checking rule for a method invocation ex-
pression is as follows.



Γ ` e1 : τ ↪→ e11

���� <: τ
[TC-Bool]

Γ ` b : τ ↪→ b

��� <: τ
[TC-Int]

Γ ` i : τ ↪→ i

τ1 <: τ2
[TC-Var]

Γ, x : τ1 ` x : τ2 ↪→ x

τ is ref
[TC-Null]

Γ ` �
 �� : τ ↪→ �
 ��

Γ ` e1 ↪→ e11 : τ11 τ11 <: τ1 τ1 <: τ2
[TC-UpCast]

Γ ` (τ1)e1 : τ2 ↪→ (τ1)e11

Γ ` e1 ↪→ e11 : τ11 ¬(τ11 <: τ1) τ1 <: τ11 τ1 <: τ2
[TC-DownCast]

Γ ` (τ1)e1 : τ2 ↪→ (τ1)e11

dtype(D)(τ ) = τa → σ Γ, x : τa ` s1 : σ ↪→ s11

[TC-AnonMethExp]
Γ ` �������(τa x){s1} : D<τ> ↪→ �������(τa x){s11}

Γ ` e1 ↪→ e11 : τ1 ftype(τ1, f) = τ2 τ2 <: τ3
[TC-FieldAccess]

Γ ` e1.f : τ3 ↪→ e11.f

Γ ` se1 : τ ↪→ se11

Γ ` me1 ⇑ me11 :
�

µi Γ ` ae1 :
�

µi(τ) ↪→
�

µj OloadRes(
�

µj , ae1) = (ae11, σ) σ <: τ3
[TC-EInv]

Γ ` me1<τ> ae1 : τ3 ↪→ me11<τ> ae11

Γ ` me1 ⇑ me11 :
�

µi Γ ` ae1 ∼
�

µi ↪→ 〈
�

µj ,S〉 OloadRes(
�

µj ,S, ae1) = (ae11, τ , σ) σ <: τ3
[TC-IInv]

Γ ` me1 ae1 : τ3 ↪→ me11<τ> ae′

mtype(ι1, ��� ) =
�

µi Γ ` ae1 :
�

µi ↪→
�

µj OloadRes(
�

µj , ae1) = (ae11, ����) ι1 <: τ1
[TC-ObjCreation]

Γ ` ��� ι1 ae1 : τ1 ↪→ ��� ι1 ae11

Γ, x0 : τ0 ` e1 : τ1 ↪→ e11 τ0 <: τ1
[TC-VarAssign]

Γ, x0 : τ0 ` x0 = e1 : τ1 ↪→ x0 = e11

Γ ` ae1 : µ

Γ ` e1 : τ1 ↪→ e11 · · · Γ ` en : τn ↪→ en1

[TC-MethodType]
Γ ` (e1, . . . , en) : (τ1, . . . , τn) → σ

Γ ` ae1 : � µi ↪→ � µj

Γ ` ae1 : µS1
· · · Γ ` ae1 : µSk

|S| = k ≥ 1 S ⊆ {1, . . . , n}
[TC-MethodGroupType]

Γ ` ae1 : µ1 ∧ · · · ∧ µn ↪→ µS1
∧ · · · ∧ µSk

Figure 1. Type checking expressions

Γ ` me1 ⇑ me11 : � µi OloadRes(� µj , ae1) = (ae11, σ)
Γ ` ae1 : � µi(τ ) ↪→ � µj σ <: τ3

Γ ` me1<τ> ae1 : τ3 ↪→ me11<τ> ae11

The rule for type synthesis of an explicit invocation expression is
almost identical and as follows.

Γ ` me1 ⇑ me11 : � µi

Γ ` ae1 : � µi(τ) ↪→ � µj OloadRes(� µj , ae1) = (ae11, τ3)

Γ ` me1<τ> ae1 ↪→ me11<τ> ae11 : τ3

3.3 Type inference

Now we can build upon type checking and synthesis to define
the type inference process. The key point is that when checking
the argument expression against a method type, we need to also
generate asubstitution.4 We refer to this process as typematching.

4 A substitution is referred to as “type inferences” in the language specifi-
cation [§20.6.4].

A first attempt at defining a type matching rule might be a declara-
tive rule such as the following.

dom(S) = X Γ ` e1 : S(τ1) ↪→ e11 · · · Γ ` en : S(τn) ↪→ en1

Γ ` (e1, . . . , en) ∼ ∀X.(τ1, . . . , τn) → σ ↪→ S

This rule states that to match the argument expression against the
argument types of the method type, we ‘simply’ find a substitution
for all the method type parameters,X , such that each individual
component expression,ei, can be type checked against the resulting
argument type,S(τi).

Of course, matters are not quite so simple. The problem is finding
the substitution. Moreover, there may be several such substitutions.
Are they all valid? Which one should be chosen? Is there always a
best one to chose? The process of determining this substitution is
the essence of the type inference process.

As mentioned earlier, C]2.0 adopts a fairly simple but elegant
solution, albeit one that is not quite so well known. In the rest of
this section we formalize precisely the C]2.0 approach, but along
the way we point out some of the weaknesses. In later sectionswe
will propose extensions to address some of these weaknesses.



Γ ` e1 ↪→ e11 : τ1

[TS-Bool]
Γ ` b ↪→ b : ����

[TS-Int]
Γ ` i ↪→ i : ���

[TS-Var]
Γ, x : τ ` x ↪→ x : τ

Γ ` e1 : τ1 ↪→ e11

[TS-Cast]
Γ ` (τ1)e1 ↪→ e11 : τ1

Γ ` e1 ↪→ e11 : τ1 ftype(τ1, f) = τ2
[TS-FieldAccess]

Γ ` e1.f ↪→ e11.f : τ2

Γ ` se1 ↪→ se2 : τ1

Γ ` me1 ⇑ me11 :
�

µi Γ ` ae1 :
�

µi(τ ) ↪→
�

µj OloadRes(
�

µj , ae1) = (ae11, τ3)
[TS-EInv]

Γ ` me1<τ> ae1 ↪→ me11<τ> ae11 : τ3

Γ ` me1 ⇑ me11 :
�

µi Γ ` ae1 ∼
�

µi ↪→ 〈
�

µj ,S〉 OloadRes(
�

µj ,S, ae1) = (ae11, τ , τ3)
[TS-IInv]

Γ ` me1 ae1 ↪→ me11<τ> ae11 : τ3

mtype(ι1, ��� ) =
�

µi Γ ` ae1 :
�

µi ↪→
�

µj OloadRes(
�

µj , ae1) = (ae11, ����)
[TS-ObjCreation]

Γ ` ��� ι1 ae1 ↪→ ��� ι1 ae11 : ι1

Γ, x0 : τ0 ` e1 : τ0 ↪→ e11

[TS-VarAssign]
Γ, x0 : τ0 ` x0 = e1 ↪→ x0 = e11 : τ0

Figure 2. Type synthesis for expressions

Γ ` s1 : σ ↪→ s11

[TC-Skip]
Γ ` ; : τ ↪→ ;

Γ ` se1 ↪→ se11 : τ1
[TC-ExpStatement]

Γ ` se1; : σ ↪→ se11;

Γ ` e1 : � ��� ↪→ e11 Γ ` s1 : σ ↪→ s11 Γ ` s2 : σ ↪→ s21

[TC-Cond]
Γ ` �� (e1) s1 ���� s2 : σ ↪→ �� (e11) s11 ���� s21

Γ ` e1 ↪→ e11 : τ1 ftype(τ1, f) = τ2 Γ ` e2 : τ2 ↪→ e21

[TC-FAss]
Γ ` e1.f = e2; : σ ↪→ e11.f = e21

[TC-Return]
Γ ` ���
��; : ���� ↪→ ���
��;

Γ ` e1 : τ ↪→ e11

[TC-ReturnExp]
Γ ` ���
�� e1; : τ ↪→ ���
�� e11;

Γ ` s1 : σ ↪→ s11

Γ ` e1 : τ1 ↪→ e11 x 6∈ dom(Γ) Γ, x : τ1 ` s1 : σ ↪→ s11

[TC-EDecSeq]
Γ ` τ1 x = e1; s1 : σ ↪→ τ1 x = e11; s11

Γ ` s1 : σ ↪→ s11 Γ ` s2 : σ ↪→ s21

[TC-StSeq]
Γ ` s1 s2 : σ ↪→ s11 s21

Figure 3. Type checking of statements

We introduce a notion oftype matchingfor FC]
2; whose judgement

form for expressions is writtenΓ;∆ ` e1 ∼ τ1 ↪→ S . This is read
“given typing assumptionsΓ, the expressione1 type matches a type
τ1 with ‘free’ method type parameters contained in∆, yielding a
substitutionS .” A substitution is simply a (partial) function from a
method type parameter to a type.

For example, we would expect the following to be a valid type
matching judgement.

Γ; X ` 42 ∼ X ↪→ {X 7→ ���}

The alert reader will have noticed that this judgement form is
algorithmic as opposed to declarative. A declarative version is
possible, and will be given in a future version of this paper.We
stick with the algorithmic version here as it follows quite closely
the actual language specification and so will aid comparison.

The rules for type matching expressions are given in Figure 4.
There are three special cases ([TM-Null], [TM-Closed], and

[TM-AnonMethExp]) and one general rule ([TM-OpenExp]). The
rule [TM-Null] simply checks that the type is a reference type
and returns an empty substitution. The rule[TM-Closed] cov-
ers the case when type matching an expression against a closed
type. In this case, we simply return an empty substitution. The
rule [TM-AnonMethExp] reflects the (rather strict) restriction that
anonymous method expressions in C]2.0 can be passed as argu-
ments to method invocations, but they do not contribute to the type
inference process.

The[TM-OpenExp] rule is where substitutions are actually gener-
ated. Assuming that the type to be matched,τ1, contains free vari-
ables, we first synthesize a type for the expressione1, sayτ2. We
then need to ‘match’τ1 with τ2.

This ‘matching’ is captured by a function that we writeMatch(∆, τp, τa),
and which returns a substitution,S , if one exists. This substitution
satisfies the equalityS(τp) = τa (henceMatch really imple-
ments a simple form of one-way unification). The set∆ contains



Match(∆, τp, τa)

Match(∆, X, τ)
def
=

{X 7→ τ} if X ∈ ∆
∅ otherwise

Match(∆, τ1[], τ2[])
def
= Match(∆, τ1, τ2)

Match(∆, ρ1, τ2)
def
= {Y 7→ τ1}

where ∃!τ1.τ2 <:i ρ1[Y := τ1]
and Y = ftv(ρ1) ∩ ∆

Γ; ∆ ` e1 ∼ τ1 ↪→ S

[TM-Null]
Γ; ∆ ` �
 �� ∼ ρ ↪→ ∅

ftv(τ1) ∩ ∆ = ∅
[TM-Closed]

Γ;∆ ` e1 ∼ τ1 ↪→ ∅

[TM-AnonMethExp]
Γ; ∆ ` �������(τa x){s1} ∼ D<τ> ↪→ ∅

ftv(τ1) ∩ ∆ 6= ∅ Γ ` e1 ↪→ e11 : τ2 Match(∆, τ1, τ2) = S
[TM-OpenExp]

Γ;∆ ` e1 ∼ τ1 ↪→ S

Γ ` ae1 ∼ µ1 ↪→ S

Γ;X ` e1 ∼ τ1 ↪→ S1

· · ·
Γ;X ` en ∼ τn ↪→ Sn

dom(S1) ∪ · · · ∪ dom(Sn) = X
Consistent(S1, . . . ,Sn)

[TM-MethodType]
Γ ` (e1, . . . , en) ∼ ∀X.(τ1, . . . , τn) → σ ↪→ S1 ∪ · · · ∪ Sn

Γ ` ae1 ∼ � µi ↪→ 〈� µj ,S〉

Γ ` ae1 ∼ µS1
↪→ S1 · · · Γ ` ae1 ∼ µSk

↪→ Sk |S| = k ≥ 1 S ⊆ {1, . . . , n}
[TM-MethodGroupType]

Γ ` ae1 ∼ µ1 ∧ · · · ∧ µn ↪→ 〈(µS1
∧ · · · ∧ µSk

), (S1, . . . ,Sk)〉

Figure 4. Type matching of expressions

the generic type parameters of the method to ensure that we only
generate substitutions for the generic type parameters.

The definition ofMatch is also given in Figure 4; it is recursively
defined over the structure of its second argument, the type parame-
ter τp. For completeness we also give the clause for array types.
This recursive definition is a direct formalization of the iterative
process described in the language specification [§20.6.4]. The third
clause is least obvious:5 it covers the case where the parameter
type is a constructed type. It is perhaps best motivated by anex-
ample. Imagine that we have a classC<X> that extendsD<X,���>
and a classD<A,B> that extendsE<B,A>. Consider the case where
we are matching a parameter typeE<X,Y> against an argument
typeC<��� ���>. The purpose of the third clause is to unwind the
class declarations to produce the substitution{X 7→ ���, Y 7→
��� ���}. The language specification insists that this unwinding
only usestandard implicit conversions, which we write as<:i, al-
though inFC]

2 this relation is identical to the subtyping relation.6

5 It is formalized declaratively here to match the description in the language
specification. An algorithmic version is possible but is omitted for lack of
space.
6 In the full C] language the difference is that the standard implicit conver-
sions specifically exclude user-defined implicit conversions.

The uniqueness condition in the third clause of the definition of the
Match function arises because of generic interfaces (so it could
have been dropped for this fragment). For example, considerthe
following:

��������� I<X>{...}
����� C:I<���>,I<������>{...}
���� m0<X>(I<X> arg1){...}

m0(��� C()); //FAILS

Type checking the method invocation ofm0 will result in the fol-
lowing call to theMatch function:Match(X, C, I<X>). Without
the uniqueness requirement in the third clause we would discover
two instantiations forX; namely,��� and
����� . Hence, C] re-
jects this method invocation.

We can lift type matching to argument expressions; judgements are
of the formΓ ` ae1 ∼ µ ↪→ S1. This is read that “given type
assumptionsΓ, the argument expressionae1 can be type matched
against the method typeµ, yielding a substitutionS1”.

The single rule for this judgement is[TM-MethodType] in Fig-
ure 4. This rule has an intuitive operational reading. The given ar-
gument expression is of the form(e1, . . . ,en) and the method
type is∀X.(τ1, . . . , τn) → σ. We then type match each individ-
ual argument expressionei against the parameter typeτi (where the



set of free method type parameters that we are trying to instantiate
is {X}) in turn, yielding a substitutionSi.

C] imposes two conditions on the collection of substitutionsSi.
The first is that collectively they provide instantiations for all the
method type parameters. In other words the domain of the collec-
tive substitution must be equal to the type parameters of themethod
type. This condition on the collective substitution is referred to as
completenessin the language specification.

The second condition is referred to asconsistency. This turns out
to be a very strict condition in practice. It essentially requires that
if we have inferred multiple substitutions for a type parameter,
then these substitutions must beidentical. Consider the following
method signature and code fragment:

���� myfoo<T>(T arg1, T arg2);

myfoo("hello",��� ������()); //FAILS
myfoo<������>("hello",��� ������()); //CHECKS

The first method invocation fails as the type inference process will
generate two substitutions:{T 7→ ��� ���} and{T 7→ 
�����}.
As these substitutions arenot identical, then type inference fails.
The second invocation succeeds, which demonstrates that a infer-
ence could have been made.

In the rule[TM-MethodType] we denote this consistency check
using a predicateConsistent . We omit its rather routine definition
in the interests of space.

Finally, we lift type matching of an argument expression against
a method type, to a methodgroup type. These judgements are of
of the form Γ ` ae ∼

�
µi ↪→ 〈

�
µj ,S〉. This means that

the argument expressionae is systematically type matched against
each method type in the method group. The result is a pair of (1)
a method group containing the method types that matched and for
each of these (2) the resulting substitution. The single rule for this
judgement form is[TM-MethodGroupType] in Figure 4.

3.4 Conclusion

We have now completely, and formally, specified the type system
and type inference process of our core fragment,FC]

2, of C]2.0! We
have utilized the bidirectional approach and defined type checking
and type synthesis judgements. To define type inference we needed
to add a third judgement: type matching.

4. Extending C]2.0 type inference
4.1 Relaxing consistency

As demonstrated in the previous section, the consistency condition
imposed on inferred substitutions is quite restrictive. Inthis section,
we give a simple relaxation of the consistency condition that is both
in the spirit of C], and simple to implement.

We shall first give the intuitions behind the proposal and give the
formalization later. We will consider array types in this section for
completeness. We shall use the following method signaturesin our
informal discussion:

���� m1<X>(X arg1, X arg2);
���� m2<X>(X arg1, list<X> arg2);
���� m3<X>(list<X> arg1, list<X> arg2);
���� m4<X>(list<X> arg1, X arg2, X arg3);

First, we need to introduce notation to represent multiple substitu-
tions for method type parameters. We shall write these, for exam-
ple: {X 7→ {���, 
�����}}. We shall write] to denote multi-
ple substitution composition. For example,{X 7→ ���} ] {X 7→


�����} = {X 7→ {���, 
�����}}. (We shall refer to a substi-
tution where every type parameter is mapped to a single type as a
simplesubstitution.)

The next concept we use exists already in C](for example, in the
typing of implicit arrays): the notion of abest type from a given
set of types. The best type is simply one from the set which allthe
other types in the set can be converted to.

In resolving our multiple substitutions we shall use this notion of
best. The idea is that we consider all the substitutions for each type
parameter and pick the best representative from the set. If there is
not a single best type, then type inference fails.

This is already sufficient to type simple invocations (that currently
fail to type in C]2.0) such as:

m1(42, ��� ������()); // Infers <object>
m1(42, "hello"); // Fails - no best type

However, as it stands, this isunsound! It is too expressive; the
following succeeds but shouldn’t.

m3(��� List<���>(), ��� List<������>()); //Shouldn’t work

As it stands, we would infer the type argument<
�����>. The
problem is that C] constructed types areinvariant—this has been
ignored so far. The solution is quite simple: we record whether
the substitution applies to a type variable that is in a position
where a conversion can apply (such as the top level of a method
signature) or not (such as inside a constructed type). We annotate
the target types of a substitution accordingly, so they are of the form
{X 7→ τa}, wherea is either<: (a “convertible substitution”) or
= (an “equality substitution”). Consider the following invocation:

m1(42, ��� ������()); //SUCCEEDS

We generate the substitution:{X 7→ {���<:, 
�����<:}}. The
modified consistency rule is that if we have only convertiblesubsti-
tutions then we resolve them by finding the single best type. In this
case, the best type is
�����, so the inference process succeeds.

Consider the following:

m3(��� List<���>(), ��� List<������>()); //FAILS

Now we infer the substitution:{X 7→ {���=, 
�����=}}. The
modified consistency rule is that the equality substitutions must be
identical (this is the current rule for C]2.0). Hence this invocation
fails the type inference process.

Consider the following:

m2(42, ��� List<������>());

We infer the substitution:{X 7→ {���<:, 
�����=}}, i.e. a
convertibleandan equality substitution. The modified consistency
rule is that the convertible target types must all be convertible to the
(single) equality target type. The example above then succeeds as
��� converts to
�����. So we infer the type argument<
�����>.

Consider another similar example:

m4(��� List<������>(), 42, "hello");

We infer the substitution:{X 7→ {���<:, 
�����=, ��� ���<:}}.
As both ��� and ��� ��� convert to
����� we infer the type
parameter<
�����>.

Some further examples are as follows:



m1(42, ��� ���?(84)); //Infers <int?>
m1(42, "hello"); //FAILS
m3(��� List<���>(), ��� List<������>()); //FAILS
m3(��� List<Button>(), ��� List<Control>()); //FAILS

In C] arrays are only covariant for reference types. This slightly
complicates the type inference process. We thus add a new anno-
tation for the target type of a substitution:◦, which denotes a co-
variant substitution. For example, consider the followingmethod
signatures:

���� m5<X>(X[] arg1, X[] arg2);
���� m6<X>(list<X[]> arg1, list<X[]> arg2);
���� m7<X>(list<X>[] arg1, list<X>[] arg2);

Consider the following invocation:

m5(��� ��� ��[]{}, ��� ������[]{});

We infer the substitution:{X 7→ {��� ���◦, 
�����◦}}. We add
to our consistency rule to first process the covariant substitutions.
If, as above, we generate covariant substitutions whose target types
areall reference types, then we rewrite them as convertible sub-
stitutions, and continue as described before. Hence this invoca-
tion above would succeed and we would infer the type argument
<
�����>.

However, consider the following invocation:

m5(��� ���[]{}, ��� ������[]{});

We infer the substitution{X 7→ {���◦, 
�����◦}}. Here we have
generated covariant substitutions where one of the target types is a
value type. In this case we rewrite all the covariant substitutions
as equality substitutions (as no conversion exists here). Hence,
the invocation above would fail. Likewise the following invocation
would also fail:

m5(��� �����[]{}, ��� ����[]{});

The following would succeed, and infer the type argument<���>.

m5(��� ���[]{}, ��� ���[]{});

Some further examples are as follows:

m6(��� List<��� ��[]>(), ��� List<������[]>()) //FAILS
m7(��� List<��� ��>[]{}, ��� List<������>[]{});

//Infers <object>

Extending the formalization from the previous section is quite
straightforward. We parameterize the type matching function,
Match , with an annotation,a.

Matcha(∆, X, τ)
def
=

{X 7→ τa} if X ∈ ∆
∅ otherwise

Matcha(∆, τ1[], τ2[])
def
= Match◦(∆, τ1, τ2)

Matcha(∆, ρ1, τ2)
def
= {Y 7→ τ1

=}
where ∃!τ1.τ2 <:i ρ1[Y := τ1]
and Y = ftv(ρ1) ∩ ∆

The type matching rule[TM-OpenExp] is also modified to the
following.

ftv(τ1) ∩ ∆ 6= ∅ Γ ` e1 ↪→ e11 : τ2 Match<:(∆, τ1, τ2) = S

Γ; ∆ ` e1 ∼ τ1 ↪→ S

The final change is to replace theConsistent predicate with a par-
tial function (which we shall also callConsistent ). This takes as
input amultiplesubstitution and returns the correspondingsimple
substitution. We also refer to the action of this function as“resolv-
ing” a multiple substitution. For example,

Consistent({X 7→ {���<:, ������=, ��� ��<:}}) = {X 7→ ������}
Consistent({Y 7→ {���=, ������=}}) = undefined

Consistent({Z 7→ {��� ��◦, ������=}}) = {X 7→ ������}
It is fairly straightforward to turn the informal description of the
modified consistency rule given above into a formal definition,
although we do not do so here for lack of space.

4.2 λ-expressions

The next version of C](version 3.0) will contain a number of new
language features, mostly to support the LINQ framework [10].
Interestingly all of these new features can be explained in terms
of a type-directed translation from C]3.0 to C]2.0; the details of
this translation will appear in a forthcoming paper [1].

One new feature, theλ-expression, whilst essentially syntactic
sugar, actually interacts with the type inference process.Hence,
type inference needs to be changed in the C]3.0 compiler. In this
section we show how our treatment ofFC]

2 can be extended quite
simply with the addition ofλ-expressions.

First we extendFC]
2 with new syntax forλ-expressions. We follow

C]3.0 and allow the parameter list of aλ-expression to be explicitly
or implicitly typed.

e ::= Expression
. . .
(τ x) => e Explicitly typed lambda
(x) => e Implicitly typed lambda

C]3.0 includes a predefined delegate family,Func, which is used
in connection withλ-expressions. Similarly, we shall assume the
following global delegate definitions:

������� R Func<T1,R>(T1 arg);������� R Func<T1,T2,R>(T1 arg1, T2 arg2);������� R Func<T1,T2,T3,R>(T1 arg1, T2 arg2, T3 arg3); ...

Type checkingλ-expressions is relatively straightfoward; the new
rules are as follows:

dtype(D)(τ ) = τ0 → τ1 Γ, x0 : τ0 ` e1 : τ1 ↪→ e11

Γ ` (x0) => e1 : D<τ> ↪→ ������� (τ0 x0){
���
�� e11;}

dtype(D)(τ ) = τ0 → τ1 Γ, x0 : τ0 ` e1 : τ1 ↪→ e11

Γ ` (τ0 x0) => e1 : D<τ> ↪→ �������(τ0 x0){
���
�� e11;}

Again we observe that, like for anonymous method expressions,
λ-expressions can only be checked against delegate types.

Typesynthesisfor λ-expressions is also simple: no (denotable) type
can be synthesized! This explains why the following is not type
correct in C]3.0.

��� myIdFun = (x) => x; //Type error!



Implicit declarations (those marked���) simply synthesize types
for the defining expression. In this case no type can be synthesized,
so the declaration is type incorrect.

As mentioned earlier,λ-expressions interact with the type inference
process. Recall that rule[TM-AnonMethExp] captures the restric-
tion that anonymous method expressions do not contribute substitu-
tions to the type inference process. Whilstλ-expressions are noth-
ing more than syntactic sugar for anonymous method expressions,
their bodies areexpressions, and C]3.0 leverages that fact to enable
λ-expressions to generate substitutions.7 Thus we could add the
following typematchingrule for explicitly-typedλ-expressions.

dtype(D)(τ ) = τ1 → τ Γ, x : τ1;∆ ` e1 ∼ τ ↪→ S

Γ;∆ ` (τ1 x) => e1 ∼ D<τ> ↪→ S

In fact, we can be more flexible. The rule above insists that the
explicit parameter type is identical to the delegate argument type.
We could be more liberal and use the following rule.

dtype(D)(τ ) = τ2 → τ Γ, x : τ1;∆ ` e1 ∼ τ ↪→ S1

Match
=

(∆, τ2, τ1) = S2

Γ;∆ ` (τ1 x) => e1 ∼ D<τ> ↪→ S1 ] S2

Some further examples of using this more liberal type matching
rule for explicitly-typed lambda expressions are as follows.

���� m8<X>(Func<X,X> arg1);
���� m9<X>(Func<X,X> arg1, X arg2);

m8((������ x) => x); //Infers <object>
m8((������ x) => "hello"); //Infers <object>
m9((������ x) => x, 42); //Infers <object>
m9((��� x) => x, ��� ������()); //FAILS

The real problem is type matching implicitly-typedλ-expressions.
Matters are quite straightforward if all the argument typesare
closed; the type matching rule is then as follows.

dtype(D)(τ ) = τ1 → τ ftv(τ1) ∩ ∆ = ∅
Γ, x : τ1; ∆ ` e1 ∼ τ ↪→ S

Γ;∆ ` (x) => e1 ∼ D<τ> ↪→ S

How do we deal with open argument types? We can’t simply type
match the body of theλ-expression because we will then have type
assumptions with unbound type parameters. There are a number
of possibilities, using a more global constraint-based system, for
example, but many of these (non-local) techniques interactrather
badly with overloading and subtyping. This is certainly an area
requiring further research.

The current proposal for C]3.0 is to make the type inference process
iterative. Thus type matching an implicitly-typedλ-expression
with an open argument type simply postpones. We consider all
the other arguments and generate an intermediate substitution. We
then apply this to any postponed type matches to see if any will
become enabled (if the argument types have become closed). We
then continue this process until either all the arguments have been
type matched or where we do not make progress, in which case
type inference will fail.

It turns out that this iterative type inference process can be ex-
pressed with only a small change to the formalization so far.The
first change we make from our formalization in the previous sec-
tions is to the notion of type matching. We break matching up into

7 There is no reason why C] could not enable anonymous method expres-
sions to generate subsitutions. This appears to have been animplementation
decision.

two stages: First we introduce a notion of partial matching.We
write this judgement as follows:Γ;∆ ` e � τ ↪→ S , which is
meant to be read as “partially type matchinge against typeτ yields
substitutionsS”.8

The rules for partial type matching are given in Figure 5. They are
essentially the same as the type matching rules from the previous
sections. The main difference is the treatment of implicitly-typed
λ-expressions. The rule[PTM-ILambdaExp1] defines partial type
matching forλ-expressions where the argument type is closed; the
rule[PTM-ILambdaExp2] where the argument type is open. In this
case the substitution is (for the moment) empty.

The other judgement we dub complete matching, which is written
Γ;∆ ` e1 ∼ τ ↪→ S , which is read as “matchinge1 against
type τ completes and yields a substitutionS”. The rules for these
judgement forms are also given in Figure 5.

The key rules are[TM3-ClosedArgExp] and[TM3-OpenArgExp].
They recursively encode the iterative type matching process de-
scribed earlier. The recursion is driven by the set of type parameters
∆. If the set is empty, then the[TM3-ClosedArgExp] rule applies,
i.e. there is no matching to be done.

If the set∆ is non-empty then the rule[TM3-OpenArgExp] ap-
plies. This uses the partial type matching rules to generatean inter-
mediate substitution,S . If this substitution is empty, then we have
made no progress and type inference fails. If it is non-emptythen
we apply theConsistent function to yield a simple substitution.
We apply this substitution to the argument types and remove the
type parameters that have now been substituted for, from∆. We
then recurse using this new type parameter set and argument type.

It is relatively straightforward to see that these two rulesdefine a
terminating recursive function to perform type inference.

The resulting type system is quite expressive, and should beattrac-
tive to the reader familiar to functional languages such as Haskell
or ML. Consider the following example method signature and ex-
pression :

���� m10<X,Y,Z>(Func<X,Y> arg1, Func<Y,Z> arg2, X arg3);

m10((x)=>x, (y)=>y, 42)

In the first phase of type inference the first and second arguments
do not contribute substitutions as their argument types areopen.
The third argument contributes the substitution{X 7→ ���}.
In phase two we apply the substitution and so the first parame-
ter type becomesFunc<���,Y> and hence we can apply rule
[PTM-ILambdaExp1]. This produces the substitution{Y 7→
���}. The second argument does not contribute a substitution to
phase two. In phase three we apply the substitution and so thesec-
ond parameter type becomesFunc<���,Z> and we can apply rule
[PTM-ILambdaExp1]. This produces the substitution{Z 7→ ���}
and the type inference process then succeeds producing the type ar-
gument list<���,���,���>.

4.3 Return types

In rule [TM3-MethodType] of Figure 5, the return type of the
method type plays no part in the generation of substitutions. There
are circumstances where that is a serious restriction. Consider the
following method signature and assignment.

����� Foo
{

	
� ��� ���� �� List<T> Nil<T>(){���
�� ��� List<T>();};

8 It is only partial in the sense that it includesλ-expressions which can not
be currently typed.



Γ; ∆ ` e1 � τ1 ↪→ S

[PTM-Null]
Γ;∆ ` �
 �� � ρ ↪→ ∅

ftv(τ1) ∩ ∆ = ∅
[PTM-ClosedExp]

Γ;∆ ` e1 � τ1 ↪→ ∅

[PTM-AnonMethExp]
Γ; ∆ ` �������(τa x){s1} � D<τ> ↪→ ∅

ftv(τ1) ∩ ∆ 6= ∅ Γ ` e1 ↪→ e11 : τ2 Match<:(∆, τ1, τ2) = S
[PTM-OpenExp]

Γ; ∆ ` e1 � τ1 ↪→ S

dtype(D)(τ ) = τ2 → τ Γ, x : τ1; ∆ ` e1 � τ ↪→ S1 Match=(∆, τ2, τ1) = S2

[PTM-ELambdaExp]
Γ;∆ ` (τ1 x) => e1 � D<τ> ↪→ S1 ] S2

dtype(D)(τ ) = τ2 → τ ftv(τ2) ∩ ∆ = ∅ Γ, x : τ2; ∆ ` e1 � τ ↪→ S
[PTM-ILambdaExp1]

Γ;∆ ` (x) => e1 � D<τ> ↪→ S

dtype(D)(τ ) = τ2 → τ ftv(τ2) ∩ ∆ 6= ∅
[PTM-ILambdaExp2]

Γ;∆ ` (x) => e1 � D<τ> ↪→ ∅

Γ;∆ ` e1 � τ1 ↪→ S1 · · · Γ; ∆ ` en � τn ↪→ Sn

[PTM-ArgExp]
Γ; ∆ ` (e1, . . . , en) � (τ1, . . . , τn) ↪→ S1 ] · · · ] Sn

Γ; ∆ ` (e1, . . . , en) ∼ (τ1, . . . , τn) ↪→ S

[TM3-ClosedArgExp]
Γ; ∅ ` (e1, . . . , en) ∼ (τ1, . . . , τn) ↪→ ∅

∆ 6= ∅
Γ;∆ ` (e1, . . . , en) � (τ1, . . . , τn) ↪→ S
S 6= ∅
Sc = Consistent(S)
Γ;∆ − dom(Sc) ` (e1, . . . , en) ∼ Sc[(τ1, . . . , τn)] ↪→ Sf

[TM3-OpenArgExp]
Γ;∆ ` (e1, . . . , en) ∼ (τ1, . . . , τn) ↪→ Sc ∪ Sf

Γ ` ae1 ∼ µ1 ↪→ S

Γ; X ` (e1, . . . , en) ∼ (τ1, . . . , τn) ↪→ S
[TM3-MethodType]

Γ ` (e1, . . . , en) ∼ ∀X.(τ1, . . . , τn) → σ ↪→ S

Γ ` ae1 ∼ � µi ↪→ 〈� µj ,S〉

Γ ` ae1 ∼ µS1
↪→ S1 · · · Γ ` ae1 ∼ µSk

↪→ Sk |S| = k ≥ 1 S ⊆ {1, . . . , n}
[TM3-MethodGroupType]

Γ ` ae1 ∼ µ1 ∧ · · · ∧ µn ↪→ 〈µS1
∧ · · · ∧ µSk

, (S1, . . . ,Sk)〉

Figure 5. Type matching of argument expressions in C]3.0



}

List<���> empty = Foo.Nil(); \\FAILS

The invocation ofNil will fail type inference as we can never
infer a type forT from the (empty) list of arguments. But, in this
case, we could use the fact that the result of the method invocation
is immediately assigned to the typeList<���> to infer the type
argument<���>.

To implement this, we first need to extend the typecheckingrule for
implicit method invocation to feed in the expected assignedtype (in
this case,τ3) to the type matching relation.

Γ ` me1 ⇑ me11 : � µi

Γ ` ae1 ∼ � µi : τ3 ↪→ 〈� µj ,S〉
OloadRes(� µj ,S, ae1) = (ae11, τ , σ)
σ <: τ3

Γ ` me1 ae1 : τ3 ↪→ me11<τ> ae11

We now define a variant of the type matching judgement that takes
in addition a return type. For example, the variant judgement for
type matching an argument expression against a method type would
be of the formΓ ` ae1 ∼ µ : τ ↪→ S1. The rule for this judgement
would be as follows:

Γ; ftv(τ ) ∩ X ` ae1 ∼ (τ1, . . . , τn) ↪→ S1

S2 = Match=(X, τ21, σ)
S3 = Consistent(S1 ] S2)
dom(S3) = X

Γ ` ae1 ∼ ∀X.(τ1, . . . , τn) → σ : τ21 ; S3

In other words, we generate substitutionsS1 from the argument
expression for the free type parameters in the argument types that
are method type parameters. We then see if matching the expected
return typeτ21 against the actual return type of the methodσ gen-
erates a new substitution. This is then combined with substitution
S1, and checked for consistency and for completeness.

So, in the example given above, the expressionFoo.Nil() would
type and the inferred type argument would be<���>.

5. Conclusions and work in progress
In this paper we have attempted a formal reconstruction of the
type inference process as it is implemented in C]2.0. We used a
bidirectional type system, and extended this with a new typing
judgement, type matching, to capture the (local) type inference
process implemented in C].

One advantage of our formalization is that it is a good setting to
consider extensions to the type inference process itself, and to see
the impact of adding new language features. We showed how to
relax the strict consistency conditions currently implemented in
C]2.0. We also considered the difficulties of addingλ-expressions
in the style of C]3.0. We gave a refactoring of our type matching
judgements that implements an iterative type inference process.

As mentioned in the introduction, most work on type inference has
studied the problem for Java. The Java 5.0 type inference process
is more complete than its counterpart in C]2.0 but it is anon-
local process. On the other hand, it is more complicated. A fuller
comparison of the two type inference processes remains future
work.

Work in progress We are currently working on a considerably
more flexible type inference process forλ-terms. Consider the
following method signature

���� foo<X,Y>(X arg1, Func<Y,X> arg2, Y arg3){...}

and an implicit invocationfoo(42,(x)=>��� 
�����(),42).
Using the type inference process discussed in this paper, the first
phase would deduce the substitution{X 7→ ���, Y 7→ ���},
from the first and third arguments. The second argument, theλ-
expression, doesnot contribute as in the first phase its argument
type is open. The rule[TM3-OpenArgExp] applies the substitu-
tions, so we have effectively fixed type parameterX to be ���.
The subsequent type check of theλ-expression argument will fail.
However, if we had not fixed the substitution but postponed ituntil
we had considered the second argument, we could have deduced
the substitution of
����� for X, and hence the invocation would
succeed. Devising an inference process that is sensitive tothe de-
pendencies of type parameters induced by function types is current
work in progress.

In addition, we are also developing declarative versions ofour
rules, which builds on the work of Odersky et al. [14] oncoloured
local type inference.
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