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Abstract. Writing applications that connect to external services and yet remain
responsive and resource conscious is a difficult task. With the rise of web program-
ming this has become a common problem. The solution lies in using
asynchronous operations that separate issuing a request from waiting for its com-
pletion. However, doing so in common object-oriented languages is difficult and
error prone. Asynchronous operations rely on callbacks, forcing the programmer
to cede control. This inversion of control-flow impedes the use of structured control
constructs, the staple of sequential code. In this paper, we describe the language
support for asynchronous programming in the upcoming version of C�. The fea-
ture enables asynchronous programming using structured control constructs. Our
main contribution is a precise mathematical description that is abstract (avoiding
descriptions of compiler-generated state machines) and yet sufficiently concrete
to allow important implementation properties to be identified and proved correct.

1 Introduction

Mainstream programmers are increasingly adopting asynchronous programming tech-
niques once the preserve of hard-core systems programmers. This adoption is driven
by a variety of reasons: hiding the latency of the network in distributed applications;
maintaining the responsiveness of single-threaded applications or simply avoiding the
resource cost of creating too many threads. To facilitate this programming style, operat-
ing systems and platforms have long provided non-blocking, asynchronous alternatives
to possibly blocking, synchronous operations. While these have made asynchronous
programming possible they have not made it easy.

The basic principle behind these asynchronous APIs is to decompose a synchronous
operation that combines issuing the operation with a blocking wait for its completion,
into a non-blocking initiation of the operation, that immediately returns control, and
some mechanism for describing what to do with the operation’s result once it has com-
pleted. The latter is typically described by a callback—a method or function. The call-
back is often supplied with the initiation as an additional argument. Alternatively, the
initiation can return a handle which the client can use to selectively register an asyn-
chronous callback or (synchronously) wait for the operation’s result.

Whatever the mechanism, the difficulty with using these APIs is fundamentally this:
to transform a particular synchronous call-site into an asynchronous call-site requires the
programmer to represent the continuation of the original site as a callback. Moreover,
for this callback to resume from where the synchronous call previously returned, it must
preserve all of the state pertinent to the continuation of the call. Some aspects of the state
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will be explicitly available (such as the values of local variables), but other aspects may
not be. A prime example is the remainder of the current call stack. For languages that
do not provide support for first-class continuations, like Java and C�, accounting for this
state often requires a manual transformation to continuation-passing-style of not only
the enclosing method, but also all of its callers. Once reified as an explicit continuation,
the state of a computation can be saved at the initiation of an asynchronous operation
and restored on its completion by supplying it with a result.

The upcoming version of C� (and Visual Basic) features dedicated linguistic sup-
port for asynchronous programming that removes the need for explicit callbacks. C�

5.0 allows certain methods to pause and then later resume their computation, without
blocking, at explicitly marked code points. The basic idea is to allow a method, desig-
nated as asynchronous, to await the completion of some other event, not by blocking its
executing thread, but by pausing its own execution and releasing its thread to do further
work. The caller of the paused method then receives a task representing the method’s
future result and is free to proceed. Subsequent completion of the awaited event causes
the paused method to resume playing from where it left off. Since its original thread
has carried on, the resumed method is played on some available thread. Depending on
run-time context, this thread may be drawn from the .NET thread pool, or it may be
the same, issuing thread but at a later opportunity (e.g., the resumed method might be
re-enqueued in the user interface’s message loop). The events that can be awaited are
typically tasks returned by nested calls to asynchronous methods. They can also, more
generally, belong to any (user-defined) awaitable type or primitive implementations
provided by the framework. The aim of these new features is to make it easy to write
asynchronous methods, without having to resort to continuation-passing-style and its
debilitating inversion of control flow.

As we shall see, the new asychronous features in C� 5.0 are quite subtle. Current,
draft Microsoft specifications [16] describe the features using precise prose and by ex-
ample, giving illustrative source-to-source translations from C� 5.0 to ordinary C� 4.0.
Unfortunately, the translation is intricate—it compiles source to optimized, finite state
machines—so its output is both verbose and difficult to comprehend. We believe a for-
mal, mathematical approach can yield both a precise foundation for researchers, but
also a better mental model for developers and compiler writers to justify the correctness
of their translation. The primary contribution of this paper is to provide such a model:
a direct, operational semantics of the feature in a representative fragment of C� 5.0.
Our semantics both capture the intent of the feature and explain its performance-driven
limitations, without appealing to low-level compiler output.

The paper is structured as follows. §2 gives an informal yet precise description of the
feature. §2.1 presents a realistic example, re-coding a non-trival synchronous method
to an asynchronous one, first using the feature, then adding concurrency and finally
contrasting with an equivalent, hand-crafted implementation. §3 formally describes our
core fragment of C� 5.0 and presents both a type system and an operational seman-
tics. §4 sketches some of the correctness properties that our formalization satisfies. §5
presents some extensions to our basic setting; in §5.1 we show how to develop our op-
erational semantics to be less abstract, and much closer to the implementation but still
without having to resort to a finite state machine translation. In §5.2 we show how to ex-
tend our formalization to capture the awaitable pattern. §6 surveys briefly related work
on asynchronous programming; and §7 presents conclusions and some future work.
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2 Background: Async C� Extensions in a Nutshell

Syntactically, the additions to C� are surprisingly few: one new modifier ����� to mark
a member as asynchronous and one new expression, ����� e, for awaiting the result—
control, a value or exception—of some awaitable expression. An ����� expression
can also be used as a statement, ����� e;, discarding its value. The ����� modifier
can be placed on methods (excluding iterators) and some other method-like constructs
(anonymous, first-class methods, i.e., lambdas and delegates). An ����� expression
can only appear in an ����� method; other occurrences are static errors.

Statically, an ����� method must have a taskable return type of Task<σ>, Task
or 	
��. The ����� statements of an ����� method with return type Task<σ> may
only return values of type σ, never Task<σ>! The return statements in other �����
methods may only return control (but never a value).

The argument, e, of an ����� e expression must have an awaitable type. The concept
of awaitable type is defined by a pattern (of available methods). A type is awaitable
when it statically supports a GetAwaiter() instance method that returns some awaiter
type (possibly the same type). In turn, the awaiter type must support:

– a boolean instance property IsCompleted testing if the awaiter has a result now.
– a 	
��-returning instance method OnCompleted(a), accepting a callback of del-

egate type Action.1 Action a is a one-shot continuation; calling a() resumes the
awaiting method. The action should be invoked at most once, on completion.

– a τ -returning instance method GetResult() for retrieving the result of a com-
pleted awaiter. GetResult() should either return control, some stored value, or
throw some stored exception.

If the return type of GetResult is τ , then expression ����� e is an expression of type
τ . All these operations should be (essentially) non-blocking.

Crucially, the types Task<σ> and Task are awaitable, allowing ����� methods to
await the tasks of nested ����� method calls. A caller can use a returned task just like
any other task (asynchronously awaiting its result, synchronously waiting for its com-
pletion or by registering an asynchronous callback). Asynchronous methods that return
	
�� cannot be awaited; such methods are intended for ‘fire-and-forget’ scenarios.

Dynamically, an ����� method executes like an ordinary method until it encoun-
ters an ����� on some value. If the value’s awaiter is complete, the method continues
executing using the result of the awaiter as the result of the await expression. If the
awaiter is incomplete, the method registers its continuation as a callback on the awaiter
and then suspends its execution. Execution will resume with the result of the awaiter,
on some thread,2 when the callback is invoked. Invoking an async method allocates a
fresh, incomplete task, representing this invocation, immediately enters the method (on
the caller’s thread) and executes it until it encounters its first await on an incomplete
awaiter. Exiting from an async method, either via return or throwing an exception, stores
the result in its task, thus completing it. The first suspension of an async method call re-
turns its incomplete task (or void) to its caller. If the call exits without ever suspending,
it simply returns its completed task.

1 Defined as �������� ��	� Action().
2 We are deliberately vague here; the awaiter is free to choose how the method is resumed,

catering for different behaviours in, for example, single- and multi-threaded applications.
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The operational semantics is deliberately designed to minimize context switches.
Continuing when an awaiter is already complete ensures methods only suspend when
necessary. Dually, allowing an ����� method call to begin execution on its caller’s
thread gives the method the opportunity to enter-and-exit quickly when possible, with-
out imposing the cost of a context switch just to get running in the first place. This
design choice morally obliges the method not to block nor even spend too much time
before ceding its caller’s thread (by suspension).

2.1 Example

To both illustrate and motivate the feature we present an example adapted from the
Async CTP.3 Consider the following synchronous copy function, which incrementally
copies an input stream to an output stream in manageable chunks.


���	 ����	 ���� CopyTo(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; 	�� bytesRead; ���� totalRead = 0;

��	�� ((bytesRead = src.Read(buffer, 0, buffer.Length)) > 0) {

dst.Write(buffer, 0, bytesRead);

totalRead += bytesRead; }

������ totalRead; }

Depending on their receivers, the calls to Stream methods Read and Write may well
be blocking IO operations. Since this method could spend much of its time blocked,
one might prefer an asynchronous variant. One way to achieve this is by replacing the
synchronous calls to Read and Write with their asynchronous counterparts:

Task<	��> ReadAsync(����[] buffer, 	�� offset, 	�� count);

Task WriteAsync(����[] buffer, 	�� offset, 	�� count);

The asynchronous variants initiate an asynchronous operation and immediately return
a task representing its completion. Method ReadAsync begins a read and immediately
returns a Task<���> that, once completed, will record the number of bytes actually
read. The method WriteAsync begins a write and returns a Task that just tracks its
completion. Tasks are completed at most once with some result. The result may be a
value or some exception.

Asynchronous clients can register zero or more callbacks on a task, to be executed
(on some thread) once the task has completed with a result, e.g.:

Task<	��> rdTask = src.ReadAsync(buffer, 0, buffer.Length);

rdTask.ContinueWith((Task<	��> completedRdTask) => {

	�� bytesRead = completedRdTask.Result; /* won’t block */

dst.WriteAsync(buffer, 0, bytesRead); });

// do some work now

Since ContinueWith is also non-blocking, the client will quickly proceed with its
work. The call to property completedRdTask.Result in the callback is guaranteed
not to block because its task (aliasing rdTask) must, by causality, already be
completed.

Synchronous clients can also access a task’s Result property or just Wait() for its
completion; these calls will block until or unless the task has completed:

3 http://msdn.microsoft.com/vstudio/async

http://msdn.microsoft.com/vstudio/async
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Task<	��> rdTask = src.ReadAsync(buffer, 0, buffer.Length);

// do some work now

	�� bytesRead = rdTask.Result; /* may block */

Task wrTask = dst.WriteAsync(buffer, 0, bytesRead);

// do some more work now

wrTask.Wait(); /* may block */

Now let us show how C� 5.0 enables the simple implementation of an asynchronous ver-
sion of CopyTo. First we mark the method as �����, and then simply await the results
of src.ReadAsync and dst.WriteAsync. Otherwise the code remains the same.


���	 ����	 ���� Task<����> CopyToAsync(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; 	�� bytesRead; ���� totalRead = 0;

��	�� ((bytesRead = ���	� src.ReadAsync(buffer,0,buffer.Length)) > 0) {

���	� dst.WriteAsync(buffer, 0, bytesRead);

totalRead += bytesRead; }

������ totalRead; }

Awaiting the task returned by ReadAsync pauses the method unless the read has com-
pleted; when play is resumed, the await expression extracts the integer value of the
task. WriteAsync returns a non-generic Task; the await statement pauses the method
unless the write has completed; when it is played again, execution proceeds from the
next statement. Note that the return type of our asynchronous method is Task<�
��>
even though its body �����s a �
��. Clearly, this is no ordinary ����� statement.

Though the code is almost identical to the original, the behaviour and resource con-
sumption is quite different. A call to CopyTo will repeatedly block (in the kernel) on
each call to Read and Write, tying up the resources dedicated to that thread. A call
of CopyToAsync, on the other hand, will never block; instead, each continuation of an
await will be executed on demand, on some available thread in the .NET thread pool. 4

CopyToAsync’s reads and writes are still being executed sequentially, but from dif-
ferent threads rather than a single one, so we would not expect to gain any performance
from the asynchronous implementation. Indeed, given the additional scheduling and
compilation overheads, the synchronous CopyTo is likely to execute faster.

However, we are now in a good position to overlap the last write with the next read,
leading to this potentially faster, concurrent implementation:


���	 ����	 ���� Task<����> CopyToConcurrent(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; ��� oldbuffer = ��� ����[0x1000];

	�� bytesRead; ���� totalRead = 0; Task lastwrite = ����;

��	�� ((bytesRead = ���	� src.ReadAsync(buffer,0,buffer.Length)) > 0) {

	� (lastwrite != ����) ���	� lastwrite; // wait later

lastwrite = dst.WriteAsync(buffer, 0, bytesRead); // issue now

totalRead += bytesRead;

{ ��� tmp = buffer; buffer = oldbuffer; oldbuffer = tmp; }; }

	� (lastwrite != ����) ���	� lastwrite;

������ totalRead; }

In order to achieve this, we exploit the ability to separate the initiation of a task from
the act of awaiting its completion, so that we can issue the next read during the last

4 If invoked from a user interface thread, each continuation will be scheduled on that thread’s
event queue.
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write. The example illustrates the crucial advantage of allowing asynchronous methods
to return incomplete, concurrently executing tasks, not just completed results. Though
we emphasize concurrency, the reads and writes could also be executing in parallel,
depending on the underlying streams.

In comparison, TaskJava [8] also provides constructs to avoid inversion of control
while programming with asynchronous APIs. Like C� 5.0, TaskJava compiles straight-
line code to a state machine, but its syntax is slightly more heavyweight and requires
explicit calls to an event scheduler. TaskJava does not make a distinction between in-
voking and awaiting an asynchronous operation, so although it presents a pleasant pro-
gramming model for those who wish to invoke asynchronous APIs sequentially, it is of
no use to a programmer who must write code that executes multiple operations concur-
rently, like CopyToConcurrent. C� 5.0 does not sacrifice concurrency for convenience.

To appreciate the concision of CopyToAsync, let us contrast it with a representative
hand-crafted version of CopyToAsync, CopyToManual, written in C� 4.0. Actually, this
code is very close to the decompiled code emitted by the C� 5.0 compiler and described
in the feature documentation. As mentioned earlier, the aim of our work is to eliminate
the need to understand this compilation strategy.


���	 ����	 Task<����> CopyToManual(Stream src, Stream dst) {

��� tcs = ��� TaskCompletionSource<����>(); // tcs.Task new & incomplete

��� state = 0; TaskAwaiter<	��> readAwaiter; TaskAwaiter writeAwaiter;

����[] buffer = ����; 	�� bytesRead = 0; ���� totalRead = 0;

Action act = ����; act = () => {

��	�� (����) ��	�� (state++) {

��� 0: buffer = ��� ����[0x1000]; totalRead = 0; ���	���;

��� 1: readAwaiter=src.ReadAsync(buffer,0,buffer.Length).GetAwaiter();

	� (readAwaiter.IsCompleted) ���	���; // goto post-read

���� { readAwaiter.OnCompleted(act); ������;} // suspend at 2

��� 2: 	� ((bytesRead = readAwaiter.GetResult()) > 0) {

writeAwaiter=dst.WriteAsync(buffer,0,bytesRead).GetAwaiter();

	� (writeAwaiter.IsCompleted) ���	���; // goto post-write

���� { writeAwaiter.OnCompleted(act); ������;} // suspend at 3

} ���� { state = 4; ���	���;} // goto post-while

��� 3: writeAwaiter.GetResult();

totalRead += bytesRead;

state = 1; ���	���; // goto pre-while

��� 4: tcs.SetResult(totalRead); // complete tcs.Task & "return"

������; // exit machine

}}; // end of act delegate

act(); // start the machine on this thread

������ tcs.Task; } // on first suspend or exit from machine

Without going into too many details, notice how the control flow has been obscured by
encoding the continuation of each await as states (here 2 & 3) of a finite state machine.
The original locals, arguments and internal state of the method are (implicitly) allocated
on the heap. (Note that C� lambdas such as act close over L-values, not R-values,
automatically placing them on the heap; updates to those locations persist across lambda
invocations.) State 0 is the initial state that sets up locals; state 1 is the ���� loop
header, states 2 and 3 are the continuations of the ����� statements; state 4 is the final
state and the continuation of the original ���� statement. State 4 exits the machine,
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setting the result in the task held by shared variable tcs (completing the task). The
finite state machine only suspends (by calling ����� without completing the task) in
states 2 and 3 (just after an await); the other states encode internal control flow points.

3 Formalization: Featherweight C� 5.0

In the rest of the paper we study the essence of the new asynchronous features of C�. To
do so we take a formal, mathematical approach and define an idealized fragment, Feath-
erweight C� 5.0, or FC�

5 for short. Whilst FC�
5 programs remain syntactically valid C�, it

is a heavily restricted fragment—any language feature that is not needed to demonstrate
the essence of the asynchronous features has been removed, and the resulting fragment
has been further refactored to allow for a more succinct presentation.

As the new asynchronous features predominantly affect the control flow of C� pro-
grams, most of our attention is on the operational semantics. In contrast, other minimal
fragments such as, for example, Featherweight Java [13], and Classic Java [10], are pri-
marily concerned with typing issues. The asynchronous features in C� 5.0 have almost
no impact on the type system. Consequently we have stripped the type system of FC�

5

to the core: we have only simple non-generic classes, some value types and no subtyp-
ing at all! However, we emphasize that our formalization exposes enough of the inner
workings of C� 5.0 to allow the reader to reason about how aspects of the language, like
the split between invocation and awaiting, affect the concurrent execution of multiple
threads of control. There is a danger in cutting out too much of a language during for-
malization. For example, Fischer et al. [8] give a semantics for CJT, a simplified version
of TaskJava, that avoids a heap at the expense of any ability to model communication
between tasks, including a spawned thread signaling completion to its parent. In con-
trast, our semantics models what we claim to be the essential features of task-based
programming: concurrent execution of multiple, communicating tasks that are invoked
by the same thread of control.

FC�
5 programs and types:

p ::= cd mb Program
cd ::= 
���	 ���� C {fd md} Class declaration
fd ::= 
���	 σ f; Field declaration
md ::= 
���	 φ m(σ x)mb | ���� 
���	 ψ m(σ x)mb Method declaration
mb ::= { σ x;s } Method body
φ ::= σ | ��	� Return type
σ, τ ::= γ | ρ Type
γ ::= ���� | 	�� Value type
ρ ::= C | Task<σ> Reference type
ψ ::= Task<σ> Taskable return type

Our formalization makes heavy use of the Featherweight Java [13] overbar notation,
i.e., we write x for a possibly empty sequence x1, . . . xn. We write the empty sequence
as ε. We abbreviate operations on pairs of sequences, writing for example σ x for the
sequence σ1 x1, . . . , σn xn, similarly σ x; for the sequence of variable declarations
σ1 x1; . . . σn xn; and finally f(σ) for the sequence f(σ1), . . . , f(σn).
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A FC�
5 program consists of a collection of class declarations and a single method

body (C�’s main method). A FC�
5 class declaration ������ ����� C {fd md} intro-

duces a class C. We repeat that FC�
5 does not support any form of subtyping so class

declarations do not specify a superclass. This is a valid declaration in full C� as all
classes inherit from 
���� by default, but we do not even support the 
���� class in
FC�

5. Subtyping and inheritance are orthogonal to the new features in C� 5.0 and so we
removed them from our fragment to concentrate solely on the support for asynchronous
programming.5 The class C has fields f with types σ and a collection of methods md .

Method declarations can be either synchronous or asynchronous. A synchronous
method ������ φ m(σ x)mb declares a public method m with return type φ, for-
mal parameters x of type σ and a method body mb. Methods may be 	
��-returning,
i.e., they return control not a value. Method bodies are constrained to be of a particular
form: σ x;s, i.e., they must declare all their local variables x at the start of the method,
and then contain a sequence of statements s.

An asynchronous method is marked with the ����� keyword and is syntactically the
same as a synchronous method, although it is type checked differently. The return type
of an asynchronous method must be of a so-called taskable type. For FC�

5 this means
it must be of the form Task<σ>. C� 5.0 also classifies the non-generic class Task and
	
�� as taskable return types as discussed in §2.

FC�
5 types are a simple subset of the C� types. Note that FC�

5 does not support user-
defined generics; again these are orthogonal to asynchrony and have been removed. For
simplicity, we assume that Task<σ> is the only generic type.

FC�
5 expressions and statements:

e ::= Expressions
c Constant (boolean b, integer i or ����)
x⊕ y Built-in operator
x Variable
x.f Field access
x.m(y) Method invocation
��� C() Object creation
���	� x Await expression
Task.AsyncIO<γ>() Async primitive

s, t ::= Statement
x=e; Assignment statement
	� (x) {s} ���� {t} Conditional statement
��	�� (x) {s} Iteration
x.f = y; Field assignment statement
x.m(y); Method invocation statement
������; Return statement
������ x; Return value statement

FC�
5 expressions are restricted to a form that we call statement normal form (SNF). SNF

forces all subexpressions to be named; i.e., all subexpressions are simply variables. SNF

5 The extensions to support single inheritance, overloading, constructor methods and many of
the complications of the full C� type system have appeared elsewhere [2,3].
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is the natural analogue to the A-normal-form popular in functional languages [9]. This
regularity makes the presentation of the operational semantics (and the type system)
much simpler at no cost to expressivity.

FC�
5 expressions include constants, c, which can be an integer, i, a boolean, b, or the

literal ����. We assume a number of built-in primitive operators, such as ==, <, > and
so on. In the grammar we write x ⊕ y, where ⊕ denotes an instance of one of these
operators. We do not specify operators further as their meaning is clear. We assume that
x, y, z range over variable names, f ranges over field names and m ranges over method
names. We assume that the set of variables includes the special variable ����, which
cannot be used as a formal parameter of a method declaration or declared as a local.

FC�
5 supports awaitable expressions, written ����� x. To get things off the ground

we assume an in-built asynchronous method Task.AsyncIO<γ>() that spawns a thread
and immediately returns a task. The thread may complete the task, depending on the
scheduler, with some result of value type γ.

FC�
5 statements are standard. In what follows we assume that FC�

5 programs are
well-formed, e.g., the identifier ���� does not appear as a formal parameter, all control
paths in a method body contain a ����� statement, etc. These conditions can be easily
formalized and are identical to restrictions on earlier fragments of C� but we suppress
the details for lack of space. The only new well-formedness condition is that �����
expressions are only allowed to appear inside asynchronous method declarations.

We assume that a correct program induces a number of utility functions that we will
use in the typing rules. First, we assume the partial function ftype , which is a map from
a type and a field name to a type. Thus ftype(σ, f) returns the type of field f in type
σ. Second, we assume a partial function mtype that is a map from a type and a method
name to a type signature. For example, we write mtype(C,m) = (τ ) → φ when class
C contains a method m with formal parameters of type τ and return type φ.

The type system for full C� is actually a bidirectional type system [18] consisting of
two typing relations: a type conversion relation and a type synthesis relation [3], along
with a number of conversion (subtyping) judgements. However, the extreme parsimony
of FC�

5 means that we have no subtyping judgements, and we need only a single judge-
ment for type checking an expression. The judgement is written Γ � e:σ where Γ is a
function from variables to types. We extend the overbar notation and write Γ � e:σ to
mean the judgements Γ � e1:σ1, . . . , Γ � en:σn.

FC�
5 expression type checking:

[C-Bool]
Γ � b: ���� [C-Int]

Γ � i: 	�� [C-Null]
Γ � ����: ρ

[C-Op]
Γ � x:σ0 Γ � y:σ1 ⊕:σ0 × σ1 → τ

Γ � x⊕ y: τ

[C-New]
Γ � ��� C(): C

[C-Var]
Γ, x: τ � x: τ [C-Field]

ftype(σ, f) = τ

Γ, x:σ � x.f : τ

[C-MethInv]
mtype(σ0,m) = (τ ) → σ1 Γ, x:σ0 � y: τ

Γ, x:σ0 � x.m(y):σ1

[C-Await]
Γ, x:Task<σ> � ���	� x:σ

[C-IO]
Γ � Task.AsyncIO<γ>(): Task<γ>
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Most of the type checking rules are quite standard, but there are two new rules for
dealing with asynchronous methods. Rule [C-Await] states that if x is of type Task<σ>
then awaiting x results in a value of type σ. As discussed earlier, Rule [C-IO] states that
Task.AsyncIO<γ>()returns a value of type Task<γ>.

FC�
5 statement type checking:

[C-Asn]
Γ, x:σ � e:σ

Γ, x:σ � x = e;:φ
[C-Cond]

Γ, x: ���� � s:φ Γ, x:���� � t:φ
Γ, x:���� � 	� (x) {s} ���� {t}:φ

[C-While]
Γ, x:���� � s̄:φ

Γ, x: ���� � ��	�� (x) {s}:φ

[C-FAsn]
ftype(σ0, f) = σ1 Γ, x:σ0 � y:σ1

Γ, x:σ0 � x.f=y;:φ

[C-MInv]
mtype(σ0,m) = (τ) → ��	� Γ, x:σ0 � y: τ

Γ, x:σ0 � x.m(y);: φ

[C-Return]
Γ � ������;: ��	�

[C-ReturnExp]
Γ, x:σ � ������ x;:σ

As for full C�, we give type checking rules for statements; the judgement is written
Γ � s:φ. The key rules are [C-ReturnExp] that asserts that the statement ����� x;
is of return type σ if x is of type σ and [C-Return] that asserts that the statement
�����; is of return type 	
��. In other words, the role of the type φ in the judgement
Γ � s:φ is to check any return statement. Again, we adopt an overbar notation and
write Γ � s:φ to denote the judgements Γ � s1:φ, . . . , Γ � sn:φ.

FC�
5 method and class typing (rule for programs omitted due to space):

[Class-OK] C � md ok

� 
���	 ���� C {fd md } ok

[Meth-OK]
x:σ, y: τ , ��	�: C � s:φ ∀e ∈ s, e �= ���	�

C � 
���	 φ m(σ x){τ y;s} ok

[AsyncMeth-OK]
x: σ, y: τ, ��	�: C � s:σ0

C � ���� 
���	 Task<σ0>m(σ x){τ y;s} ok

Rule [Class-OK] asserts that a class declaration is well-typed provided that all its
method declarations are well-typed. Rule [Meth-OK] asserts that the (synchronous)
method declaration ������ φ m(σ x){τ y;s} is well-typed in class C provided that
the statements s can be typed at return type φ in the context x:σ, y: τ, ����: C. More-
over, s cannot contain �����. Rule [AsyncMeth-OK] asserts that the asynchronous
method ����� ������ Task<σ0> m(σ x){τ y;s} is well-typed if the statements s
can be typed at return type σ0 (not Task<σ0>) in the context x:σ, y: τ , ����: C.

We assume two methods on the Task<σ> type, Result and GetResult, which both
take no argument and return a value of type σ, i.e., mtype(Task<σ>, ) = () → σ. Both
these methods return the result of a complete task object, but will differ operationally
on an incomplete task. In C�, Result is actually a method-like property.
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3.1 Operational Semantics

The key contribution of this paper is a precise description of the operational behaviour of
the new asynchronous features in C�. The syntactic restrictions of FC�

5 mean that the op-
erational semantics can be given as single-step transition rules between configurations.

A heap, H , is a partial map from an object identifier (ranged over by o) to a heap
object. A heap object can be one of three forms: 〈C,FM 〉 denotes a non-task object of
class C with a field map, FM , which is a partial map from fields f to values. A task
heap object is either of the form 〈Task<σ>, running(F )〉 or 〈Task<σ>, done(v)〉. We
explain these forms later. A value, v is either a constant, c, or an object identifier (the
address of an object in the heap).

A frame, F , is written 〈L, s̄〉� and consists of a locals stack, L, and a sequence of
statements, s, along with a frame label, �. A locals stack is a partial map from local
variables to values. A frame label, �, is either s to denote a synchronous frame, or a(o)
for an asynchronous frame whose associated Task is stored at heap address o. A frame
stack, FS , is essentially a list of frames. An empty frame stack is written ε, and we write
F ◦FS to denote a frame stack whose head is a frame F and tail is the frame stack FS .
A process, P , is a collection of frame stacks, written {FS1, . . . ,FSn}.

We factor the transition rules into three relations describing the small step evaluation
of frames (method bodies), frame stacks (corresponding to individual threads) and col-
lections of frame stacks (corresponding to a process, i.e., a pool of threads mutating a
shared heap). Thus, a frame configuration is written H � F and the transition relation
between frame configurations is writtenH1�F1 → H2�F2. A frame stack configura-
tion is writtenH�FS and the transition relation between frame stack configurations is
written H1 �FS1 � H2 �FS2. Finally, a process configuration is written H �P and
the transition relation between process configurations is written H1 � P1 � H2 � P2.

Simple frame transition rules:

H � 〈L, x=c;s〉� → H � 〈L[x 
→ c], s〉� [E-Constant]

H � 〈L, x=y;s〉� → H � 〈L[x 
→ L(y)], s〉� [E-Var]

H � 〈L, x=y ⊕ z;s〉� → H � 〈L[x 
→ L(y)⊕ L(z)], s〉� [E-Op]

H � 〈L, x=y.f;s〉� → H � 〈L[x 
→ FM (f)], s〉� where H(L(y)) = 〈ρ,FM 〉 [E-Field]

H � 〈L, 	� (x) {s} ���� {t} u〉� → H � 〈L, s u〉� where L(x) = ���� [E-CondEq]
H � 〈L, 	� (x) {s} ���� {t} u〉� → H � 〈L, t u〉� where L(x) = �����

H � 〈L, ��	�� (x){s} t〉� → H � 〈L, s ��	�� (x){s} t〉� where L(x) = ���� [E-While]
H � 〈L, ��	�� (x){s} t〉� → H � 〈L, t〉� where L(x) = �����

H0 � 〈L, x.f=y;s〉� → H1 � 〈L, s〉� [E-Asn]
where L(x) = o,H0(o) = 〈σ,FM 〉 and H1 = H0[o 
→ 〈σ,FM [f 
→ L(y)]〉]
H0 � 〈L, x=��� C();s〉� → H1 � 〈L[x 
→ o], s〉� [E-New]
where fields(C) = τ f , o �∈ dom(H0) and H1 = H0[o 
→ 〈C, f 
→ default(τ)〉]
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In these transition rules the frames are labeled with meta-variable �: they apply for
both synchronous and asynchronous frames, factoring common semantics. Our transi-
tion rules H0 � 〈L0, s〉� → H1 � 〈L1, t〉� always preserve labels, i.e., a synchronous
frame transitions to another synchronous frame, and an asynchronous frame transitions
to an asynchronous frame with the same task. In rule [E-New] we use an auxiliary func-
tion, default that returns a default constant for a given type. This notion is taken from
full C� [12, §5.2] but for FC�

5 it simply maps type ��� to the value 0, type �

� to the
value ���� and all other types to the ���� literal. These simple transition rules are
quite standard and for space reasons we do not elaborate on them further.

Next we consider the evaluation of a synchronous method call and returning from
a synchronous method. For a ����� (though not a call) the label on the frame is
important; as we shall see, the ����� rule is different for asynchronous frames.

Synchronous method call/return transition rules:

H0 � F0 ◦ FS � H1 � F1 ◦ FS if H0 � F0 → H1 � F1 [E-Frame]

H � 〈L0, y0=y1.m(z);s〉� ◦ FS � H � 〈L1, t〉s ◦ 〈L0, s〉�y0 ◦ FS [E-Method-Exp]
where H(L0(y1)) = 〈ρ,FM 〉,mbody(ρ,m) = mb: (σ x) →s σ1,mb = τ y; t and

L1 = [x 
→ L0(z), y 
→ default(τ), ��	� 
→ L0(y1)]

H � 〈L0, x.m(y);s〉� ◦ FS � H � 〈L1, t〉s ◦ 〈L0, s〉� ◦ FS [E-Method-Stmt]
where H(L0(x)) = 〈ρ,FM 〉,mbody(ρ,m) = mb: (σ x) →s ��	�,mb = τ z; t and

L1 = [x 
→ L0(z), z 
→ default(τ ), ��	� 
→ L0(x)]

H � 〈L0, ������ y;s〉s ◦ 〈L1, t〉�x ◦ FS � H � 〈L1[x 
→ L0(y)], t〉� ◦ FS [E-Return-Val]

H � 〈L0, ������;s〉s ◦ 〈L1, t〉� ◦ FS � H � 〈L1, t〉� ◦ FS [E-Return]

These transition rules are also quite standard. Rule [E-Frame] transitions the top-
most, active frame of a frame stack. Rule [E-Method-Exp] transitions a method invo-
cation. It first looks up in the heap the runtime type of the receiver. We make use of
another auxiliary function induced by correct program: mbody is a map from a type
and a method name to a method body and an annotated type signature. For example, we
write mbody(C,m) = mb: (σ x) →s φ, when the methodm in class C is a synchronous
method, with formal parameters σ x, return type φ, and method body mb.

Rule [E-Method-Exp] applies when the receiver object supports method m and m
is a synchronous method. In this case, we push a new synchronous frame (labeled s)
on to the frame stack to execute the method body. Notice that we annotate the caller
frame with the identifier that is waiting for the return value (this will be used in rule
[E-Return-Val]). Rule [E-Method-Stmt] is similar except that m is a 	
��-returning
method, returning control. Note that the semantics of synchronous calls are the same
whether issued from a synchronous or asynchronous frame (� can be any label).

Rule [E-Return-Val] shows how a synchronous method returns a value to its caller.
The caller frame, 〈L1, t〉�x, is waiting for a value for local identifier x. The active syn-
chronous frame is popped and the caller frame becomes active and assigns the return
value to x. Rule [E-Return] is similar except that no value is returned and the caller
frame is not annotated with an identifier: the caller only expects control, not a value.
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Asynchronous method call/return transition rules:

H0 � 〈L0, y0=y1.m(z);s〉� ◦ FS [E-Async-Method]
� H1 � 〈L1, t〉a(o) ◦ 〈L0[y0 
→ o], s〉� ◦ FS
where H0(L0(y1)) = 〈ρ,FM 〉, mbody(ρ,m) = mb: (σ x) →a ψ, and mb = τ y; t

o �∈ dom(H0),H1 = H0[o 
→ 〈ψ, running(ε)〉]
L1 = [x 
→ L0(z), y 
→ default(τ), ��	� 
→ L0(y1)]

H0 � {〈L, ������ y;s〉a(o) ◦ FS} ∪ P [E-Async-Return]
� H1 � {FS} ∪ resume(F ) ∪ P
where H0(o) = 〈Task<σ>, running(F )〉 and H1 = H0[o 
→ 〈Task<σ>, done(L(y))〉]

H � 〈L, x=���	� y;s〉a(o) ◦ FS � H � 〈L[x 
→ v], s〉a(o) ◦ FS [E-Await-Continue]
where H(L(y)) = 〈Task<σ>, done(v)〉
H0 � 〈L, x=���	� y;s〉a(o) ◦ FS � H1 � FS [E-Await]
where L(y) = o1,H0(o1) = 〈Task<σ>, running(F )〉

H1 = H0[o1 
→ 〈Task<σ>, running(〈L, x=y.GetResult();s〉a(o), F )〉]

H � 〈L, x=y.Result();s〉� → H � 〈L[x 
→ v], s〉� [E-Result]
where H(L(y)) = 〈Task<σ>, done(v)〉
H � 〈L, x=y.Result();s〉� → H � 〈L, x=y.Result();s〉� [E-Result-Block]
where H(L(y)) = 〈Task<σ>, running(F )〉

H � 〈L, x=y.GetResult();s〉� → H � 〈L[x 
→ v], s〉� [E-GetResult]
where H(L(y)) = 〈Task<σ>, done(v)〉

H0 � {〈L, x=Task.AsyncIO<γ>();s〉� ◦ FS} ∪ P [E-Async-IO]
� H1 � {〈L[x 
→ o], s〉� ◦ FS} ∪ P ∪ {〈{y 
→ v}, ������ y;〉a(o) ◦ ε}
where o �∈ dom(H0),H1 = H0[o 
→ 〈Task<γ>, running(ε)〉] and v ∈ Values(γ)

These transition rules cover the new asynchronous features in C� 5.0. First we re-
call that task heap objects are of the form 〈Task<σ>, done(v)〉 for some value v, or
〈Task<σ>, running(F )〉 where F is a sequence of frames—we will refer to this se-
quence as the running state of the task heap object. (In reality these two forms are en-
coded as conventional objects using delegates for the frames.) Tasks are stateful: a task
heap object is created in initial state 〈Task<σ>, running(ε)〉, with no waiters; can tran-
sition from state 〈Task<σ>, running(F )〉 to 〈Task<σ>, running(Fo, F )〉, adding one
waiter, and may terminate in a completed state 〈Task<σ>, done(v)〉 for some value v
of type σ. Once completed, a task cannot change state again.

Rule [E-Async-Method] shows how to transition a call to an asynchronous method.
We create a fresh Task object in the heap (at address o), and set its state to be running.
Initially, there are no waiters for this task, so its running sequence is empty. We push a
new frame containing the method body on the frame stack and label it as asynchronous,
i.e., with the label a(o). The caller frame is updated with the heap address of the task in
its locals stack. Notice that the calling frame is not awaiting a value, just control.

[E-Async-Return] pops the active asynchronous frame, storing the return value
in the task. It also resumes any waiters (there may be zero or more). The operation
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resume(F ) is used to resume a sequence of suspended frames. It creates a bag of sin-

gleton frame stacks and is defined as resume(F )
def
= {〈L, s〉� ◦ ε | 〈L, s〉� ∈ F}.

Rule [E-Await-Continue] covers the case when a task being awaited is already com-
pleted. In this case we simply read out the value from the task and continue. Rule
[E-Await] covers the case when the task being awaited is still running. In this case we
need to pause the asynchronous method. Thus we pop the active asynchronous frame
from the frame stack and add it to the sequence of awaiters of the incomplete task. No-
tice that we unfold the ����� y to y.GetResult()—once resumed, the first thing the
frame will do is read the value from y’s (completed) task object in the shared heap.

Rule [E-Result] and [E-Result-Block] implement the in-built method Result on
tasks. If the task is completed then it returns the result; if it is running then it ‘blocks’
(which for simplicity we simulate by spinning, i.e. by transitioning to itself). In contrast,
rule [E-GetResult] implements GetResult. It too returns the result if the task is com-
pleted. However, if the task is incomplete, no rule applies and the configuration is stuck
(the implementation raises an exception). GetResult is non-blocking and partial.

Rule [E-Async-IO] models a prototypical asynchronous method. It immediately re-
turns a fresh, running task to be completed, with some value v, by a separate thread.

Process transition rules:

H � {ε} ∪ P � H � P [E-Exit]

H0 � {FS0} ∪ P � H1 � {FS 1} ∪ P if H0 � FS0 � H1 � FS1 [E-Schedule]

Recall that a process is a collection of frame stacks, i.e., threads. Rule [E-Exit] deletes
an empty frame stack from the process. Rather than formalizing a particular scheduler,
rule [E-Schedule] simply transitions a process by non-deterministically selecting and
transitioning a thread, possibly side-effecting the shared heap. Our semantics is an in-
terleaved semantics, allowing preemption at every atomic statement.

4 Correctness Properties

Given our formalization of FC�
5 we are able to prove some important correctness prop-

erties; specifically, type soundness. Interestingly, establishing these properties involves
non-trivial extensions of the conventional techniques [4]. In this section we give some
details of these extensions and the precise forms of the correctness properties; complete
details are given in a technical report.

The typical approach to proving type soundness involves extending the notion of type
checking to configurations, and then establishing preservation and progress properties.
However, for FC�

5 this is not strong enough—in particular to establish progress—we
have to consider not only type correctness but also crucial non-interference properties
of tasks; both those being executed on framestacks and also those that are waiters on
others tasks (and so are suspended in the heap). We also need to establish that the
stateful protocol of tasks described in §3.1—that tasks begin in an empty running state,
acquire waiters and then terminate in a done state (and never transition once in a done
state)—is preserved too.

Rather than combine the typing and non-interference properties into a single relation,
we keep them separate (at the expense of more verbose theorem statements). The rules
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for non-interference for processes, framestacks, frames, heaps and heap objects are
as follows.

Non-interference properties:

[Proc-ok]

� (H � FS0) ok · · · � (H � FSn) ok
∀i �= j ∈ {0..n}.taskIds (FS i)#taskIds(FS j)

� (H � {FS 0, . . . ,FSn}) ok

[EmpFS-ok]
H � ε ok [FS-ok]

H � F ok H � FS ok taskIds(F )#taskIds(FS)

H � F ◦ FS ok

[SF-ok]
H � F s ok

[CSF-ok] H � F s ok
H � F s

x ok

[AF-ok]
Running(H(o)) ∀o1 ∈ dom(H).o �∈ runningIds(H(o1))

H � F a(o) ok

[H-ok]

∀o ∈ dom(H).H � H(o) ok
∀o1 �= o2 ∈ dom(H).runningIds(H(o1))#runningIds(H(o2))

� H ok

[HO-ok]
H � 〈C,FM 〉 ok [DTHO-ok]

H � 〈Task<σ>, done(v)〉 ok

[RTHO-ok]

∀i �= j ∈ {0..n}.taskIds (Fi)#taskIds(Fj)
∀i ∈ {0..n}.∀o ∈ taskIds(Fi).Running(H(o))

H � 〈Task<σ>, running(F0, . . . , Fn)〉 ok

We use a function taskIds(FS ) which returns the task ids of a frame stack FS (i.e.,
the set of all object ids o found in asynchronous frame labels a(o) in the frame stack).
We also overload this function over frames. We use a function runningIds that returns
the task ids of the running state of a given task heap object. The predicate Running
tests whether the state of a task heap object is currently running.

Rule [Proc-ok] ensures that the task ids in the frame stacks in a process are pairwise
disjoint (we use the symbol # to denote disjointness). Rule [FS-ok] ensures that in a
frame stack the task ids are all distinct. Rule [AF-ok] ensures that any task id in an
asynchronous frame label is not included in the task ids of any running state in the
heap. Rule [H-ok] ensures that for all the task heap objects in the heap, the task ids of
the running states are disjoint. Rule [RTHO-ok] ensures that a given running task heap
object has no duplicate task ids in its running state, and that all task ids in its running
state refer to running (non-completed) tasks.

We also define a relation between heaps that preserves the typing of the heap objects
and also enforce non-interference of any new running state whilst bounding the task ids
of any new running state.

Definition 1 (Heap evolution). Heap H0 evolves to H1 wrt a set of task ids S, written
H0 ≤S H1 if (i) ∀o ∈ dom(H1). if o �∈ dom(H0) and H1(o1) = 〈ψ, running(F )〉
then F = ε, and (ii) ∀o ∈ dom(H0). if H0(o) = 〈C,FM 0〉 thenH1(o) = 〈C,FM 1〉, if
H0(o) = 〈ψ, done(v)〉 then H1(o) = 〈ψ, done(v)〉, and if H0(o) = 〈ψ, running(F0)〉
thenH1(o) = 〈ψ, running(F1, F0)〉, taskIds(F0)#taskIds(F1) and taskIds(F1) ⊆ S.
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We also have typing relations for processes, framestacks, frames and heaps, written
� (H � P ): 
,H � FS :φ0 → φ1, H � F :φ0 → φ1 and � H : 
, respectively. Space
prevents us from giving definitions of these relations, but they are routine.

Theorem 1 (Preservation). If � H0: 
 and � H0 ok then:

1. If Γ ;H0 � F0:φ0 → φ1, H0 � F0 ok and H0 � F0 → H1 � F1 then � H1: 
,
� H1 ok, Γ ;H1 � F1:φ0 → φ1, H1 � F1 ok and ∀S.H0 ≤S H1.

2. If H0 � FS 0:φ0 → φ1, H0 � FS 0 ok andH0�FS 0 � H1 �FS1 then � H1: 
,
� H1 ok, H1 � FS1:φ0 → φ1, H1 � FS 1 ok and H0 ≤taskIds(FS0) H1.

3. If � (H0 � P0): 
, � (H0 � P0) ok and H0 � P0 � H1 � P1 then � H1: 
,
� H1 ok, � (H1 � P1): 
 and � (H1 � P1) ok.

Proof. Part (1) is proved by case analysis on H0 � F0 → H1 � F1. Part (2) is proved
by induction on the derivation of H0 � FS0 � H1 � FS 1 and part (1), and part (3) by
induction on the derivation of H0 � P0 � H1 � P1 and part (2).

Theorem 2 (Progress). If � (H0 � P0): 
 and � (H0 � P0) ok then

1. H0 � P0 � H1 � P1, for some H1, P1; or
2. for all FS ∈ P0, one of the following holds:

(a) FS = 〈L, return x;t〉s ◦ ε.
(b) FS = 〈L, y=x.m(z);t〉l ◦ FS ′, or FS = 〈L, x.m(z);t〉l ◦ FS ′, or FS =

〈L, y=x.f;t〉l ◦ FS ′, or FS = 〈L, x.f=y;t〉l ◦ FS ′, where L(x) = null.
(c) FS = 〈L, y=await x;t〉a(o) ◦ FS ′, where L(x) = null.
(d) FS = 〈L, ε〉l ◦ FS ′.
(e) FS = 〈L, y=x.GetResult();t〉l ◦ FS ′, where L(x) = o and

H(L(x)) = 〈Task<τ>, running(F )〉.
The progress theorem states a well-formed process can either transition or must en-
tirely consist of stacks in terminal or stuck states (the latter includes the case P0 = {}).
Case 2a, a terminal state, can only arise from finishing a call to a program’s non-	
��
main method. Cases 2b–2c are familiar and new expected stuck states due to ����

references. Case 2d is excluded by applying C�’s restriction that all control paths in
a (non-	
��) method body contain a ����� statement [12, §8.1]. Note that an asyn-
chronous ����� x;t is never stuck due to the enclosing frame’s task being in an unex-
pected done( ) state; this potential case is ruled out by � H0�P0 ok. Interestingly, we
could also rule out case 2e by simply excluding any occurrences of GetResult in the
original program; although the formal details are beyond the scope of this paper. With
this restriction, the only occurrences of GetResult arise from the [E-Await] transition.
These frames are only resumed by the rule [E-Async-Return] which also transitions
the state of the task object to done(v). We can also show a property that no transition
rule changes the state of a task that is completed back to running. These two properties
allow us to show that case 2e does not arise for GetResult-free source programs.

5 Extensions

5.1 Extension 1: Optimized, One-Shot Semantics

The semantics presented so far is idealized: when an asynchronous frame is suspended
to await a task, rule [E-Await] appends a copy of the frame to the task’s list of waiters.
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At first glance, the act of copying the frame appears to require an expensive allocation
of a fresh frame to store its contents. Notice, however, that frames are never duplicated:
after copying the frame, [E-Await] pops the active frame, discarding it to proceed with
its continuation, the calling stack FS . Since frames are used in a linear fashion, the ex-
pensive allocation on each suspend is entirely avoidable. The trick to avoiding repeated
allocation is to allocate just one container for each asynchronous frame and destruc-
tively update its contents at each suspension of that frame.

The C� 5.0 implementation does just this, representing a suspended frame on the heap
as a “stateful” delegate of type Action. Delegates [12, Chapter 15] are just closures,
containing the address of some environment and the address of some static code taking
the environment as a first argument. Both addresses are immutable. The state of the
frame is therefore maintained, not directly in the closure, but in its environment. To
achieve this, the environment itself has mutable fields that store the current values of
the frame’s locals, its associated task, and the current state of the finite state machine.
All read and writes of locals in the original code are compiled to indirected operations
on fields of the environment. The delegate’s code pointer just contains the fixed code
interpreting the frame’s state machine.

In this section, we formalize a high-level abstraction of this implementation. Our for-
malization makes the more efficient, destructive update explicit without descending all
the way to the low-level representation of closures used in the concrete implementation.
To do so, we require a new reference type, the delegate type Action. In our semantics,
if not in the actual implementation, the heap representation of an action is just an object
whose mutable state is a frame, containing some locals and statements. The locals map
contains the current values of local variables. The statements represent the frame’s orig-
inal body in some state of unfolding, i.e., the frame’s current “program counter”. This
allows us to adequately represent a paused frame, without exposing the compilation de-
tails of its encoding as a C� 4.0 delegate with a fixed pointer to a mutable environment
and static code. Making this change also paves the way for our formalization of the
awaitable pattern in §5.2.

First, we must extend FC�
5 with the Action type and syntax for invoking an action:

FC�
5 additional types and statements:

ρ ::= . . . | Action Delegate reference type
s ::= . . . | a(); Action invocation statement

We also need to extend and adjust our run-time representations. Action is a new
reference type so action values are just addresses of objects in the heap. An Action

object, 〈Action, F 〉, contains a (mutable) frame F , storing locals, statements and la-
bel of a suspended frame. We also need to modify tasks to track, not waiting frames
(running(F )), but waiting actions, represented as a sequence of addresses (running(o)).
Thus a running task will have representation 〈Task<σ>, running(o)〉; completed tasks
remains the same. The form of an asynchronous label, placed on frames, is now a(o1, o2).
The new label carries not one but two addresses: the address of the frame’s task, o1, as
before, and a second address, o2, of an action. The action stores the previous state of
the frame; recording its address in the frame label indicates where to save the next state
of the frame prior to suspending.
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Completing a task will need to resume a list of actions, not frames, so we adapt the
definition of resume(o) to set up appropriate synchronous stubs, one per action in o:

resume(o)
def
= {〈{x → oi}, x();�����; 〉s ◦ ε | oi ∈ o}.

Asynchronous method transition rules (One-shot semantics):

H � 〈L, x();s〉� ◦ FS � H � F ◦ 〈L, s〉� ◦ FS [E-Action-Invoke]
where H(L(x)) = 〈Action, F 〉

H0 � 〈L0, y0=y1.m(z);s〉� ◦ FS [E-Async-MethodOS]
→ H1 � 〈L1, t〉a(o1,o2) ◦ 〈L0[y0 
→ o1], s〉� ◦ FS
where H0(L0(y1)) = 〈σ0,FM 〉 and mbody(σ0,m) = mb: (σ x) →a ψ

mb = τ y; t and o1, o2 �∈ dom(H0), o1 �= o2
H1 = H0[o1 
→ 〈ψ, running(ε)〉, o2 
→ 〈, 〉Action〈L1, t〉a(o1,o2)]
L1 = [x 
→ L0(z), y 
→ default(τ), ��	� 
→ L0(y1)]

H0 � {〈L, ������ y;s〉a(o1,o2) ◦ FS} ∪ P [E-Async-ReturnOS]
� H1 � {FS} ∪ resume(o) ∪ P
where H0(o1) = 〈Task<σ>, running(o)〉

H1 = H0[ o1 
→ 〈Task<σ>, done(L(y))〉, o2 
→ 〈Action, 〈L, s〉a(o1,o2)〉]

H � 〈L, x=���	� y;s〉a(o1,o2) ◦ FS [E-Await-ContinueOS]
� H � 〈L[x 
→ v], s〉a(o1,o2) ◦ FS where H(L(y)) = 〈Task<σ>, done(v)〉
H0 � 〈L, x=���	� y;s〉a(o1,o2) ◦ FS � H1 � FS [E-AwaitOS]
where L(y) = o3,H0(o3) = 〈Task<σ>, running(o)〉

H1 = H0[ o3 
→ 〈Task<σ>, running(o2, o)〉,
o2 
→ 〈Action, 〈L, x= GetResult(y); s〉a(o1,o2)〉]

Rule [E-Action-Invoke] formalizes the invocation of an action, similar to a method
call. Notice that the entire frame, including label, is restored from the heap. In particular,
an asynchronous frame will continue to signal completion through its task and have
access to its action (for future suspension, if needed).

Rule [E-Async-MethodOS] is similar to [E-Async-Method] but it additionally al-
locates a new Action, storing the initial state of the asynchronous method. The address
of the action, o2, is recorded in the extended label of the pushed frame.

Rule [E-Async-ReturnOS] is similar to [E-Async-Return], completing the asyn-
chronous frame’s task. Though it is not necessary, we save the current locals and con-
tinuation of the �����, s, in the frame’s Action. For this simple semantics, it should
be possible to show that this action can never be invoked again.6

Rule [E-Await-ContinueOS] is almost identical to [E-Await-Continue], continuing
execution of the current frame with the argument’s result. The only difference is the ex-
tended label. There is no need to update the value of o2 at this point. Rule [E-AwaitOS]
is similar to [E-Await], but the suspend mechanism is different. This rule writes the
frame’s current state, locals and continuation, to its associated action, stored at ad-
dress o2, available from the frame’s label. It then adds the address of that action to the

6 When we add support for the awaitable pattern, the potential for abuse of the awaitable proto-
col, will mean that this property no longer generally holds.
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incomplete task’s list of waiters. Notice how the state of the action in the heap is de-
structively modified - there is no way to “go back” to a previous state of this frame.

Consider rule [E-Async-MethodOS]. It directly pushes a new asynchronous frame
and assigns its task, o1, to the caller’s variable, y0. An alternative formulation would be
to push a synchronous stub that invokes the new action, o2, and then returns the task, o1,
to the waiting caller. This would be less direct, but equivalent, and somewhat more faith-
ful to the actual implementation. For example, the implementation of CopyToManual
from §2.1 is essentially a stub method that, when called, invokes its internal delegate,
act(), before returning its task.

At this point, the change to using mutable state to represent suspended frames is
just an optimization. The reason is that user-code is never provided with access to a
suspended frame, so the change in semantics cannot be observed.

5.2 Extension 2: The Awaitable Pattern

As detailed in §2, in C� 5.0 it is possible to await not just tasks, but values of any
awaitable type. Our formalization has assumed that the only awaitable type is Task<σ>.
In this section, we embrace the full awaitable pattern, replacing rule [C-Await] with:

New typing rule for awaitable expressions ([C-Awaitable])

mtype(σ0, GetAwaiter) = () → σ1 mtype(σ1, IsCompleted) = () → ����

mtype(σ1, OnCompleted) = (Action) → ��	� mtype(σ1, GetResult) = () → σ2

Γ, x:σ0 � ���	� x:σ2

We simplify C� 5.0 and assume the property IsCompleted is an ordinary method;
the distinction between methods and properties is entirely cosmetic so nothing is lost.

In the transition semantics ����� expressions can no longer transition atomically
but must, instead, be evaluated in multiple steps. These steps commence with obtaining
the argument’s awaiter and proceed with calls to the awaiter’s members, thus interleav-
ing (potentially) user-defined code with the semantics of the ����� construct. Rule
[C-Awaitable] statically ensures that these dynamic unfoldings are well-typed.

But first, we need to arrange that tasks are awaitable and implement the remain-
ing requirements of the awaitable pattern. Our system already provides an appropri-
ate GetResult for tasks; we are left with providing GetAwaiter,IsCompleted and
OnCompleted, ascribed with the following types:

mtype(Task<σ>, GetAwaiter) = () → Task<σ>
mtype(Task<σ>, IsCompleted) = () → ����

mtype(Task<σ>, OnCompleted) = (Action) → ��	�

mtype(Task<σ>, GetResult) = () → σ

To avoid hard-wiring C� 5.0’s generic TaskAwaiter<σ> type, we simplify the C� 5.0
design and assume that Task<σ> is self-sufficient and serves as its own awaiter type.
Correspondingly,x.GetAwaiter()’s type is just the type of task x; its implementation,
by rule [E-Task-GetAwaiter] below, just returns the receiver.
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Additional transition rules for ����’s awaitable operations:

H � 〈L, x=y.GetAwaiter();s〉� [E-Task-GetAwaiter]
→ H � 〈L[x 
→ L(y)], s〉� where H(L(y)) = 〈Task<σ>,FM 〉

H � 〈L, x=y.IsCompleted();s〉� [E-Task-IsCompleted]
→ H � 〈L[x 
→ ����], s〉� where H(L(y)) = 〈Task<σ>, done(v)〉
→ H � 〈L[x 
→ �����], s〉� where H(L(y)) = 〈Task<σ>, running(o)〉

H0 � 〈L, x.OnCompleted(y);s〉� → H1 � 〈L, s〉� [E-Task-OnCompleted-Suspend]
where L(x) = o1 and H0(o1) = 〈Task<σ>, running(o)〉

L(y) = o2 and H1 = H0[o1 
→ 〈Task<σ>, running(o2, o)〉
H � {〈L, x.OnCompleted(y);s〉� ◦ FS} ∪ P [E-Task-OnCompleted-Resume]
� H � {〈L, s〉� ◦ FS} ∪ resume(o) ∪ P
where H(L(x)) = 〈Task<σ>, done(v)〉 and L(y) = o

Task’s implementation of IsCompleted() tests the state field of the receiver, return-
ing ��� if and only if it is done( ). The implementation of OnCompleted(y) adds
its callback y (an Action), to the receiver’s list of waiters. If the task is already com-
pleted, the action cannot be stored and must, instead, be resumed in the process. The
latter rule is required since there is a race between testing that a task IsCompleted(),
finding it is ����, and calling OnCompleted(y)—some other thread could intervene
and complete the task before OnCompleted(y) executes.

We can now formalize the operational semantics of ����� on any awaitable. Because
we need to interleave the execution of methods from the awaitable pattern—which take
several transitions and could be user-defined—with the semantics of �����, we need
to introduce two additional, transient control statements that can only appear within
asynchronous frames.

FC�
5 additional control statements:

s ::= . . . | suspend; | getcc(Action a){s}; suspend & get-current-continuation statements

Though artificial, these statements have direct interpretations as intermediate steps of a
compiler generated finite-state-machine.7

We define unfold(x = ����� y; s)(z,b) to be the syntactic unfolding of an ����� as
a new sequence of statements using temporaries z and b (note a is bound):

unfold(x = ���	� y; s)(z,b)
def
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z = y.GetAwaiter();
b = z.IsCompleted();
	� (b) {} ����

{ getcc(Action a){z.OnCompleted(a);suspend;};}
x = z.GetResult();
s

The operation unfolds an ����� of an awaitable object y by first retrieving its awaiter z
and setting b to determine if the awaiter is complete. If complete, the code falls through

7 For example, in our hand-coded CopyToManual from §2.1, suspend corresponds to a
������; from the act delegate that pauses execution (cases 1 and 2 of the switch);
getcc(Action a){s}; corresponds to advancing the (shared) state variable to the next log-
ical state (following getcc(Action a){s};) and accessing the task’s state machine (act).
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the conditional. If incomplete, the code transfers the current continuation of the getcc
statement to z (through a) and suspends. The continuation of both the ��� branch and
the getcc statement is just x = z.GetResult();s. It assigns the result of the awaiter to
x, and proceeds with the original continuation s of the �����.

Awaitable pattern, asynchronous method transition rules:

H0 � 〈L0, x=���	� y;s〉a(o1,o2) [E-Awaitable]
→ H0 � 〈L1, unfold(x = ���	� y; s)(z,b)〉a(o1,o2)
where L1 = L0[z 
→ ����, b 
→ �����] and z, b �∈ dom(L0), z �= b

H0 � 〈L, getcc(Action a){s};t〉a(o1,o2) → H1 � 〈L[a 
→ o2], s〉a(o1,o2) [E-GetCC]
where a �∈ dom(L) and H1 = H0[o2 
→ 〈Action, 〈L, t〉a(o1,o2)〉]

H � 〈L, suspend;s〉a(o1,o2) ◦ FS � H � FS [E-Suspend]

Rule [E-Awaitable] unfolds its await expression using fresh temporaries, z and b. In
rule [E-GetCC], getcc(Action a){s} unfolds by first saving its continuation t in the
frame’s task, o2, discarding it from the active frame, and then entering the body s. When
s is just z.OnCompleted(a);suspend;, as per rule [E-Awaitable], s will transfer the
current continuation to the awaiter and suspend.

In rule [E-Suspend] the suspend control statement pauses the asynchronous frame.
This is similar to a �����, but the frame’s task is not marked completed and remains
in its current state. One might expect this state to be running( ) but it may not be,
depending on the semantics of OnCompleted.

Although our semantics unfolds �����s dynamically, it is possible to statically ex-
pand well-typed ����� expressions by a source-to-source translation, sketched here:

[x = ���	� y; s0]
Γ def

= (Γ1, s2) where mtype(Γ (y),GetAwaiter) = () → σ1

(Γ1, s1) = [s0]
Γ,z:σ1,b:����

s2 = unfold(x = ���	� y; s1)
(z,b)

b, z �∈ dom(Γ ), b �= z

[s; s]Γ
def
= . . .

This translation must be type-directed (in order to determine awaiter types) and needs
to produce a new context as well as the list of statements in order to properly account
for generated variables. Notice, however, that it is finite and does not need to duplicate
the input continuation s0, making it suitable for compile-time expansion.

���
�����’s one-shot Restriction, Explained. Once we add the awaitable pattern
to the mix, the optimization described in §5.1 becomes a proper change to the semantics,
with observable consequences. The culprit is the awaitable pattern’s OnCompleted(a)
method since it provides user-code with access to the one-shot continuation, a, of the
frame, represented not as a pure value but as a stateful object. Recall that our informal
description of the awaiter pattern stipulated that implementations of OnCompleted are
required to invoke their action at most once. The reason why should now be clear. In-
voking the action will resume the frame and potentially modify the action’s state. In our
semantics, the update would happen at the next suspension. In the real implementation,
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the update would happen at the next write to some notionally local, but actually shared,
variable of the frame. Two concurrent invocations of the same action have unpredictable
behaviour: each would race to save its next, possibly different state in the same action.
Frame execution depends on the shared heap, modified non-deterministically by rule
[E-Schedule], so two invocations could very easily reach different states.

As it happens, when extended with the awaitable pattern, even the simpler, copying
semantics cannot tolerate multiple invocations of a continuation, but the reason is more
subtle. In the copying semantics, even a copy of a frame is inherently stateful because
its label will contain a reference to the original frame’s task. Allocated on the heap,
this task is shared state: several invocations of the same continuation would race, with
possibly different results, to complete the very same task on exit. Part of the semantics
of tasks is that they should complete at most once. This invariant is violated by any
abuse of one-shot continuations, as enabled by the awaitable pattern.

6 Related Work

The debate regarding how asynchronous software should be structured is both old and
ongoing. Lauer and Needham [14] noted that the thread-based and event-based models
are dual; a program written in one style can be transformed into a program written in
the other style. Though this establishes that the two models are equivalent in expressive
power, it does not resolve the question of which model is easier to use or reason about.

Ousterhout [17] famously stated that “threads are a bad idea (for most programs).”
His argument revolves around the claim that threads are more difficult to program
than events because the programmer must reason about shared state, locks, race con-
ditions, etc., and that they are only necessary when true concurrency–in contrast to
asynchrony—is desired. Though he conflates the threaded model of programming, in
which there is no inversion of control, with concurrency, his observation that the pro-
grammer should be able to reason about the operation of code is well-taken.

SEDA [25] demonstrates that the event model can be highly scalable. Servers de-
signed using SEDA are broken into separate stages with associated event queues. Each
stage automatically tunes its resource usage and computation to meet application-wide
performance goals. Within each stage multiple threads may process events, but these
threads are utilized only for concurrency. The programmer still has to manually manage
the state associated with each event. SEDA’s goal is to provide a self-tuning architecture
that adapts to overload conditions, not to make programming servers easier.

The dual argument in favor of threads over events is made by von Behren et al. [22].
They tease apart the different aspects of threads that may make them undesirable and ar-
gue that most of these deficiencies are merely implementation artifacts. Capriccio [23]
demonstrates that this is the case by providing a very efficient cooperative thread-
ing mechanism that avoids inversion of control and provides an efficient runtime. Be-
cause it uses cooperative threading, Capriccio avoids the overhead of concurrency,
and code transformations to insert stack checks allow threads’ stacks to grow without
requiring large amounts of pre-allocated stack space. Like Capriccio, asynchronous C�

allows programs to be written in a natural way while providing an efficient implementa-
tion. However, instead of attempting to provide a general cooperative threading mech-
anism, it permits programmers to write asynchronous code in a straight-line fashion by
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automating stack-ripping [1] via compilation to a state machine. Like the state machine
translation C� employs, it is reminiscent of simpler coroutine implementations [21,7]
built on Duff’s device [6] that, however, make no attempt to maintain local state.

The observation that continuations provide a natural substrate on which to build a
threading mechanism was made by Wand [24]. The observation that more restrictive,
but more efficient, one-shot continuations suffice for continuation based threading dates
back to [5]. Li and Zdancewic [15] use continuations to unify the event and thread-
based models. They leverage the continuation monad in Haskell to allow programmers
to write straight line code that is desugared into continuation passing style (CPS), thus
allowing it to be used in an event-based IO framework they construct.

The computation expressions [20] of F� provide a generalized monadic syntax, which
is essentially an extended form of Haskell’s do-notation. When specialised to F�’s asyn-
chronous workflow monad—itself a continuation monad—they allow programmers to
write monadic code that is syntactically expanded to explicit continuation-passing-code.
This offers much of the legibility of programming in direct-style while, at the same
time, providing access to the implicit continuations (as F� functions) whenever required
(e.g., when supplying callbacks to asynchronous calls). The generality of computation
expressions has a cost: each continuation of a monadic let is a heap-allocated function;
and every wait on an asynchronous value typically requires an expensive allocation of
a fresh continuation. This is similar to our idealized semantics in §3. The upshot is that
these continuations can, in principle, be invoked several times, allowing the encoding
of a much wider range of control operators than the one-shot actions of C�’s feature.
But there are more differences. In F�, computation expressions produce inert values that
are easily composed but must be explicitly run to produce a result. In C�, on the other
hand, each task returned by an async method call represents a running computation.
This makes it easier to initiate asynchronous work but, perhaps, harder to define combi-
nators that compose asynchronous methods. Though inspired by F�, C� 5.0 support for
asynchrony is quite different in performance, expressivity and usage.

Scala actors [11] provide an asynchronous, message passing model for program-
ming with concurrent processes. Asynchronous programs may be written in terms of
receive, which suspends the current thread until a message is received, or react, which
enqueues a continuation that is called when a message is received; receive provides
a thread-based interface and react provides an event-based interface to an underlying
message passing framework. Although the two programming models are made sim-
ilar through the use of various combinators, the programmer must still significantly
modify code to move between styles. Rompf et al. [19] use a type and effect sys-
tem to selectively CPS convert Scala programs, providing a less onerous path from
threads to event-based asynchronous code, but C� 5.0’s ����� keyword is even more
lightweight.

Despite Ousterhout’s early admonition that reasoning about threads is difficult and
error-prone, none of the work mentioned makes an explicit attempt to provide program-
mers with a set of reasoning principles for asynchronous code. Although we believe
C�’s support for asynchrony exists at a useful point in the design space, our focus is on
providing these reasoning principles. Threads or events, manual stack ripping or CPS,
a programmer must have clear ways to reason about code behavior in order to build
correct systems of any kind.
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7 Conclusions

Real-world software construction demands effective methods for dealing with asyn-
chrony. For such a method to be termed “effective,” it must not require large-scale,
manual code transformations such as stack ripping. Sequential computations should
be expressible with sequential code, even if individual operations may execute asyn-
chronously. Splitting sequential code up into a series of callbacks or explicitly rewrit-
ing it as a state machine is a steep price to pay, making code difficult to write, difficult
to read, and difficult to reason about; if in doubt, contrast the synchronous, �����-
enabled, and hand-written state machine versions of the stream copying function from
§2.1. While previous work has provided syntactic and library support for dealing with
asynchrony, C� 5.0 brings this support to a widely-deployed, mainstream language.

One deficiency of this previous work is a lack of reasoning principles for asyn-
chronous code. Our primary contribution is an operational semantics for C� 5.0 that
allows programmers to answer questions about the code they write and make conclu-
sions about the impact of adding asynchrony to their code. For example, using our
semantics, the programmer can see that calling an ����� method does not spawn a
new thread, but instead executes the method on the current stack. With the optimized
semantics in §5.1, one can even begin to reason about space usage by, e.g., observing
that the state of an ����� method is always stored in the same Action, allocated just
once.

We plan to continue our formalization of C� 5.0 by incorporating additional lan-
guage features, such as cancellation tokens and synchronization context object—we
have already formalized exceptions and their interaction with �����, but due to space
restrictions this formalization, as well as an asynchronous tail-call optimization, is only
available in a separate tech report.Our semantics have been translated to Coq. We will
use this as a foundation to validate a translation from Featherweight C� 5.0—including
the ����� construct—to Featherweight CIL, an idealized version of the bytecode tar-
geted by the C� 5.0 compiler. Validation of this translation will prove that programmers
can reason in terms of our high-level operational semantics even though the high-level
program has been translated to bytecode and it is the bytecode that is actually executed.

While syntax is important for easing the pain of writing asynchronous code, a corre-
sponding semantics is vital for writing correct software. With our semantics, C� 5.0 both
provides relief and the necessary tools for thinking carefully about the remedy.

Acknowledgements. We thank the C� and Visual Basic teams for their collaboration,
especially Lucian Wischik who led much of the design and implementation effort.
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