
UpgradeJ: Incremental Typechecking
for Class Upgrades

Gavin Bierman1, Matthew Parkinson2, and James Noble3

1 Microsoft Research Cambridge
2 University of Cambridge

3 Victoria University of Wellington

Abstract. One of the problems facing developers is the constant evolution of
components that are used to build applications. This evolution is typical of any
multi-person or multi-site software project. How can we program in this environ-
ment? More precisely, how can language design address such evolution? In this
paper we attack two significant issues that arise from constant component evo-
lution: we propose language-level extensions that permit multiple, co-existing
versions of classes and the ability to dynamically upgrade from one version of
a class to another, whilst still maintaining type safety guarantees and requiring
only lightweight extensions to the runtime infrastructure. We show how our ex-
tensions, whilst intuitive, provide a great deal of power by giving a number of
examples. Given the subtlety of the problem, we formalize a core fragment of our
language and prove a number of important safety properties.

1 Introduction

Modern programming languages typically provide support for separate compilation and
dynamic linking of components. This allows for code to be developed at multiple sites
and shared across multiple applications, supporting code evolution and reuse. Program-
mers can build applications from these components, utilizing the runtime infrastructure
to dynamically link in the components as required.

Experience has shown that this style of software construction is extremely frag-
ile: because both context code and components evolve independently, there are few
guarantees a program will actually “run anywhere”—or even typecheck—when linked
dynamically against the motley collections of components found in most installed sys-
tems. There are many instances of this problem—commonly known as “DLL hell” or
more recently “JAR hell”—servlet engines that depend on different, incompatible ver-
sions of XML libraries; web tools that rely on rendering engines from specific versions
of open-source web browsers, so upgrading the browsers breaks the associated tools;
language runtimes that depend on exact versions of ActiveX code support and so on.

A number of solutions to this problem have been proposed, ranging from third-
party tools, particular programming patterns, centralized management systems (e.g.
RPM [4]), dynamic, reflective package infrastructures (e.g. OSGi [21]), to runtime ar-
chitectural support (e.g. .NET and JVM). Most of these solutions are external to the
application itself, and place a burden on the runtime infrastructure. Rather than solving
the problem of evolving and incompatible programs and components, they just move
it sideways, into tools, middleware, or external policies that allow flexible bindings but



make few guarantees about the compatibility between a program and the components
to which it may be bound.

In this paper, we aim to tackle the problem of program and component upgrading
and evolution head-on, giving control to the programmer. Rather than having implicit
rules about how programs can be bound, we make component versions explicit: ev-
ery class and type in the program has a version number. We provide language support
for upgrading classes in a variety of ways, and provide an assymetrical, incremental
(but not iterative) type system that checks upgrades for consistency with the currently-
running program. This enables us to be explicit about component compatibility; to give
guarantees about which changes to classes are at least type safe (and which are not);
and so to write code that is robust against multiple upgrades of the same component.

Having decided on language support for upgrading, an immediate question is at
what level of granularity do we provide such support? Unfortunately, many issues con-
cerning programming in the large are still being resolved for Java-like languages, e.g.
witness the ongoing discussions on providing modules for Java [28]. In this paper we
address upgrading in the small rather than in the large.

In any case, we argue that upgrading of classes is the essence of the problem—
even if language support is eventually provided at some higher level, matters will still
boil down to class definitions in Java-like languages. As we shall see, this is a highly
non-trivial problem. The issues of correctness are subtle enough that we believe that
a precise approach is essential, and required prior to any implementation or software
engineering issues.

The conceptual contribution of this paper is embodied in the design of UpgradeJ,
a Java-like language with support for type-safe dynamic class upgrading. We extend
classes to have explicit version numbers, e.g.

class Button[1] extends Widget[1] {

Font[1] font = new Font[1=]();

Colour[2] colour = new Colour[3+]();

}

and types declare the versions of classes they will accept (the font field stores ob-
jects compatible with Font version 1, while the colour field stores Colour instances
compatible with version 2). Then, new expressions also include version numbers with
the class names, but in addition they include information about instances’ upgradeabil-
ity. Hence the new Font object instance will remain fixed at version 1, whilst the new
Colour object will be version 3 but may be upgraded later. (The exact behaviour of
these annotations will be explained in more detail in §2 and formalized precisely in §4.)

Programmers can also request instances of the most evolved version of a particular
class. For example, given:

Colour[3] latest = new Colour[3++]();

the instance actually stored in latest will be the most evolved version of Colour
version 3 at object creation time. Moreover, it may be subsequently upgraded.

UpgradeJ then allows classes to be updated with newer versions dynamically. There
are a number of ways that this could be supported; but for simplicity we model up-
grading with upgrade statements of the form: upgrade. When an upgrade statement is
executed the program will be upgraded if any suitable upgrades are available.

2



Not all upgrades make sense, or can be supported trivially. The technical contribu-
tion of the paper is exactly how we enforce the safe upgrading of classes to be incre-
mental—so that any class declaration is only ever typechecked once—whilst ensuring
that an upgrade can never break the type safety of a running program.

Compared to some previous work, the focus of UpgradeJ is on what we call class
upgrading: adding in new classes to a running system, and performing minor or major
upgrades of existing classes. Unlike many other approaches, UpgradeJ does not perform
any kind of object or instance upgrading. In other words we never alter a runtime object,
just perhaps its behaviour. As a result, we expect that the features of UpgradeJ should
be able to be implemented efficiently: each class or method definition is checked only
once when first presented to the system; and UpgradeJ never requires any (expensive)
traversals, inspections or bulk modifications of the heap. Indeed, our aim in this paper
is to explore the design space of upgrading mechanisms that are strictly less powerful
than object updates, although we argue in §6 that object updating could be implemented
in UpgradeJ by combining class upgrades with a couple of reflective primitives. For
similar reasons of practicality, we do not consider any kind of functional correctness
between upgrades: we work only with types, and not with behavioural specifications.

The rest of the paper is organized as follows. We give an extensive, examples-driven
introduction to the support for class upgrades in UpgradeJ in §2, beginning with sup-
port for class versions, then describing three different kinds of upgrades: new class
upgrades that introduce new subclasses; revision upgrades that change the code of ex-
isting classes; and evolution upgrades that extend existing classes (but do not change
existing instances). In §3 we consider a more realistic example and show how UpgradeJ
can be used to dynamically upgrade a long-running server application. In §4 we give
a precise definition of a featherweight version of UpgradeJ, FUJ, and define formally
its type system and operational semantics. We can prove that FUJ is type-sound. We
discuss related and future work in §5 before concluding in §6.

2 An introduction to UpgradeJ

Explicit versions and new class upgrades: UpgradeJ extends Java syntactically by re-
quiring all class names (other than Object by convention) to be annotated by a version
number in square brackets after the class name.4 For example:

class Button[1] extends Object {

Object press() { ... }

}

class AnimatedButton[1] extends Button[1] {

Object fancyPress() { ... this.press(); ... }

}

UpgradeJ programs can include upgrade statements, written upgrade. When an
upgrade statement is executed, the program waits to receive an upgrade (this could
be via a command prompt or from a file). The upgrade is typechecked and if correct
is applied to the program. Having explicit upgrade statements allows programmers to
control the timing of upgrades to the application. UpgradeJ supports three forms of
upgrade that we shall now discuss in turn.

4 One can imagine tool support that would alleviate the burden of writing version numbers.

3



The simplest form of upgrade supported by UpgradeJ is called a new class upgrade.
It allows new class definitions to be added (at runtime) to the class table. For clarity,
a new class upgrade is written as a class definition prefixed with the keyword new. To
differentiate upgrades from standard code in this paper, we present them in a shaded
box. For example, in the example above the class AnimatedButton[1] could have
been defined via a new class upgrade as follows:

new class AnimatedButton[1] extends Button[1] {

Object fancyPress() { ... this.press(); ... }

}

UpgradeJ will typecheck the upgrade in the context of the current program state: if
the tests pass, then the current program is upgraded to include the new definitions. An
important design feature of UpgradeJ is that typechecking of upgrades is incremental,
that is, only the new definitions in the upgrade are typechecked. Old definitions are
never re-checked: the typechecker will check the correctness of each class definition
only once (either when supplied as part of the initial program, or when it arrives as an
upgrade).

At this point there is no way an UpgradeJ program can use any classes introduced
by a new class upgrade: references from old classes to new classes will fail because the
old classes will have been typechecked before the upgrades arrive: we call this the “no
time travel” principle. As we shall see later, new class upgrades are still very useful as
they allow new code to be installed; other upgrade forms will allow this code to be put
to work.

Revision upgrades: Returning to our simple button example, let’s imagine that Button
has also a method bgColourwhich returns the colour of their background. For example,
the first version of Button was clearly written around 1990:

class Button[1] extends Object {

Object press(){ ... }

Colour bgColour() { return new BeigeColour[1](); }

}

By the mid-90s, these buttons have begun to look dated. In UpgradeJ we can use
a revision upgrade to provide a revision of an existing class to fix this problem. The
revision upgrade is written as follows:5

new class Button[2] extends Object revises Button[1]{

Object press(){...}

Colour bgColour() { return new GreyColour[1](); }

}

To allow upgrades to affect running programs, we provide new forms of instantia-
tion. As in Java, objects are created by calling new, however in UpgradeJ programmers
must supply both a version number for the class and an annotation of either ‘+’ to de-
note an upgradeable instance or ‘=’ to denote a non-upgradeable (or exact) instance.

5 Actually, this is sugar for two primitive UpgradeJ upgrades: first, a new class upgrade
introducing the class Button[2], and second, a revises statement Button[2] revises

Button[1]. Our formalization in §4 uses these primitive forms.

4



For example, new Button[2=]() creates a new instance of Button[2], the = ensures
that the object will have the exact version 2 (in other words, if the Button class is
subsequently upgraded this instance is insensitive to those upgrades). By contrast, up-
gradeable objects take advantage of all revisions as soon as they are supplied: after a
revision upgrade, any methods sent to an upgradeable object will execute the revised
method definitions.

For example, we can create two instances of Button[1], one exact and one up-
gradeable, both of which will have a beige background. Then, we can execute an
upgrade statement (whose effect is to revise Button[1] to Button[2] as above), and
ask each button for its bgColour. The exact button object will still return a BeigeColour
instance, while the upgradeable button will return GreyColour.

Button[1] x = new Button[1=](); // exact

Button[1] u = new Button[1+](); // upgradeable

x.bgColour(); // returns BeigeColour

u.bgColour(); // returns BeigeColour

upgrade; // Button[2] revises Button[1]

x.bgColour(); // returns BeigeColour

u.bgColour(); // returns GreyColour

One point to note here is that the types of the variables storing the buttons are the
same — both are just Button[1]. This is because every class introduced as a revision
upgrade, just as every class introduced as a new class upgrade, is a subtype of the class
being upgraded. A type like Button[1] will accept any Button[1] (as per usual);
any subclass of Button[1] (defined either in the initial program or supplied via a new
class upgrade); and any other upgrade of Button[1].6 We discuss supporting exact
annotations on types later in this section.

As fashions change, we can upgrade again:

new class Button[3] extends Object revises Button[2]{

Object press(){ ... }

Colour bgColour() { return new TransparentAquaColour[1](); }

}

Multiple upgrades can be hard to follow, so we draw class diagrams showing version
numbers explicitly, and revision relationships with a wavy arrow. The three versions of
the Button class that we have defined so far are shown as follows:

Object

+press() : Object

+bgColour() : Colour

Button[2]

+press() : Object

+bgColour() : Colour

Button[1]

+press() : Object

+bgColour() : Colour

Button[3]

6 UpgradeJ supports explicit syntax for this. In fact, Button[1] is shorthand for Button[1+].

5



To support the dynamic behaviour of upgradeable objects, however, UpgradeJ must
place some restrictions on the bodies of revision upgrades: the classes must have the
same name, the upgrade cannot revise a class that has already been revised, and (most
importantly) the resulting revised class must have exactly the same fields and method
signature as the class it is revising, and implement every interface. By the method
signature of a class, we mean all the methods and their types that are understood by
objects of that class, including inherited methods. Hence, the methods themselves need
not reside in the same class; this allows for refactoring by upgrades (see later).

So, for example,

new class Button[4] extends Object revises Button[2] { ... }

is an invalid upgrade if Button[2] has already been revised to Button[3]; and

new class Button[5] extends Object revises Button[3] {

...

Integer transparency;

Integer setTransparency(Integer t){...}

...

}

is invalid because it includes a new field and a new method to the Button class.
The restrictions on version numbers and names are primarily there to make the type

names consistent. The linear ordering on revisions (only the latest revision can itself be
revised) is important to support upgradeable objects: there is a simple, nonbranching
sequence of revisions, the latest revision of a class is always obvious, and so it’s clear
which methods an upgradeable object should run.

The restriction that the resulting revised class must have exactly the same fields and
method signature means that revised classes can change method bodies, and omit or
override methods declared concretely in ancestor classes. This restriction is necessary
to support the incremental nature of UpgradeJ, and to avoid any heap inspection. A
revision cannot add (or remove) fields from an object, because that would require the
heap representation of every upgradeable object to be changed. Methods cannot be
added into a class because they cannot be checked incrementally. We do not expect
these restrictions to be too arduous in practice because they reflect the intent of revision
upgrades: to revise an existing class, not to introduce new functionality.

Evolution upgrades: New class upgrades allow new fields and methods to be defined,
but require a new class to be created: existing instances cannot take advantage of the
upgrade. On the other hand, revision upgrades take immediate effect across all upgrade-
able instances of the class, but cannot add fields and methods. The final type of upgrade
supported by UpgradeJ is the evolution upgrade that is, in some sense, a combination
of the other two upgrade forms.

Evolution upgrades may add new methods and fields, but do not update existing
objects. Rather, evolution upgrades are supported by another form of new, written
new C[v++]() that creates an upgradeable object of the latest evolution of a class—in
effect, doing a dynamic dispatch from a class to its most recent evolution upgrade.

6



Returning to our simple button example, we can add “2007” design and animation
features to the button class with an evolution upgrade:7

new class Button[6] extends Object evolves Button[3]{

Integer animationRate;

void tick() {this.redraw(); }

Colour bgColour() { return new VistaBlackColour[1](); }

...

}

Writing new Button[1++] will create a new instance of the latest revision of the
latest evolution upgrade of the Button[1] class.

Button[1] e = new Button[1++]();

e.bgColour(); // returns TransparentAquaColour

upgrade; // Button[6] evolves Button[3]

e.bgColour(); // returns TransparentAquaColour

e = new Button[1++](); // latest creation

// now Button[6] is the latest kind of button

e.bgColour(); // returns VistaBlackColour

Note that this example demonstrates that, unlike revision upgrades, evolution up-
grades do not upgrade the behaviour of existing instances. As with other upgrades, the
types of the variables do not need to change; every upgrade is still a subtype of its target
class; a variable at version n will be compatible with every subsequent version of that
class.

There are restrictions on evolution upgrades. Whereas revision upgrades must pre-
serve the same fields and method signatures of the revised class, evolution upgrades
can extend both. Thus the new version of the class must include the fields and method
signatures of the old version, but it can add new fields and new methods.

We also introduce a diagrammatic form for evolution upgrades. We introduce an
evolution relationship between classes which is denoted using a “sawtooth” arrow (this
is intended to symbolize the breaking change possible with an evolution upgrade). For
example:

+press() : Object

+bgColour() : Colour

Button[3]

+press() : Object

+bgColour() : Colour

+tick() : void

-animationRate : Integer

Button[6]

Revision, Evolution, and Inheritance: UpgradeJ has three different relationships be-
tween classes: the traditional inheritance relationship (that can be extended with new
class upgrades), plus the revision and evolution relationships introduced to support up-
grades. How do these relationships interact?

First, UpgradeJ permits a single class to have both revision and evolution upgrades.
For example, consider the following definitions, where C[1] is revised by C[2] and, in
addition, evolved into C[3]:

7 Again, we use some syntactic sugar: this evolution upgrade can be decomposed into a new
class upgrade and an evolves statement (in this case Button[6] evolves Button[3]).

7



class C[1] {

void v() { print "one"; }

}

new class C[2] revises C[1] {

void v() { print "two"; }

}

new class C[3] evolves C[1] {

void v() { print "three"; }

}

giving the following class structure:

+v() : void

C[2]

+v() : void

C[1]

+v() : void

C[3]

There are three forms of object creation in UpgradeJ: (1) exact creation giving a
fixed object; (2) creating an upgradeable object (that follows the revises relation-
ship); and (3) creating an upgradeable object of the latest version (that follows both the
evolves relationship and then the revises relationship):

new C[1=]().v(); // outputs "one"

new C[1+]().v(); // outputs "two"

new C[1++]().v(); // outputs "three"

Second, inheritance (the extends relationship) interacts quite straightforwardly
with upgrades. Message sends to upgradeable objects always take account of revision
upgrades (while sends to exact objects always ignore them) so upgradeable objects also
see revisions to their superclasses:

new class D[2] extends C[1] {}

new D[2=]().v(); // outputs "one"

new D[2+]().v(); // outputs "two"

while new class and evolution upgrades will only affect message sending if instances of
their classes are involved directly.

Refactoring: As revision upgrades are required to preserve only the fields and method
signatures of the classes they revise, we can move methods around the hierarchy using
a combination of revision and evolution or new class upgrades. The key here is that pro-
vided a revised class has the same signatures and fields as the target class it is revising,
the two classes need have no other relationship. Given a couple of simple classes:

8



class Component[1] { }

class Button[1] extends Component[1] {

TLevel getTransparencyLevel(){...}

}

We can evolve the Component superclass to define a getTransparencyLevel()
method, and then revise the Button subclass to inherit that method from the new su-
perclass, and so removing the method from the subclass.

new class Component[2] evolves Component[1] {

TLevel getTransparencyLevel(){...}

}

new class Button[2] extends Component[2] revises Button[1] { }

The resulting structure is shown below: note that, because we use a revision upgrade
upon the Buttons, this change will apply dynamically to every upgradeable instance of
Button[1].

Component[1]

Button[2]

+getTransparencyLevel() : TLevel

Button[1]

+getTransparencyLevel() : TLevel

Component[2]

Exact version types: Sometimes programmers will need to restrict their code to a par-
ticular version of a class. For example, for historical or aesthetic reasons, a programmer
might wish to write a BeigeWindow class that only uses the first beige version for its
Buttons:

class BeigeWindow[1] extends Window {

Button[1=] okButton, cancelButton;

...

}

To prevent the fields okButton and cancelButton from receiving more recent
versions, we use exact version types declared with an “=” modifier.

An exact version type is compatible with only one (or a list of) explicit version(s):
versions of the type outside that list are not subtypes of the exact version type. (The
relationship between exact version types and version types is the same as that be-
tween exact types and subtypes in object-oriented languages [9]). An exact version
type is assignable only from another exact type or an exact object creation. Hence,
okButton = new Button[2](); would fail to typecheck, as Button[2] is not a sub-
type of the exact version type Button[1=], but only of the non-exact type Button[1].

In fact, our UpgradeJ language design supports a list of versions in exact types, and
also allows that list to be open ended. For example, if it was known that the Button[3]
upgrade introduced a bug that was subsequently removed by the Button[5] upgrade, a
variable safeButton could be declared as: Button[1=,2=,5] safeButton; permit-
ting exact Button objects of versions 1 and 2, and any exact or upgradeable Buttons

9



of version 5 or above to be stored in the variable but not the buggy Button[3] or
Button[4].

Exact types, even more than exact objects, reduce the flexibility of software which
uses them: we expect that they would be used sparingly, primarily to avoid bugs in
particular versions of components. This is why the default for type declarations is that
the types are upgradeable, and why exact types require the “=” annotation. Nevertheless,
we expect there will be situations where programmers will demand that only a particular
version of a component is used to build a system, and exact version types provide this
guarantee.

Summary: UpgradeJ introduces a number of novel features to Java-like programming
languages: explicit versions of classes, fixed version and upgradeable version objects,
an upgrade statement, new class, revision, and evolution upgrades, and exact version
types.

The following table summarizes the relationships between the main features of Up-
gradeJ: the kinds of upgrades versus the kinds of objects and constructor calls.

Upgrade Type
New Class Revision Evolution

Class Definitions: Redefine existing method bodies N/A yes yes
Add new fields yes no yes
Add new methods yes no yes

Creation: Exact new C[1=] no no no
Upgradeable new C[1+] no yes no
Latest new C[1++] no yes yes

Method invocation: Exact T[1=,2=] no no no
Upgradeable T[1] no yes no

Revision and evolution upgrades may redefine methods (give new method bodies
such that the resulting flattened class signature does not change), while only new class
and evolution upgrades may declare new fields or methods. Creating an exact object
“new C[1=]” sees no upgrades, while creating an upgradeable object “new C[1+]”
sees revision upgrades and using latest creation “new C[1++]” creates an instance of
the most recent revision of the most recent extension. Methods sent to exact objects
again see no revisions, while methods sent to upgradeable objects see revision updates.

Finally (not shown in the table), exact version types are subtypes only of the exact
versions given in the type, while all subsequent versions of a type (both exact and not-
exact) are subtypes of earlier non-exact versions of that type.

3 Example: Upgrading a server application

In this section we present a fairly realistic example of the upgrading of a long-lived
server application. This example first appeared in a functional programming setting in
work on dynamic software updating by Bierman et al. [5] (although updates in that set-
ting required a run-time typecheck of the entire program state). To make the example
simpler, we ignore the issues of concurrency and assume a single-threaded, event-based
software architecture. In order to save space, we also only give the essential code frag-
ments to illustrate our point, rather than giving a full program.

10



Initial system: The code for our server is given below. The key class is Server which
contains a private field, myQ, containing a queue of events, e.g. HTTP requests from
clients or responses from handlers. (We do not give details of the Queue class for lack
of space.) New events are created by the NewEvent method, which either enqueues the
event and returns, or blocks if the queue is empty and no new events have occured. Once
an event occurs, then it is removed from the head of the queue using the removemethod.
All events extend the Event class, which specifies a handle method. We assume for
now just two events; get_Event and upgrade_Event (the programmer has forgotten
about put events; this will be added later). The upgrade_Event simply executes an
upgrade statement and leaves the event queue untouched. This enables the server to
be upgraded. Note that after this upgrade has taken place, the next statement is the
recursive call to loop, i.e. no remaining computation exists at this point.

class Event[1]{

void handle (Queue[1] q);

}

class get_Event[1] extends Event[1]{

void handle (Queue[1] q){ ... }

}

class upgrade_Event[1] extends Event[1]{

void handle (Queue[1] q){ upgrade; }

}

class Server[1]{

Queue[1] myQ = new Queue[1]();

void newEvent(){...}

void loop(){

newEvent(); // Enqueues new event

Event[1] e = (Event[1])myQ.remove(); // remove head of myQ

e.handle(myQ);

loop();

}

}

The code for the main method of our application then simply creates an upgrade-
able instance of the Server class and invokes its loop method, as follows.

Server[1] s = new Server[1+](); // Upgradeable object!

s.loop(); // Do the work

First upgrade: Handling put events: As mentioned earlier, the programmer has for-
gotten about put events. These are easy to add to the system dynamically using new
class and revision upgrades. First, we use a new class upgrade (by sending an upgrade
event to the server) to add the new class put_Event.

new class put_Event[1] extends Event[1]{

void handle (Queue[1] q){ ... }

}

We will also need to change the code of the newEvent method, as it will need
to create instances of the put_Event class. As the signature of this method will be
unchanged, this can be captured by a revision upgrade. We add the new revised class

11



Server[2] which is identical to Server[1] save for the new code in the newEvent
method.

new class Server[2] revises Server[1] {

Queue[1] myQ = new Queue[1]();

void newEvent(){ ... } //NEW CODE!

void loop(){

newEvent(); //Enqueues new event

Event[1] e = (Event[1])myQ.remove();

// remove head of myQ

e.handle(myQ);

loop();

}

}

Now the original instance of Server[1] will invoke the new code for the newEvent
method the next time it enters loop.

Second upgrade: Adding a log: Now we consider a much more disruptive upgrade
to our system: adding a log to the server and requiring that all events update the log
when they are handled. First we need to change the Event class as follows (the classes
get_Event, put_Event and upgrade_Event must also be changed accordingly).

new class Event[2] evolves Event[1] {

void handle (Queue[1] q, Log[1] l);

}

Note that this is an evolution upgrade: the signature of the events has changed. We also
need an evolution upgrade to the Server class, as follows.

new class Server[3] evolves Server[2] {

Queue[1] myQ = new Queue[1]();

Log[1] myLog = new Log[1]();

void newEvent(){ ... }

void handOver(Queue[1] q){ myQ=q; loop(); }

void logv1Event(Event[1] e){ ... }

void loop(){

newEvent(); //Enqueues new event

Object e = myQ.remove();

if (e instanceof Event[2])

(Event[2])e.handle(myQ,myLog);

else {

e.handle(myQ);

logv1Event(e);

}

loop();

}

}

This new version of the Server class has a new field, myLog to contain the system
log. It also contains a new method, logv1Event to enable the logging of a Event[1]
object. The body of the loop method is similar except that we now need to inspect each

12



event to see if it can log itself or not. The handOver method will be more apparent
after the next revision upgrade. (Note here the use of co-existing revision and evolution
upgrades.)

new class Server[2.1] revises Server[2]{

Queue[1] myQ = new Queue[1]();

void newEvent(){ ... }

void loop(){

Server[3] s = new Server[3+]();

s.handOver(myQ);

}

}

This revision upgrade of Server[2] changes only the body of the loop method. Recall
that after the upgrade event the next call is to the latest revision of the loop method.
Hence our original (version 1) instance of Server will invoke the loop method defined
in version 2.1. This loop method now simply creates a fresh Server[3] object and
invokes its handOver method. The handOver method accepts the state from the old
Server object and executes the loop method of the Server[3] object. Hence we have
elegantly transitioned from an old to a new version of the server at runtime, whilst both
maintaining the state and guaranteeing type safety!

4 Formalizing UpgradeJ

Featherweight UpgradeJ (FUJ) is to UpgradeJ what other core calculi such as FJ [18]
and MJ [7] are to Java. It is a small, but expressive subset of the language that is used
to verify formal properties of the language. FUJ is slightly unusual in that it has an
extremely compact form, which facilitates a very simple operational semantics, how-
ever, it is as expressive as more familiar core calculi. It is important to note that FUJ
programs are syntactically correct UpgradeJ programs.

Syntax: The syntax of FUJ class definitions, types, field and method definitions, and
statements is defined as follows.

T, S, U ::= Type
C[v1=, . . . ,vn=] Version list type (n ≥ 1)
C[v+] Version range type

K, J, I ::= C[v=] Exact version type

R ::= Runtime type
C[v=] Exact type
C[v+] Upgradeable type

L ::= class I extends J{ T f; M } Class definitions

M ::= S m(T x){ B return y; } Method definition

B ::= T x; s Method block

13



t, s ::= Statement
x = y; Assignment
x = y.f; Field access
x.f = y; Field update
x = y.m(z); Method invocation
x = (T)y Cast
if(x == y){s} else {t} Equality test
if(x instanceof I){s} else {t} Instance test
x = new C[v=](); Object creation
x = new C[v+](); Object creation
x = new C[v++](); Object creation
x = new Object(); Object creation
upgrade; Upgrading

Z ::= Upgrade definitions
new L New class upgrade
C[v=] revises C[w=] Revision upgrade
C[v=] evolves C[w=] Evolution upgrade

In the syntax rules we assume a number of metavariables: f ranges over field names,
C over class names, m over method names, v, w over versions,8 and x, y, z over program
variables. We assume that the set of program variables includes a designated variable
this, which cannot be used as an argument to a method. We follow FJ and use an
‘overbar’ notation to denote sequences.

FUJ types are ranged over by S, T, U and can be either an exact version type, of
the form C[v=], or a version list type, written C[v1=, . . . ,vn=], or a version range
type, written C[v+]. To simplify some definitions we use the metavariables I and J
to range over exact version types. As with FJ, for simplicity we do not include any
primitive types in FUJ. In FUJ there is a special exact version class Object[1=] which
we abbreviate to Object. We do not allow this class to be revised or evolved, so it
remains the root of the inheritance hierarchy.

A FUJ class definition, L, contains a collection of field and method definitions.
For simplicity, in this paper we shall not consider constructor methods; they do not
complicate the treatment of versioning and we simply model that fields are initialised
to null. A field is defined by a type and a name. A method definition, M, is defined by
a return type, a method name, an ordered list of arguments—where an argument is a
variable name and a type—a method block, B, and a return statement.

The real economy of FUJ is that we do not have any syntactic forms for expressions
(or even promotable expressions [7]), and that the forms for statements are syntactically
restricted. All expression forms appear only on the right-hand side of assignments.
Moreover expressions only ever involve variables. In this respect, our form for state-
ments is reminiscent of the A-normal form for λ-terms [17]. A statement, s, is either
an assignment, a field access, a field update, a method invocation, a cast, an instance
conditional, an object creation, or an upgrade statement. In spite of the heavy syntactic
restrictions, we have not lost any expressivity; it is quite simple to translate FJ or MJ

8 Purely for presentational simplicity, versions are restricted to be integers.

14



programs into FUJ. Another advantage of our approach is that we have no need for the
‘stupid’ rules of FJ.

In FUJ we assume a rather large amount of syntactic regularity to make the defini-
tions compact. All class definitions must (1) include a supertype; (2) start with all the
declarations of the variables local to the method (hence a method block is a sequence of
local variable declarations, followed by a sequence of statements); (3) have a return
statement at the end of every method; and (4) write out field accesses explicitly, even
when the receiver is this.

A FUJ upgrade is either a new class upgrade (which consists of a class definition
prefixed with a newmodifier) or a revision upgrade (which is of the form I revises J)
or an evolution upgrade (which is of the form I evolves J).

Class table and subtyping: Following FJ, we take an FUJ program to be a pair (CT , B)
of a class table CT and a method block B. This method block corresponds to the main
method. As we are interested in upgrading the class table it cannot be assumed to be
fixed and implicit as in FJ.

A FUJ class table, CT , is a triple 〈C, revises, evolves〉. The first component is
a map from exact version types to class definitions. The second and third are relations
between exact version types. We use some shorthand and write CT ` I , {T f; M} and
CT ` I extends J where C(I) = class I extends J{ T f; M }. We also write I ∈
dom(CT ) to mean I ∈ dom(C). We write CT ` I revises J when (I, J) ∈ revises,
and similarly CT ` I evolves J when (I, J) ∈ evolves. The revises and evolves
relations are initially empty and are incremented by the action of upgrade definitions.

By looking at a class table, we can read off a subtype relation between types. We
write CT ` S <: T when S is a subtype of T given the class table CT . This relation
is slightly more complicated than for FJ because we have three relations between types
(extends, revises and evolves) and also support version list and version range types. The
rules for forming valid subtyping judgements are defined as follows.

v= ∈ w
[ST-In]

CT ` C[v=] <: C[w]

CT ` C[v=] revises C[w=]
[ST-RevRng]

CT ` C[v=] <: C[w+]

CT ` C[v=] evolves C[w=]
[ST-EvRng]

CT ` C[v=] <: C[w+]

CT ` S <: T CT ` T <: U
[ST-Trans]

CT ` S <: U

CT ` C[v=] revises C[w=]
[ST-RngRng1]

CT ` C[v+] <: C[w+]

CT ` C[v=] evolves C[w=]
[ST-RngRng2]

CT ` C[v+] <: C[w+]

CT ` C[v=] extends I
[ST-Rng]

CT ` C[v+] <: I

CT ` C[v=] extends I
[ST-Ex]

CT ` C[v=] <: I

CT ` C[v1=] <: T · · ·CT ` C[vn=] <: T
[ST-List]

CT ` C[v1=, . . . ,vn=] <: T

Correctness conditions: Unlike in normal fragments of Java where correctness con-
ditions on the class table are so routine that they are traditionally omitted [18], they

15



are essential in formalizing UpgradeJ. In some senses they are the very essence of Up-
gradeJ as the class table can be changed at runtime and all upgrade checks are made
with reference to the class table. In other words an upgrade should not be able to com-
promise type safety.

The first correctness condition we impose is a well-formedness property on the three
relations in the class table.

Definition 1. ` CT wfr iff

1. ∀S, T. If CT ` S <: T and CT ` T <: S then T = S,
2. ∀K, I, J. If CT ` K extends I and CT ` K extends J then I = J, I ∈
dom(CT ) and K ∈ dom(CT ),

3. ∀K, I, J. If CT ` I revises K and CT ` J revises K then I = J, I ∈ dom(CT )
and K ∈ dom(CT ), and

4. ∀K, I, J. If CT ` I evolves K and CT ` J evolves K then I = J, I ∈ dom(CT )
and K ∈ dom(CT ).

Condition (1) ensures that the subtyping relation induced by the class table does not
include cycles. Condition (2) reflects the fact that UpgradeJ supports only single inher-
itance. Analogously, UpgradeJ only supports single revision (3) and single evolution
(4). Note that this does not preclude a class being both revised and evolved.

The next two correctness conditions we impose are on the revises and evolves
relations.

Definition 2.

1. CT ` J revises I ok iff fields(CT , I) = fields(CT , J) and methSig(CT , I) =
methSig(CT , J)

2. CT ` J evolves I ok iff fields(CT , I) ⊆ fields(CT , J) and methSig(CT , I) ⊆
methSig(CT , J)

(The auxiliary functions fields and methSig are defined in Figure 1.)

These correctness conditions for the upgrade relations formalize the discussions of §2.
Thus a class J revises a class I if (i) the fields are identical, and (ii) the method sig-
natures are identical. Notice that this does not force class J itself to have the same
methods as class I; just that they support the same methods (possibly inherited from
other classes). This allows us to support the refactoring upgrades described in §2.

The correctness rule for an evolution upgrade is similar but more permissive, as it
allows the evolved class to have more fields and a larger method signature.

We can now give the overall correctness condition for a class table.

Definition 3. ` CT = 〈C, revises, evolves〉 ok iff

1. ` CT wfr,
2. ∀I ∈ dom(C).CT ` I ok,
3. ∀I, J.(I, J) ∈ revises =⇒ CT ` I revises J ok, and
4. ∀I, J.(I, J) ∈ evolves =⇒ CT ` I evolves J ok.

16



Fields:

fields(CT , Object)
def
= ∅

fields(CT , I)
def
= {T f} ∪ fields(CT , J) where CT ` I , {T f; M}

and CT ` I extends J
Field lookup:

ftype(CT , I, f)
def
= T where CT ` I , {S g;T f;U h; M}

ftype(CT , I, f)
def
= ftype(CT , J, f) where CT ` I , {S g; M}, f 6∈ g,

and CT ` I extends J

ftype(CT , C[v+], f)
def
= ftype(CT , C[v], f)

ftype(CT , C[v1, . . . vn], f)
def
= ftype(CT , C[v1], f)

Method type lookup:
mtype(CT , I, m)

def
= T→ S where CT ` I , {U f; M},

and S m(T x){ B return y; } ∈ M

mtype(CT , I, m)
def
= mtype(CT , J, m) where CT ` I , {U f; M}, m 6∈ M,

and CT ` I extends J

mtype(CT , C[v+], m)
def
= mtype(CT , C[v], m)

mtype(CT , C[v1, . . . vn], m)
def
= mtype(CT , C[v1], m)

Method body lookup:

mbody(CT , C[v=], m)
def
= x.B return y; where CT ` C[v=] , {U f; M},

and S m(S x){ B return y; } ∈ M
def
= mbody(CT , I, m) where CT ` C[v=] , {U f; M}, m 6∈ M̄,

CT ` C[v=] extends I

mbody(CT , C[v+], m)
def
= mbody(CT , I+, m) where CT ` I revises C[v=]
def
= x.B return y; where ∀I.¬(CT ` I revises C[v=]),

and CT ` C[v=] , {U f; M},
and S m(S x){ B return y; } ∈ M.

def
= mbody(CT , J+, m) where ∀I.¬(CT ` I revises C[v=])

and CT ` C[v=] , {U f; M},
and m 6∈ M,
and CT ` C[v=] extends J

Method signature:

methSig(CT , Object)
def
= ∅

methSig(CT , I)
def
= {m : mtype(CT , I, m)}m∈M ∪methSig(CT , J)

where CT ` I , {U f; M}, and CT ` I extends J

Latest version:

latest(CT , J)
def
= latest(CT , I) if CT ` I evolves J
def
= latest(CT , I) if CT ` I revises J, and ∀K.¬(CT ` K evolves J)
def
= J otherwise

Fig. 1. Auxiliary functions

17



Informally, a class table is correct if (1) the class table relations are well-formed, (2)
every class definition in the class table is correct (the formal definition of this is given
later in this section), and (3-4) the revises and evolves relations are correct (in the sense
of Defn. 2).

Typing rules: The typing rules for statements are given below where a typing environ-
ment Γ is a finite map from variables to types.

CT ` S <: T
[T-Assign]

CT ;Γ, x : T, y : S ` x = y; ok

CT ` ftype(CT , S, f) <: T
[T-FAccess]

CT ;Γ, x : T, y : S ` x = y.f; ok

CT ` S <: ftype(CT , T, f)
[T-FAssign]

CT ;Γ, x : S, y : T ` y.f = x; ok

[T-New1]
CT ;Γ, x : Object ` x = new Object(); ok

CT ` C[v] <: T
[T-New2]

CT ;Γ, x : T ` x = new C[v=](); ok

CT ` C[v+] <: T
[T-New3]

CT ;Γ, x : T ` x = new C[v+](); ok

CT ` C[v+] <: T
[T-New4]

CT ;Γ, x : T ` x = new C[v++](); ok

CT ` S <: T CT ` S <: R
[T-DCast]

CT ;Γ, x : T, y : R ` x = (S)y; ok

CT ` R <: S CT ` S <: T
[T-UCast]

CT ;Γ, x : T, y : R ` x = (S)y; ok

[T-Upgrade]
CT ;Γ ` upgrade; ok

CT ;Γ ` s ok CT ;Γ ` t ok CT ` S <: T or CT ` T <: S
[T-If]

CT ;Γ, x : S, y : T ` if(x == y){s} else {t} ok

CT ;Γ ` s ok CT ;Γ ` t ok CT ` T <: S or CT ` S <: T
[T-IfInst]

CT ;Γ, x : S ` if(x instanceof T){s} else {t} ok

mtype(CT , S, m) = T1 → U

CT ` T0 <: T1 CT ` U <: V [T-Invoke]
CT ;Γ, x : V, y : S, z : T0 ` x = y.m(z); ok

These rules are pretty routine. The remaining typing rules for statement sequences,
method blocks, method definitions, and class definitions are similarly straightforward
and are as follows.

CT ;Γ ` s1 ok · · · CT ;Γ ` sn ok

CT ;Γ ` s1 · · · sn ok

CT ;Γ, x : T ` s ok

CT ;Γ ` T x;s ok CT ` Object ok

Γ
def
= x : T, this : I CT ;Γ ` B ok CT ` Γ (y) <: S CT ` I extends J

If mtype(CT , J, m) = T1 → S1 then T1 = T and S1 = S

CT ` S m(T x){ B return y; } in I ok

CT ` I , {T f; M} CT ` I extends J CT ` J , {S g; N} f ∩ g = ∅ CT ` M in I ok

CT ` I ok

18



Operational Semantics: We define the operational semantics of FUJ in terms of la-
belled transitions between configurations (where l ranges over the labels). A configura-
tion is a four-tuple, written (CT , S,H, s), where CT is a class table, S is a stack which
is a function from program variables to values, H is a heap which is a function from
object identifiers to heap objects, and s is a sequence of statements that represents the
code that is being executed. Because of the restricted syntactic form of FUJ we do not
need the evaluation contexts of FJ [18] or the frame stacks and scopes of MJ [7]. The
operational semantics are given in Figure 2.

The transition rules are fairly routine; the ones of interest are those dealing with ob-
ject creation, method invocation and upgrades. The rule for creating a non-upgradeable
object creates an object with a runtime type C[v=] and the rule for creating a revision
upgradeable instance produces an object with a runtime type C[v+]. The rule dealing
with creating a evolution upgradeable instance (new C[v++]) is a little more subtle.
First we use the auxiliary function latest to discover the latest version of type C[v=],
which is, say, I. We then create an upgradeable instance of type I. We write this type
I+, where (C[v=])+ is defined to be C[v+].

The rule for method invocation uses the auxiliary function mbody to return the body
of method m for an object whose runtime type is R. The definition of mbody is given in
Figure 1. Its behaviour is dependent on the runtime type of the object. If it is an exact
type, then mbody behaves as it does for FJ. If the runtime type is C[v+], then we look to
see if the class has been revised. If there has been a revision, then we recursively search
the revision. If there have been no revisions to the class and the method is implemented
in class C[v=] then we use this implementation. If class C[v=] does not implement the
method and there has not been a revision then we recursively search the superclass of
C[v=].

We have also included the transition rules that deal with erroneous situations, e.g.
null pointer invocation. Rather than introduce exceptions we follow MJ [7] and define
a number of “stuck states”.

Now we consider the upgrade transition rules. We label the transition with the up-
grade definition in the familiar way [27]. Each of the transition rules for upgrades must
extend the CT while ensuring that the subtype relation is a partial order (Defn. 1.1).
Each transition rule builds on the following lemma to ensure this.

Lemma 1. If R is a partial order, ¬(xRy) and ¬(yRx), then (R∪{(x, y)})∗ is also a
partial order.

We consider the three ‘upgrade’ transition rules in turn.

Semantics of new class upgrades First we check that the new class has not already
been defined. If it hasn’t then we first add the definition to the class table (we use the
shorthand CT ] L to mean that the map from class names to definitions is updated) and
then check that the class definition is type correct. (It must be added first to allow for
recursive uses of the class in its definition.)

The transition rule embodies the following property that follows from the definition
of the typing rules.

Lemma 2. If ` CT ok, I 6∈ dom(CT ), CT ′ def= CT ] class I extends J{ U f; M }
and CT ′ ` I ok, then ` CT ′ ok.

19



(CT , S,H, x = y;s) −→ (CT , S[x 7→ S(y)], H, s)

(CT , S,H, x = y.f;s) where S(y) = o and H(o) = 〈 , F 〉
−→ (CT , S[x 7→ F (f)], H, s)

(CT , S,H, x.f = y;s) where S(x) = o and H(o) = 〈R, F 〉 and F ′ def
= F [f 7→ S(y)]

−→ (CT , S,H[o 7→ 〈R, F ′〉], s)

(CT , S,H, x = (T)y;s) where S(y) = o, H(o) = 〈R, F 〉, and CT ` R <: T.
−→ (CT , S[x 7→ o], H, s)

(CT , S,H, if(x == y){s} else {t} u)
−→ (CT , S,H, s u) if S(x) = S(y)
−→ (CT , S,H, t u) otherwise

(CT , S,H, if(x instanceof T){s} else {t} u)
−→ (CT , S,H, s u) if S(x) = o, H(o) = 〈R, F 〉, and CT ` R <: T
−→ (CT , S,H, t u) otherwise

(CT , S,H, x = new Object();s) where fields(CT , Object) = T f, o /∈ dom(H),
−→ (CT , S[x 7→ o], H ′, s) and H ′ def

= H[o 7→ 〈Object, {f 7→ null〉}]

(CT , S,H, x = new C[v=]();s) where fields(CT , C[v=]) = T f, o /∈ dom(H),
−→ (CT , S[x 7→ o], H ′, s) and H ′ = H[o 7→ 〈C[v=], {f 7→ null}〉]

(CT , S,H, x = new C[v+]();s) where fields(CT , C[v=]) = T f, o /∈ dom(H),
−→ (CT , S[x 7→ o], H ′, s) and H ′ = H[o 7→ 〈C[v+], {f 7→ null}〉]

(CT , S,H, x = new C[v++]();s) where latest(CT , C[v=]) = I, fields(CT , I) = T f,
−→ (CT , S[x 7→ o], H ′, s) o /∈ dom(H), and H ′ def

= H[o 7→ 〈I+, {f 7→ null〉}]
(CT , S,H, x0 = y0.m(z0);s) where S(y0) = o, H(o) = 〈R, F 〉,
−→ (CT , S′, H, (Bσ) x0 = (yσ);s) mbody(CT , R, m) = x.B return y;,

(y1, z1) ∩ dom(S) = ∅, σ = [this, x := y1, z1],
and S′ = S[y1, z1 7→ S(y0), S(z0)]

(CT , S,H, upgrade;s) where L = class I extends J{ U f; M }
new L−−−−→ (CT ′, S,H, s) I 6∈ dom(CT ), CT ′ def

= CT ] L and CT ′ ` I ok

(CT , S,H, upgrade;s) where ¬(CT ` I <: J), ¬(CT ` J <: I)
I revises J−−−−−−−→ (CT ′, S,H, s) CT ` I revises J ok, ¬∃K(CT ` K revises J) and

CT ′ def
= CT ] (I revises J)

(CT , S,H, upgrade;s) where ¬(CT ` I <: J), ¬(CT ` J <: I)
I evolves J−−−−−−−→ (CT ′, S,H, s) CT ` I evolves J ok, ¬∃K(CT ` K evolves J) and

CT ′ def
= CT ] (I evolves J)

(CT , S,H, x = y.f;s)
(CT , S,H, y.f = x;s)
(CT , S,H, x = y.m(z);s)

 −→ (CT , S,H,NPE) where S(y) = null

(CT , S,H, x = (T)y;s) −→ (CT , S,H,CCE) where S(y) = o, H(o) = 〈R, F 〉 and CT 6` R <: T

Fig. 2. Operational semantics of FUJ

20



Semantics of revision upgrades First we need to check that the revision upgrade will
not introduce any cycles in the inheritance graph. Assuming that it does not we then
check that the revision upgrade is type correct. Finally we extend the class table with
this revision (we use the shorthand CT ] (J revises I) to mean that the class table’s
revises relation is extended with the pair (J, I).)

This transition rule embodies the following property that follows from the definition
of the typing rules.

Lemma 3. If ` CT ok, ¬(CT ` I <: J), ¬(CT ` J <: I), ¬∃K(CT ` K revises J),
CT ` I revises J ok and CT ′ def= CT ] (I revises J), then ` CT ′ ok.

Semantics of evolution upgrades This transition is similar to that for revision upgrades
except that it involves the evolves relation. It embodies the following property.

Lemma 4. If ` CT ok,¬(CT ` I <: J),¬(CT ` J <: I),¬∃K(CT ` K evolves J),
CT ` I evolves J ok and CT ′ def= CT ] (I evolves J), then ` CT ′ ok

Type soundness: One advantage of our formal approach is that we are able to prove
important safety properties of our system. The most fundamental property is type sound-
ness: this means that the upgrades permitted by the FUJ transition rules do not compro-
mise the underlying language-based security system of Java-like languages. In this sec-
tion we give only an outline of the proof of this property; the somewhat routine details
can be found elsewhere [6].

As is familiar with type soundness proofs [31] we need to both extend the notion of
typing to FUJ configurations (Γ ` (CT , S,H, s) ok) in the obvious way and to prove
various weakening lemmas; the most interesting of which is the following.

Lemma 5 (Class table weakening). If CT ⊆ CT ′, ` CT ′ ok and Γ ` (CT , S,H, s) ok,
then Γ ` (CT ′, S,H, s) ok.

We can then prove that the transition rules preserve type correctness as follows.

Lemma 6 (Type preservation). If Γ ` (CT , S,H, s) ok, ` CT ok, and (CT , S,H, s) l−→
(CT ′, S′, H ′, s′), then there exists Γ ′ such that Γ ′ ` (CT ′, S′, H ′, s′) ok and `
CT ′ ok.

Proof. For most transition rules the proof is identical to that for pure MJ [7]. The new
cases are to handle the upgrade definitions. The type preservation of these three transi-
tion rules is essentially given by Lemmas 2, 3 and 4.

Finally we can prove that an well-typed configuration is either a value, stuck or can
make a transition.

Lemma 7 (Progress). If Γ ` (CT , S,H, s) ok then either s ≡ ε (ε denotes an empty

sequence), or s ≡ NPE, or s ≡ CCE or ∃l. (CT , S,H, s) l−→ (CT ′, S′, H ′, s′).

21



5 Future and related work

Future work: Clearly there is much work still to be done; a fuller description is given
elsewhere [6]. In the interests of space we simply record some initial thoughts on im-
plementation and on object-level updating.

We do not yet have an implementation of UpgradeJ, although we are currently de-
signing a prototype based on Java. We propose a series of annotations on classes and
types (@version() to specify an upgradeable version, @exact() for an exact version,
and @latest() for latest version creation) and plan to produce a basic pluggable type
checker to implement the type system [2]. Then, we expect that typechecked UpgradeJ
programs will be translated and executed on a JVM using HotSwap9 to implement the
upgrading. As part of this process, however, we use the annotations on classes and types
to drive bytecode rewritings to create several JVML classes and interfaces for each Up-
gradeJ class, and use name mangling to encode versions into JVML typenames.

For each UpgradeJ class we create two JVML classes, one for exact instances of the
class, and one for variable instances — this means we do not need any extra per-object
storage to distinguish between exact and upgradable objects. New class and evolution
upgrades are implented by using HotSwap to bring in new classes, while revision up-
grades additionally overwrite the upgradeable versions of the classes that are being
revised. The duplicate hierarchies means we get the effect of the two behaviours of the
mbody lookup functions without having to change the standard JVM lookup. Methods
can be removed where necessary by replacing them with calls to super; exact and up-
gradeable objects are created by instantiating the appropriate class; and latest creation
requires a reflexive call to implement the dynamic lookup for the most recent upgrade.

Finally, to translate exact and upgradeable types, we also produce two JVML in-
terfaces for each UpgradeJ class, one for each unitary exact type, and one for each
upgradeable type: variables are declared as the appropriate interface, and each JVML
class we produce implements the interfaces appropriate to its type; we also produce a
single JVML interface to represent exact version set types. This means that most of the
UpgradeJ runtime type structure is also encoded in JVML types, but where necessary
(exact version set types) we use bytecode rewriting and casts.

We have carefully restricted UpgradeJ to provide class upgrading rather than ob-
ject updating: UpgradeJ does not require any heap inspection. Given class upgrading,
however, it is interesting to consider how little additional support is required to provide
object updates. Runtime support for a heap lookup primitive (FIND) and updating indi-
vidual objects (value assignments “:=”, or Smalltalk’s “one way become”) are sufficient
for programmers to implement object updates in a library:

while ((Button[2] b = FIND Button[2])!=null) {b := Button[4](b.x, b.y);}

This code example searches for instances of Button[2] (assuming FIND returns a
random instance of that class) and replaces them with new Button[4] instances. To
preserve type safety, the r-value must be a subtype of the l-value (as usual in assign-
ment), and the assignment needs to check that the l-value is quiescent (that is, check the
stack so that the target object is nowhere bound to “this”). The return value could be
tested to check the success of the update, but in this case, if an object is not updated it
will presumably be returned sometime later from FIND.

9 http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

22



Related work: A full comparison with related work is impossible given the space
constraints—here we atttempt to provide the surrounding context for UpgradeJ. Up-
gradeJ supports multiple co-existing versions; an idea from our earlier work on up-
dating ML-like modules [5]. By moving to an object-oriented setting we have found
different problems, in particular, how upgrading and inheritance can be combined; how
classes can be upgraded without heap inspection; and how the latest version of a class
can be created.

The .NET architecture addresses versioning issues by allowing assemblies to con-
tain version information [22, 10]. It allows multiple versions to be stored on a client
and lets the versioning policy select the correct version. It is unclear, however, that this
can deal with the different versions interacting, as it appears that each application can
only require one version of the code. The more recent OSGi framework [21] provides
stronger support for multiple versioning and updating, allowing bundles to be loaded,
updated, and unloaded dynamically, and supporting multiple versions of classes within
the same VM. Like .Net, however, OSGi does not have a formal model of version type
safety: we hope that FUJ could in the future provide the basis for such a model.

Closely related to versioning is dynamic linking. Dynamic linking also allows late
updates to code to occur. Drossopoulou et al. have studied dynamic linking in detail [15,
13, 16]. They provide details of when linking errors will occur under changes of class
definitions, paying close attention to when different phases of the compilation occur,
such as field layout. In this paper we have remained at a level close to the source code
to avoid the problems they highlight. To avoid directly compiling versions into the code,
one might like to consider a versioned variant of polymorphic bytecode [1], which is an
extension to Java bytecode that allows more flexible linking at run-time.

UpgradeJ’s revision upgrades have some similarity to various forms of object re-
classification; for example, Kea [19], Predicate Classes [11] and Fickle [14]. Compared
with UpgradeJ, these systems are much more flexible: classes can move around the hi-
erarchy (implicitly based on values of instance variables in Kea and Predicate classes,
or via an explicit reclassification operation in Fickle), and can gain or lose fields de-
pending on that classification. In contrast, UpgradeJ supports revision upgrades taking
objects to higher versions without affecting memory layout, and new class and evolution
upgrades that can introduce new fields but do not affect existing classes. All UpgradeJ
upgrades are “one way” operations: our “no time travel” principle means that upgraded
objects can never be downgraded to previous versions.

Object-level updating has also been studied in depth. Techniques that search-and-
replace objects on the heap via user-supplied update functions are well known, but
generally rely on dynamic checks; CLOS, for example, directly supports class redefini-
tion and allows programmers to update individual instances in various ways [26]. Some
recent research has investigated how objects can be updated in a typesafe manner. For
example, Boyapati et al. describe how ownership types can assist in updating aggregate
objects in object-oriented databases [8].

More prosaically, the idea of incrementally defining and updating the classes rather
than the objects is also not new. The earliest Smalltalk systems were in practice main-
tained by passing around “goodies”— patches that could affect multiple classes [23].
Modular Smalltalk propsed an explicit class extension construct to support this [30].
More recently, systems like Changeboxes [20] have supported dynamic extensions to
systems, with relatively flexible mechanisms for describing potential changes and run-

23



time support for multiple coexisting versions. All these systems are checked dynami-
cally, of course, whereas UpgradeJ is checked statically.

UpgradeJ’s dynamic lookup over the revises and extends relationships has
some commonality with the two-dimensional inheritance hierarchies found e.g. in New-
tonScript [25]. The key difference here is that NewtonScript’s secondary hierarchy fol-
lows interface widget’s composition structure, while our secondary hierarchy follows
dynamically upgraded versions of classes.

Open Classes [12] and Expanders [29] also allow new methods and fields to be
added to pre-existing classes. Both these systems have restrictions to ensure unambigu-
ous typesafe module composition which prevent replacing existing methods. In con-
trast, we can revise any method, and avoid ambiguity via incremental typechecking.
Moreover, UpgradeJ allows classes to be upgraded at runtime.

Zenger [32] takes a different approach to the versioning problem. He proposes an
extension of Java with an extensible module system, which allows modules to be up-
graded. The main advantage of our work is that it does not require such a big leap from
the original programming language.

A number of functional languages provide varying support for versioning and up-
grading. Most notably, Erlang [3] is an untyped, first-order language that supports con-
currency and module-level upgrading, but not multiple versions of the same module.
Acute [24] is an extension of OCaml that has a rich set of version constraints and poli-
cies intended for distributed programming. It is interesting future work to see if similar
support is possible in the UpgradeJ setting.

6 Conclusions

Programs, especialy long running, widely distributed programs, are no longer mono-
lithic. Programs need to be upgraded with new features, new classes, and new meth-
ods even while they continue running. Previous work has focused on how to trans-
late objects in the heap, in a type-safe and version-consistent way. This paper takes
a different approach: in order to have a lightweight mechanism no heap update is ap-
plied, and assumptions on versions are made explicit. UpgradeJ supports class upgrades
directly—adding new classes, revising existing classes, and evolving classes to incom-
patible versions—and typechecking is purely incremental. We hope UpgradeJ will pro-
vide a useful conceptual model of the core problems of software upgrading, and that it
may inspire future language designs.

References

1. D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Polymorphic bytecode: Composi-
tional compilation for Java-like languages. In Proceedings of POPL, 2005.

2. C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing plug-
gable type systems. In Proceedings of OOPSLA, 2006.

3. J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent programming in Er-
lang. Prentice Hall, 1996.

4. E. Bailey. Maximum RPM. Sams, 1997.
5. G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software updating. In

Proceedings of USE, 2003.

24



6. G. Bierman, M. Parkinson, and J. Noble. UpgradeJ: Incremental typechecking for class
upgrades. Technical Report 716, University of Cambridge Computer Laboratory, 2008.

7. G. Bierman, M. Parkinson, and A. Pitts. MJ: An imperative core calculus for Java and Java
with effects. Technical Report 563, University of Cambridge Computer Laboratory, 2004.

8. C. Boyapati, B. Liskov, and L. Shrira. Lazy modular upgrades in persistent object stores. In
Proceedings of OOPSLA, 2003.

9. K. B. Bruce and J. N. Foster. LOOJ: Weaving LOOM into Java. In Proceedings of ECOOP,
2004.

10. A. Buckley. A model of dynamic binding in .NET. In Proceedings of FTfJP, 2005.
11. C. Chambers. Predicate classes. In Proceedings of ECOOP, 1993.
12. C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes

and symmetric multiple dispatch for Java. In Proceedings of OOPSLA, 2000.
13. S. Drossopoulou. Towards an abstract model of Java dynamic linking, loading and verifica-

tion. In Proceedings of TIC, 2000.
14. S. Drossopoulou, F. Damiani, M. Dezani, and P. Giannini. FickleII more object reclassifica-

tion. ACM Transactions on Programming Languages and Systems, 24(2), 2002.
15. S. Drossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus—towards a model of

separate compilation, linking and binary compatibility. In Proceedings of LICS, 1999.
16. S. Drossopoulou, G. Lagorio, and S. Eisenbach. Flexible models for dynamic linking. In

Proceedings of ESOP, 2003.
17. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with contin-

uations. In Proceedings of PLDI, 1993.
18. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java

and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, 2001.
19. W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a statically-typed program-

ming language. In Proceedings of ECOOP, 1991.
20. O. Nierstrasz, M. Denker, T. Gı̂rba, and A. Lienhard. Analyzing, capturing and taming

software change. In Proceedings of the Workshop on Revival of Dynamic Languages, 2006.
21. OSGi Alliance. About the OSGi service platform. Downloaded from osgi.org, Nov. 2005.
22. S. Pratschner. Simplifying deployment and solving DLL hell with the .NET framework.

http://msdn.microsoft.com, 2001.
23. S. Putz. Managing the evolution of Smalltalk-80 systems. In Smalltalk-80: Bits of History,

Words of Advice. AW, 1984.
24. P. Sewell, J. Leifer, K. Wansbrough, M. Allen-Williams, F. Zappa Nardelli, P. Habouzit, and

V. Vafeiadis. Acute: High-level programming language design for distributed computation.
Design rationale and language definition. Technical Report 605, University of Cambridge
Computer Laboratory, Oct. 2004.

25. W. R. Smith. Using a prototype-based language for user interface: The Newton project’s
experience. In Proceedings of OOPSLA, 1995.

26. G. Steele. Common Lisp the Language. Digital Press, 1990.
27. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutandis: Safe and

predictable dynamic software updating. In Proceedings of POPL, 2005.
28. R. Strniša, P. Sewell, and M. Parkinson. The Java module system: core design and semantic

definition. In Proceedings of OOPSLA, 2007.
29. A. Warth, M. Stanojević, and T. Millstein. Statically scoped object adaptation with ex-

panders. In Proceedings of OOPSLA, 2006.
30. A. Wirfs-Brock and B. Wilkerson. An overview of Modular Smalltalk. In Proceedings of

OOPSLA, 1988.
31. A. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, 1994.
32. M. Zenger. Programming Language Abstractions for Extensible Software Components. PhD

thesis, EPFL, Switzerland, 2004.

25


