
First-class Relationships in an Object-oriented
Language

Gavin Bierman1 and Alisdair Wren2

1 Microsoft Research, Cambridge
gmb@microsoft.com

2 University of Cambridge Computer Laboratory
Alisdair.Wren@cl.cam.ac.uk

Abstract. In this paper we investigate the addition of first-class re-
lationships to a prototypical object-oriented programming language (a
“middleweight” fragment of Java). We provide language-level constructs
to declare relationships between classes and to manipulate relationship
instances. We allow relationships to have attributes and provide a novel
notion of relationship inheritance. We formalize our language giving both
the type system and operational semantics and prove certain key safety
properties.

1 Introduction

Object-oriented programming languages, and object modelling techniques more
generally, provide software engineers with useful abstractions to create large
software systems. The grouping of objects into classes and those classes into
hierarchies provides the software engineer with an extremely flexible way of
representing real-world semantic notions directly in code.

However, whilst object-oriented languages easily represent real-world entities
(e.g. students, lectures, buildings), the programmer is poorly served when trying
to represent the many natural relationships between those entities (e.g. ‘attends
lecture’, ‘is taught in’).

Relationships clearly can be represented in object-oriented languages—indeed
patterns have been established for the purpose [10]—but this important abstrac-
tion can get lost in the implementation that is forced upon the programmer by
the lack of first-class support. Different aspects of the relationship can be imple-
mented by fields and methods of the participating classes, but this distributes
information about the relationship across various classes. Alternatively, small
classes can be defined to contain references to the two related objects along with
any attributes of the relationship. In both cases, without great care the structure
can become internally inconsistent, especially in the presence of aliasing. Fur-
thermore, we argue that the application of standard class-based inheritance to
these ‘relationship classes’ does not adequately capture the intuitive semantics
of relationship inheritance, which must otherwise be encoded in standard Java.
Such an encoding can only lead to further complexity and more opportunities
for inconsistency.

Student Course

mark : int

attends

(a) Association Class

Student

LazyStudent

Course

HardCourse

missedLectures : int

mark : int

reluctantlyAttends

attends

(b) Parallel Hierarchy

Fig. 1. Relationships represented as UML association classes

The importance of relationships is clearly reflected by their prominence in
almost all modelling languages: from (Extended) Entity-Relationship Diagrams
(ER-diagrams) [5] to Unified Modelling Language (UML) [9]. In Figure 1 we
give some examples of relationships expressed in UML (we use these as running
examples throughout this paper).

We argue that such important abstractions deserve first-class support from
programming languages. We are the not the first to do so; Rumbaugh also
pointed out the importance of first-class language support for relationships [13].
Noble and Grundy also proposed that relationships should persist from the mod-
elling to the implementation stage of program development [11]. Albano et al.
propose a similar extension to a language for managing object-oriented databases
(OODB) [1], but do so in a much richer data model and do not give a full de-
scription of their language.

In contrast to these works, our approach is more formal. We believe that
such a formal, mathematical approach is essential to set a firm foundation for
researchers, users and implementors of advanced programming languages. To
that end, our main contribution is a precise description of how Java (or any
other class-based, strongly-typed, object-oriented language) can be extended to
support first-class relationships. Our tool is a small core language, RelJ, which is
a subset of Java (much like Middleweight Java [4]) with suitable extensions for
the support of relationships. RelJ provides means to define relationships between
objects, to specify attributes associated with those relationships, and to create
hierarchies of relationships. RelJ is intended to capture the essence of these ex-
tensions to Java, yet is small enough to formalize completely. Other features
could be added to RelJ to make it a more complete language, but these would
not impact on the extensions for relationships.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
our calculus and give a grammar. The type system of RelJ is defined in Sect. 3,
where the formal notion of subtyping is discussed and well-typed RelJ programs

are characterized. Section 4 gives the dynamics of RelJ with a small-step op-
erational semantics. We outline a proof of type soundness for RelJ in Sect. 5.
Section 6 describes an extension to RelJ which allows the addition of UML-style
multiplicity restrictions to relationships. Finally, in Sect. 7, we conclude and
consider further and related work.

2 The RelJ Calculus

As mentioned earlier, the core of RelJ is a subset of Java, similar to other frag-
ments of Java-like languages [4, 7, 8]. The fragment we use consists of simple
class declarations that contain a number of field declarations and method dec-
larations. The exact form of the class declarations will be made more precise
later.

2.1 Relationship Model

The main feature of RelJ is its support for first-class relationships. In addition to
class declarations, therefore, a RelJ program consists of a number of relationship
declarations, which are written:

relationship r extends r′ (n, n′
) { FieldDecl∗ MethDecl∗ }

This defines a relationship, r, with a number of type/field name pairs, FieldDecl∗

and method declarations, MethDecl∗. The relationship is between n and n′ where
n, n′ range over classes and relationships. This provides a means for relationship
instances to participate in further relationships. This feature is known as aggre-
gation in ER-modelling [14]. An example is shown in Fig. 2: the Recommends
relationship specifies that a Tutor may recommend a Student to attend a par-
ticular Course by relating an instance of Tutor to an instance of Attends, the
relationship that specifies which students attend which courses. Relationships
are directed (one-way) and many-to-many—more on this in Sect. 6.

We relate two objects, o1 and o2, with a relationship, r, by creating an
instance of r, which then exists between o1 and o2, and stores the values for
r’s fields. Relationship instances are first-class runtime objects in RelJ and so
can, for example, be stored in variables and fields. This immediately introduces
design issues relating to the removal of relationship instances and consequent
creation (or not) of dangling pointers: these are discussed later.

We also support relationship inheritance, which is denoted idiomatically in
UML as inheritance between association classes (Fig. 1b). To the best of our
knowledge, our support for this inheritance is novel and, as we will detail later,
is significantly different from the standard class-based inheritance model.

2.2 Class Inheritance vs Relationship Inheritance

While class inheritance in RelJ is identical to that in Java, RelJ’s relationship
inheritance is based on a restricted form of delegation, as found in languages

class Student {

String name;

}

class LazyStudent extends Student {

int hoursOfSleep;

}

class Course {

String title;

}

class Tutor {

String name;

}

relationship Attends (Student, Course) {

int mark;

}

relationship ReluctantlyAttends extends Attends

(LazyStudent, Course) {

int missedLectures;

}

relationship CompulsorilyAttends extends Attends

(Student, Course) {

String reason;

}

relationship Recommends (Tutor, Attends) {

String reason;

}

...

alice = new LazyStudent();

programming = new Course();

typeSystems = new Course();

Attends.add(alice, programming); // Alice attends Programming

ReluctantlyAttends.add(alice, typeSystems);

// Alice reluctantly attends Type Systems

for (Course c : alice.Attends) {

print "Attends: " + c.title;

}; // Prints:

// Attends: Programming

// Attends: Type Systems

alice
CompulsorilyAttends

programming

Attends

ReluctantlyAttends

Relation

Fig. 2. Example RelJ code and possible instantiation

such as Self [16] and, more recently, δ [2]. Consider the RelJ code for a simple
example, adapted from Pooley and Stevens [15], which is shown in Fig. 2.

When alice and programming are placed in the Attends relationship, an
instance of Attends is created between those objects. Subsequently, when alice
and programming are further placed in ReluctantlyAttends, an instance of
ReluctantlyAttends is created between alice and programming, but contains
only the missedLectures field. If that ReluctantlyAttends instance receives a
field look-up request for mark, it passes—delegates—the request to the Attends
instance—the super-instance—that exists between those same objects.

To ensure all instances are ‘complete’, specifically that they have all the fields
one would expect by inheritance, we impose the following invariant:

Invariant 1 Consider a relationship r2 which extends r1. For every instance of
relationship r2 between objects o1 and o2, there is an instance of r1, also between
o1 and o2, to which it delegates requests for r1’s fields.

By this invariant, if alice and programming were placed in the
ReluctantlyAttends relationship without first having been placed in the
Attends relationship, then an Attends instance would be implicitly created
between them.

Invariant 2 For every relationship r and pair of objects o1 and o2, there is at
most one instance of r between o1 and o2.

According to this second invariant, if alice and programming were later
placed in the CompulsorilyAttends relationship, then its instance and that
of ReluctantlyAttends would share a common super-instance: the Attends
instance between alice and programming. This situation is shown at the bottom
of Fig. 2, with the dotted lines indicating delegation of field lookups.

The motivation for such a mechanism is based on what one might intuitively
expect from relationships: Clearly, if Alice reluctantly attends a course, then she
also attends it and will receive a mark, thus we require sub-relationships to be
included in their super-relationship, giving rise to Invariant 1. Also, if Alice is
both compulsorily and reluctantly attending some course, the mark will be the
same regardless of whether one views her attendance as reluctant, compulsory
or without any annotation. Thus, for each pair of related objects, there should
be only one instance of each relationship so that relationship properties are
consistent, hence Invariant 2.

RelJ also allows the removal of relationship instances. For example, we could
extend the code of Fig. 2 to remove the fact that Alice attends programming:

...

Attends.rem(alice, programming); // Remove Alice attends Programming

for (Course c : alice.Attends){

print "Attends: " + c.title; // Prints:

} // Attends: Type Systems

In fact, both the relationship addition and removal operations are statement ex-
pressions. When used as an expression, add returns the relationship instance that

was created: this provides a convenient short-cut for setting the new instance’s
fields. For regularity, rem returns the instance that was removed, or null if the
relationship did not exist before the attempted removal.

We return now to the issue raised earlier concerning relationship instance
removal. Consider the following code:

bob = new Student();

bob.name = "Bob";

databases = new Course();

databases.title = "DB 101";

bobdb = Attends.add(bob, databases); // Add bob to databases

bobdb.mark = 99;

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints DB 101

print bobdb.mark; // Prints 99

Attends.rem(bob, databases); // Remove bob from databases

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints nothing

The second iteration shows that the relationship between bob and databases
has been correctly removed. We must then choose the fate of the reference to
the Attends-instance stored in bobdb: what happens if we append the statement
print bobdb.mark;?

There are clearly a number of options: either the instance is removed, in
which case we would expect a runtime error; or the runtime maintains some
liveness information so that an access to the variable bobdb would generate a
specific relationship exception; or finally, we could choose not to remove the
relationship instance at all, in which case the code would print 99. We have
chosen the third option. Thus, in RelJ, the relationship instance itself is not
removed upon deletion, but rather is treated like any other runtime value and
is removed by garbage collection. More experience in relationship programming
is needed before we can determine if this is the correct design decision.

2.3 Language Definition

We give the grammar for RelJ programs and types in Fig. 3.
The Java types used in RelJ are class names and a single primitive type,

boolean (the inclusion of further primitive types does not impact on the for-
malization). As discussed, we provide relationship names as types. To allow
relationship processing RelJ has a (generic) set type set<n>, that denotes a set
of values of type n. This set type is not a reference type, but is a primitive

p ∈ Program ::= ClassDecl∗ RelDecl∗

ClassDecl ::= class c extends c′

{ FieldDecl∗ MethDecl∗ }
RelDecl ::= relationship r extends r′ (n, n′

)

{ FieldDecl∗ MethDecl∗ }
n ∈ NominalType ::= c | r

t ∈ Type ::= boolean | n | set<n>
FieldDecl ::= t f;

MethDecl ::= t m(t′ x) mb

mb ∈ MethBody ::= { s return e; }
v ∈ Value ::= true | false | null | empty
l ∈ LValue ::= x |

e.f field access

e ∈ Expression ::= v | value

l | l-value

e1 == e2 | equality test

e1 + e2 | e1 - e2 | set addition/removal

e.r | e:r | relationship access

e.from | relationship source

e.to | relationship destination

se statement expression

se ∈ StatementExp ::= new c() | instantiation

l = e | assignment

r.add(e,e′) | r.rem(e,e′) | relationship addition/removal

e.m(e′) method call

s ∈ Statement ::= ε | empty statement

se; s1 | expression

if (e) {s1} else {s2}; s3 | conditional

for (n x : e) {s1}; s2 set iteration

Fig. 3. The grammar of RelJ types and programs

(value) type, much like the generic literal types used by the ODMG [12].3 RelJ
does not support nested sets—sets of sets are not permitted. RelJ offers a for
iterator over set values (we adopt the same syntax as Java 5.0 for iterating over
collections). We also provide operators for explicitly adding an element to a set
(+), and for removing an element (-).

For simplicity, we require some regularity in the class (and relationship) dec-
larations of RelJ programs: (1) we insist that all class declarations include the
supertype; (2) we write out the receiver of field access or method invocation in
full; (3) all methods take just one argument; (4) all method declarations end
with a return statement; and (5) we assume that in a RelJ program exactly one
class supports a main method. To be concise, we do not consider constructor
methods; field initialization, other than the provision of type-appropriate initial
values, is performed explicitly.

The metavariable c ranges over the set of class names, ClassName; r ranges
over the set of relationship names, RelName; n ranges over both ClassName and
RelName; f ranges over the set of field names, FldName; m ranges over the
set of method names, MethName; and x ranges over the set of variable names,
VarName, which we assume contains the element this, which cannot be on the
left-hand side of an assignment. Metavariables may not take the undefined value.

As usual for such language formalizations, we assume that given a RelJ pro-
gram, P , the class and relationship declarations give rise to class and relationship
tables that are denoted by CP and RP , respectively [6]. (We will drop the sub-
script when it is unambiguous.) A class (relationship) table is then a map from a
class (relationship) name to a class (relationship) definition. Signatures for these
maps are to be found in Fig. 4.

C ∈ ClassTable : ClassName → ClassName× FieldMap×MethMap
R ∈ RelTable : RelName → RelName× NominalType× NominalType×

FieldMap×MethMap
F ∈ FieldMap : FldName → Type
M∈ MethMap : MethName → VarName× LocalMap× Type× Type×MethBody
L ∈ LocalMap : VarName → Type

Fig. 4. Signatures of class and relationship tables

A class definition is a tuple, (c,F ,M), where c is the superclass; F is a
map from field names to field types; and M is a map from method names to
method definitions. Method definitions are tuples (x,L, t1, t2,mb) where x is
the parameter; L is a map from local variable names to their types; t1 is the
parameter type; t2 is the return type; and mb is the method body. For brevity,
we write Fc and Mc for the field and method definition maps of class c.

Relationship definitions are tuples (r′, n, n′,F ,M) where r′ is the super-
relationship; n and n′ are the types between which the relationship is formed
3 Having sets as a generic value type allows us to soundly support covariance—this is

discussed in more detail in Sect. 3.

(the source and destination respectively); and F , M are the field map and
method map respectively, as found in class definitions. As for classes, we write
Fr for r’s field definition map and Mr for r’s method map.

In summary, RelJ offers the following operations to manipulate relationships:
e.r finds the objects related to the result of e through relationship r; e:r finds
the instances of r that exist between the result of e and the objects to which
it is related; and the pseudo-fields from and to are made available on relation-
ship instances, and return the source and destination objects between which the
instance exists (or existed). These are further described in the following sections.

3 Type System

We provide Object for the root of the class hierarchy as usual, and Relation as
its counterpart in the relationship hierarchy, and assume appropriate entries in
C and R respectively. We define the usual subtyping relation P ` t ≤ t′ where
t is a subtype of t′, directly populated with the information about immediate
super-types provided by C and R, then closed under transitivity and reflexivity.
P is omitted where the context makes it unambiguous.

We leave the less important typing rules to Appendix A, but two rules worth
particular note are shown here:

(STCov)

` n1 ≤ n2

` set<n1> ≤ set<n2>

(STObject)

` Relation ≤ Object

STCov makes set types covariant with their contained type. If set<− > were a
reference type, then this kind of covariance would be unsound. However, set<−>
is a value type, thus such values are not referenced or mutated, only copied.

To unify the relationship and class hierarchies—desirable in the absence of
generics—we take Relation as a subtype of Object in rule STObject.4

While Fc and Mc give us the fields and methods declared directly in c, we
define FDc and MDc to provide us with all the fields and methods available for
c’s instances, including those inherited from its superclasses, so that their types
might be checked in the later type rules:

FDc(f) =

{
Fc(f) if f ∈ dom(FP,c) or c = Object

FDc′(f) if f 6∈ dom(FP,c) and C(c) = (c′, ,)

MD is defined similarly for class methods, as are FD and MD for relationships.
We type expressions and statements in the presence of a typing environment,

Γ , which assigns types to variable names. Selected typing judgements for RelJ
expressions are given below:

(TSRelObj)

Γ ` e : n1

R(r) = (, n2, n3, ,)
` n1 ≤ n2

Γ ` e.r : set<n3>

(TSRelInst)

Γ ` e : n1

R(r) = (, n2, , ,)
` n1 ≤ n2

Γ ` e:r : set<r>

4 If we added generics to RelJ it would be possible to remove this typing rule.

TSRelObj types the lookup of objects related through r to the result of e.
As our relationships are implicitly many-to-many, the result of this lookup is a
set of r’s destination type, n3. The relationship instances that sit between the
result of e and the result of e.r are accessed through e:r. The result of such a
lookup is a set of r-instances, as specified in TSRelInst. There is a bias here
between the source and destination of a relationship: the relationship instances
may only be accessed from the source object. It is not difficult to extend the
language so that access from the destination objects is also possible.

(TSFrom)

Γ ` e : r
R(r) = (, n, , ,)

Γ ` e.from : n

(TSTo)

Γ ` e : r
R(r) = (, , n, ,)

Γ ` e.to : n

Given an r-instance, the objects between which it exists (or between which
it once existed) can be accessed with the from and to properties. TSFrom and
TSTo assign types according to the relationship’s declaration—therefore, these
are typed covariantly with the relationship type, but this is sound as they are
immutable for all instances of such a relationship.

(TSRelAdd)

R(r) = (, n1, n2, ,)
Γ ` e1 : n3

Γ ` e2 : n4

` n3 ≤ n1

` n4 ≤ n2

Γ ` r.add(e1,e2) : r

(TSRelRem)

R(r) = (, n1, n2, ,)
Γ ` e1 : n3

Γ ` e2 : n4

` n3 ≤ n1

` n4 ≤ n2

Γ ` r.rem(e1,e2) : r

Finally, TSRelAdd and TSRelRem specify typing of the operators that
relate and unrelate objects. In both cases, e1 and e2 must be of the source and
destination type, respectively, of relationship r. The result of either operation
will be an instance of r; that which was created or removed. A removal may
evaluate to null where the results of e1 and e2 were unrelated by r.

The type-checking relation for statements is of the form Γ ` s, the rules for
which are largely routine. We show some examples, however:

(TSExp)

Γ ` se : t
Γ ` s

Γ ` se; s

(TSFor)

Γ ` e : set<n1>

Γ [x 7→ n2] ` s1

` n1 ≤ n2

Γ ` s2 x 6∈ dom(Γ)
Γ ` for (n2 x : e) {s1}; s2

TSExp allows type-correct statement expressions to be used as statements,
while TSFor checks that the for construct is only asked to iterate over a set
of object references. Note that, to be consistent with the Java 5.0 syntax, we
require an explicit type for the iterating variable, although there is no reason
why this type could not be inferred. We also require that the iteration variable
is not already in scope.

The set validTypesP specifies the types that may be assigned to fields and
variables:

validTypesP = {boolean}∪ dom(CP)∪ dom(RP)∪{set<n> | n ∈ dom(CP)∪ dom(RP)}

In the following two rules, we check fields and methods in the presence of
their enclosing class or relationship:

(TSField)

C(n) = (n′, ,) ∨ R(n) = (n′, , , ,)
1. f 6∈ dom(FDn′)
2. Fn(f) ∈ validTypesP
3. R(f) = (, n1, n2,) ⇒ 6` n ≤ n1

P, n ` f

TSField checks that f is a good field for class or relationship n by verifying
(1) that f is not defined in any super-type of n; (2) that f ’s type is valid in a
well-typed program and (3) that there is no relationship with the same name as
f that might make references to f ambiguous.

(TSMethod)

CP (n) = (n′, ,Mn) ∨RP (n) = (n′, , , ,Mn)
Mn(m) = (x,L, t1, t2, { s return e; })

1. t1 ∈ validTypesP
2. this, x 6∈ dom(L)
3. {x 7→ t1, this 7→ n} ∪ L ` s
4. {x 7→ t1, this 7→ n} ∪ L ` e : t′2
5. ` t′2 ≤ t2
6. MDn′(m) = (, , t3, t4,) ⇒ ` t3 ≤ t1 ∧ ` t2 ≤ t4

P, n ` m

TSMethod checks (1) that the input type of method m in class/relationship
n is valid; (2) that the parameter name and this do not clash with any local
variables; (3) that the method body is well-typed when the parameter, this and
the local variables are assigned the types specified in the class’ method table;
(4, 5) that the return expression has a subtype of the method’s declared return
type; and (6) that the input type of this method is a supertype of any previous
declaration of m in a super-type of c, and that the return type of m is a subtype
of any previous method declaration: that is, that this definition of m may be
used anywhere a supertype’s version of m can be used. We then specify the
validity of classes and relationships:

(TSClass)

C(c) = (c′ 6= c,F ,M)
P ` c′

∀f ∈ dom(F) : P, c ` f
∀m ∈ dom(M) : P, c ` m

P ` c

(TSRelationship)

RP (r) = (r′ 6= r, n1, n2,F ,M)
r′ ∈ validTypesP

1. RP (r′) = (, n′
1, n

′
2, ,)

2. ` n1 ≤ n′
1

3. ` n2 ≤ n′
2

∀f ∈ dom(F) : P, r ` f
∀m ∈ dom(M) : P, r ` m

P ` r

TSClass specifies that a class type is well-formed if its superclass is well-formed,
and if all of its methods and fields are well-typed. TSRelationship imposes
many of the same restrictions as TSClass, with the addition of conditions 1–3,

which check the types related by r’s super-relationship are supertypes of those
that r relates.

4 Semantics

We specify evaluation rules for a small-step semantics. We use evaluation con-
texts to specify evaluation order [17], and use variable renaming to avoid the
need for an explicit frame stack [7].

The meta-variables used in the semantics range over addresses, values, errors,
objects and stores as follows:

ι ∈ Address
ιnull ∈ Address ∪ {null}

u ∈ DynValue = {null, true, false} ∪ Address ∪ P(Address)
w ∈ Error ::= NullPtrError | Ee[w] | Es[w] | { w return e; }
o ∈ Object
σ : Address → Object
ρ : (Address× Address× RelName) → Address
λ : VarName → DynValue

Objects, ranged over by o, are either class instances or relationship instances.
We write class instances as an annotated pair, 〈〈c||f1 : v1, . . . , fi : vi〉〉, containing
a mapping from field names to values, and the object’s dynamic type, c. Relation-
ship instances are written as an annotated 5-tuple, 〈〈r, ιnull, ι1, ι2||f1 : v1, . . . , fi :
vi〉〉, containing the familiar field value map and dynamic type, as well as the ob-
ject addresses the instance relates, ι1 and ι2, and a reference to the relationship
instance’s super-instance, ιnull; specifically, the instance of r’s super-relationship
which relates the same object addresses ι1 and ι2. Where r = Relation, there
is no super-relationship and this reference is null. For both types of object, we
take o(f) and dom(o) as if they were applied to o’s field value map.

Dynamic values (as opposed to syntactic value literals), ranged over by u,
are either addresses, ranged over by ι, sets of addresses, or true, false or null.
A small-step semantics means that expressions may at times be only partially
evaluated, so we include these run-time values and partially-evaluated method
bodies in language expressions by extending Expression as follows:

e ∈ DynExpression ::=

u | dynamic values

mb | method body

. . . terms from Expression grammar

DynLValue and DynStatement are generated from LValue and Statement in the
obvious way, and e, l and s will range over these new definitions from this point
onward.

A store, σ, is a map from addresses to objects, while local variables are given
values by a locals store, λ. A relationship store, ρ maps relationship tuples to
addresses such that ρ(r, ι1, ι2) indicates the address of the instance of r which
exists between ι1 and ι2.

Ee ∈ ExpContext ::=
• hole

| Ee.f field lookup
| Ee == e | u == Ee equality test
| Ee + e | u + Ee set addition
| Ee - e | u - Ee set removal
| Ee.r | Ee:r relationship access
| Ee.from | Ee.to relationship from/to
| { E return e; } | { return Ee; } method body
| Ee.f = e | x = Ee | u.f = Ee assignment
| Ee.m(e′) | u.m(Ee) method call
| r.add(Ee,e

′) | r.add(u,Ee) relationship addition
| r.rem(Ee,e

′) | r.rem(u,Ee) relationship removal

Es ∈ StatContext ::=
Ee; s expression

| for (n x : Ee) {s1}; s2 set iteration
| if (Ee) {s1} else {s2}; s3 conditional

Fig. 5. Grammar for evaluation contexts

During execution, the store and its constituent objects are modified by up-
dating the relevant map. Update of some map f is written f [a 7→ b] such that
f [a 7→ b](a) = b and f [a 7→ b](c) = f(a) where a 6= c. Such substitutions are
commonly applied to stores (σ[ι 7→ o]) and to objects (o[f 7→ v]).

Substitution of variables in program syntax uses the standard notation,
e[x′/x], for the replacement of all variables x in e with x′, and similarly with
statements, s[x′/x].

Figure 5 gives the evaluation contexts for RelJ expressions and statements.
All contexts E contain a hole, denoted •, which indicates the position of the
sub-expression to be evaluated first—in this case the left-most, inner-most. An
expression may be placed in a context’s hole position by substitution, denoted
Ee[e]. Notice that we no longer distinguish between those expressions that may
or may not be used in statement position.

A configuration in the semantics is a 5-tuple of typing environment, heap,
relationship store, locals map, and a statement: 〈Γ, σ, ρ, λ, s〉. An error configu-
ration is a configuration 〈Γ, σ, ρ, λ, w〉, with an error in place of a statement. Γ
is included for the proof of type soundness.

Expression execution proceeds when a sub-expression in hole position may be
reduced, as specified by OSContextE. We elide the similar rule for expressions
in statement context:

(OSContextE)
〈Γ, σ, ρ, λ, e〉 P 〈Γ ′, σ′, ρ′, λ′, e′〉

〈Γ, σ, ρ, λ, Ee[e]〉 P 〈Γ ′, σ′, ρ′, λ′, Ee[e
′]〉

We also execute statements inside partially-executed method bodies:

(OSInBody)
〈Γ, σ, ρ, λ, s〉 P 〈Γ ′, σ′, ρ′, λ′, s′〉

〈Γ, σ, ρ, λ, { s return e; }〉 P 〈Γ ′, σ′, ρ′, λ′, { s′ return e; }〉

newPartP (r, ιnull, ι1, ι2) = 〈〈r, ιnull, ι1, ι2||f1 : initialP (FP,r(f1)), . . . , fi : initialP (FP,r(fi))〉〉
where {f1, f2, . . . , fi} = dom(FP,r)

addRelP (r, ι1, ι2, σ1, ρ1) =

(σ1, ρ1) if ρ(r, ι1, ι2) = ι′′

(σ1[ι 7→ newPartP (r, null, ι1, ι2)], ρ1[(r, ι1, ι2) 7→ ι])

if r = Relation

(σ3, ρ3) otherwise

where ι 6∈ dom(σ1) or dom(σ2)
r 6= Relation⇒RP (r) = (r′, , ,)
(σ2, ρ2) = addRelP (r′, ι1, ι2, σ1, ρ1)
σ3 = σ2[ι 7→ newPartP (r, ρ2(r

′, ι1, ι2), ι1, ι2)]
ρ3 = ρ2[(r, ι1, ι2) 7→ ι]

remRelP (r, ι1, ι2, ρ) = ρ \ {((r′, ι1, ι2) 7→ ι) | ` r′ ≤ r}

fldUpd(σ, f, ι, u) =

{
σ[ι 7→ σ(ι)[f 7→ u]] if f ∈ dom(σ(ι))

fldUpd(σ, f, ι′, u) if σ(ι) = 〈〈r, ι′, , || . . .〉〉

Fig. 6. Definitions of auxiliary functions for creating relationship instances (newPart),
for putting objects in relationships (addRel) and for removing objects from relation-
ships (remRel). fldUpd demonstrates delegation of field updates to super-relationship
instances.

It remains now to define the base cases for the operational semantics. We
begin with RelJ’s two relationship operations on an object address, ι: firstly, the
objects related to ι by relationship r may be accessed using e.r; secondly, the
instances of r that relate those objects to ι may be accessed with e:r so that
relationship attributes may be read or modified:
OSRelObj: 〈Γ, σ, ρ, λ, ι.r〉 P 〈Γ, σ, ρ, λ, {ι′ | ∃ι′′ : ρ(r, ι, ι′) = ι′′}〉

OSRelObjN: 〈Γ, σ, ρ, λ, null.r〉 P 〈Γ, σ, ρ, λ, NullPtrError〉

OSRelInst: 〈Γ, σ, ρ, λ, ι:r〉 P 〈Γ, σ, ρ, λ, {ι′′ | ∃ι′ : ρ(r, ι, ι′) = ι′′}〉
OSRelObj and OSRelObjN give the semantics for obtaining the objects

related to ι through r. Notice that the result is not just a matter of looking-up
the result in a table; the objects are found by querying ρ. If null is the target
of the lookup, a null-pointer error occurs. Similar rules are left for the appendix.

The pseudo-fields from and to provide access to the objects between which
a relationship instance exists, returning the source and destination objects re-
spectively:
OSFrom: 〈Γ, σ, ρ, λ, ι.from〉 P 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , ι′, || 〉〉

OSTo: 〈Γ, σ, ρ, λ, ι.to〉 P 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , , ι′|| 〉〉
OSRelAdd and OSRelRem give semantics to the relationship addition and

removal operators add and rem respectively, and are based entirely on addRel
and remRel from Fig. 6:
OSRelAdd: 〈Γ, σ1, ρ1, λ, r.add(ι1,ι2)〉 P 〈Γ, σ2, ρ2, λ, ι3〉

where (σ2, ρ2) = addRelP (r, ι1, ι2, σ1, ρ1) and ι3 = ρ2(r, ι1, ι2)

OSRelRem1: 〈Γ, σ, ρ1, λ, r.rem(ι1,ι2)〉 P 〈Γ, σ, ρ2, λ, ρ1(r, ι1, ι2)〉
where (r, ι1, ι2) ∈ dom(ρ1) and ρ2 = remRelP (r, ι1, ι2, ρ1)

OSRelRem2: 〈Γ, σ, ρ, λ, r.rem(ι1,ι2)〉 P 〈Γ, σ, ρ, λ, null〉
where (r, ι1, ι2) 6∈ dom(ρ)

addRel adds an instance of r between ι1 and ι2 if such an instance does not
already exist. With a recursive call, it also ensures that instances of r’s super-
relationships exist between ι1 and ι2, ensuring Invariant 1 is maintained.

remRel removes an instance of r from between ι1 and ι2, but does not alter the
heap, only the relationship store, ρ. Again, to maintain Invariant 1, all instances
of sub-relationships to r are similarly removed from between ι1 and ι2.

In the case of a relationship addition in expression context, a reference is
returned to the relationship instance that was added. Relationship removal eval-
uates to the instance that was removed, if any. Where no such instance exists,
null is returned.

Field update is performed with an auxiliary function fldUpd, also found in
Fig. 6, which demonstrates the delegation of field lookup to super-relationship
instances:
OSFldAss: 〈Γ, σ, ρ, λ, ι.f = u〉 P 〈Γ, fldUpd(σ, ι, f, u), ρ, λ, u〉

We conclude our discussion of the operational semantics with the two cir-
cumstances in which variables are scoped—method call, and the for iterator.

The semantics for method call is given in OSCall. Access to the formal
parameter, x, local variables, x1..i, and this must be scoped within the body
of m, so we freshen these syntactic names to x′, x′

1..i and x′
this in the style of

Drossopoulou et al. [7].
OSCall: 〈Γ1, σ, ρ, λ1, ι.m(u)〉 P 〈Γ2, σ, ρ, λ2, { s2 return e2; }〉

where
σ(ι) = 〈〈n|| . . .〉〉 or σ(ι) = 〈〈n, , , || . . .〉〉
MDP,n(m) = (x,L, t1, , s1 return e1;)
dom(L) = {x1, . . . , xi}
x′, x′

this, x
′
1, . . . , x

′
i 6∈ dom(λ1)

Γ2 = Γ1[x
′ 7→ t1][x

′
this 7→ n][x′

1..i 7→ L(x1..i)]
λ2 = λ1[x

′ 7→ u][x′
this 7→ ι][x′

1..i 7→ initial(Γ2(x
′
1..i))]

s2 = s1[x
′/x][x′

1..i/x′
1..i][x

′
this/this]

e2 = e1[x
′/x][x′

1..i/x1..i][x
′
this/this]

We extend the typing environment, Γ2, with new local variable type bindings
for the fresh names (as well as those for the formal parameter and this), and
include appropriate initial values in the locals store, λ2. Finally, the old syn-
tactic names are updated in the method body, s, and return expression, e, by
substitution.

A similar strategy is used to avoid binding clashes for the for iterator:
OSFor1: 〈Γ, σ, ρ, λ, for (n x : ∅) {s1}; s2〉 P 〈Γ, σ, ρ, λ, s2〉
OSFor2: 〈Γ1, σ, ρ, λ1, for (n x : u) {s1}; s2〉 P

〈Γ2, σ, ρ, λ2, s3 for (n x : (u \ ι)) {s1}; s2〉
where

ι ∈ u, x 6= x′ 6∈ dom(λ1)
Γ2 = Γ1[x

′ 7→ x], λ2 = λ1[x
′ 7→ ι], s3 = s1[x

′/x]

Iteration of the empty set evaluates immediately to ‘skip’, while iteration
over the non-empty set picks an element from the set, assigns this to the iterator

variable, and unfolds the statement block, in which the bound iterator variable
is freshened. We do not specify the order in which the elements of u are bound
to x.

5 Soundness

In this section we outline proofs of two key safety properties: that no type-correct
program will get ‘stuck’—except in a well-defined error state—and that types
are preserved during program execution.

Firstly, however, we define some well-formedness properties of stores and
values, so that we can check type preservation through subject reduction.

Value Typing and Well-formedness

We redefine our typing relation to include the store, σ, so that values may be
typed—particularly important for showing subject-reduction. Typings of true
and false with boolean, and of null with any valid nominal type are elided.

Firstly, an address has a type, n, if the object at that address in the store
has a dynamic type (written dynType(σ(ι))) subordinate to n. This condition is
then mapped over the members of a set of addresses in DTSet:

(DTAddr)

` dynType(σ(ι)) ≤ n
P, Γ, σ ` ι : n

(DTSet)

P ` n
∀j ∈ 1..i : P, Γ, σ ` ιj : n

P, Γ, σ ` {ι1, . . . , ιi} : set<n>

We also provide a typing rule for the method body construction introduced
in Fig. 5:

(DTMethBody)
P, Γ, σ ` s

P, Γ, σ ` e : t
P, Γ, σ ` { s return e; } : t

We make use of a ‘well-formed object’ relation, P, σ ` o �inst , when o is a
well-formed object in some store, the rules for which follow:

(WFField)

dynType(o) = n
FDP,n(f) = t

P, ∅, σ ` o(f) : t
P, σ, o ` f �fld

WFField checks that the field f stores a value of appropriate type for its
definition in class or relationship n, according the dynamic typing relation given
above. This relation is mapped across the fields of classes and relationships in
the following rules:

(WFObject1)

P, σ ` 〈〈Object||〉〉 �inst

(WFRelInst1)

ι1, ι2 ∈ dom(σ)
P, σ ` 〈〈Relation, null, ι1, ι2||〉〉 �inst

(WFObject2)

{f1, . . . , fi} = dom(FDP,c)
∀j ∈ 1..i : P, σ, o ` fj �fld

P, σ ` 〈〈c||f1 : v1, . . . , fi : vi〉〉 �inst

(WFRelInst2)

RP (r) = (dynType(σ(ι)), n1, n2,F ,)
{f1, . . . , fi} = dom(F)
∀j ∈ 1..i : P, σ, o ` fj �fld

` dynType(σ(ι1)) ≤ n1

` dynType(σ(ι2)) ≤ n2

P, σ ` 〈〈r, ι, ι1, ι2||f1 : v1, . . . , fi : vi〉〉 �inst

WFObject1 and WFRelInst1 specify that instances of Object and
Relation, respectively, are valid. WFObject2, requires that all fields are well-
formed and that the class instance has precisely those fields that were declared
or inherited. WFRelInst2, checks that only those fields immediately declared
in r are present in the relationship instance; that those fields are well-formed;
that the super-instance, at ι, is present, and has a dynamic type equal to r’s su-
pertype; and that the r-instance sits between two instances of appropriate type
according to r’s definition.

We check that the relationships are properly specified in ρ according to the
following two rules:

(WFRelation1)

σ(ρ(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉
P, σ, ρ ` (Relation, ι1, ι2) �rel

(WFRelation2)

RP (r) = (r′, , , ,)
(r′, ι1, ι2) ∈ dom(ρ)

σ(ρ(r, ι1, ι2)) = 〈〈r, ρ(r′, ι1, ι2), ι1, ι2|| . . .〉〉
P, σ, ρ ` (r, ι1, ι2) �rel

WFRelation2 ensures that the r-instance between ι1 and ι2 has a super-
instance that also sits between ι1 and ι2. WFRelation1 acts as a base-case for
Relation, instances of which do not take a super-instance.

We then map the conditions for well-formed instances, relations and local
variables over the heap, σ, the relationship heap, ρ, and the locals map, λ:

(WFHeap)

∀ι ∈ dom(σ) : P, σ ` σ(ι) �inst

P ` σ �heap

(WFRelHeap)

∀(r, ι1, ι2) ∈ dom(ρ) : P, σ, ρ ` (r, ι1, ι2) �rel

P, σ ` ρ �relheap

(WFLocals)

∀x ∈ dom(Γ) : P, Γ, σ ` λ(x) : Γ (x)
P, Γ, σ ` λ �locals

We consider a configuration 〈Γ, σ, ρ, λ, s〉 to be well-formed when σ, ρ and λ
are well-formed, and where s is type-correct. Error configurations, 〈Γ, σ, ρ, λ, w〉,
are well-formed under similar conditions.

Safety

Type safety is shown by a subject reduction theorem, central to which is the
idea that context substitution respects types:

Lemma 1 (Substitution). For expressions e1 and e2, which are typed t1 and t2
respectively, where t2 is a subtype of t1 and where Ee[e1] is typed t3, then Ee[e2] has a
subtype of t3.

The proof follows by induction on the structure of the typing derivation. Next,
we show type preservation, which follows naturally from the previous lemma,
and by induction on the structure of the derivation of execution:

Theorem 1 (Subject Reduction). In a well-typed program, P , where
〈Γ1, σ1, ρ1, λ1, s1〉 executes to a new configuration 〈Γ2, σ2, ρ2, λ2, s2〉, that configuration
will be well-formed. Furthermore, Γ1 ⊆ Γ2 and all objects in σ1 retain their dynamic
type in σ2.

Similarly where the original configuration executes to an error configuration.

Finally, we show that a well-typed program may always perform an execution
step:

Theorem 2 (Progress). For all well-typed programs, P , all well-formed configura-
tions 〈Γ1, σ1, ρ1, λ1, s1〉 execute to either:

i. an error configuration 〈Γ2, σ2, ρ2, λ2, w〉, or
ii. a new statement configuration 〈Γ2, σ2, ρ2, λ2, s2〉

By Theorems 1 and 2, any well-typed program can make a step to a new
well-formed configuration: well-typed programs do not go wrong.

6 Restricting Multiplicities

In UML, associations can be annotated with multiplicities, which restrict the
number of instances that may take part in any given relation. For example, it
could be that every student attends exactly eight courses, but that a course may
have any number of students:

Student Course
* 8attends

More exotic multiplicities can include ranges (‘1..7’), and comma-separated
ranges (‘1..7, 10..*’). There are a number of ways in which such restrictions
could be expressed in RelJ. We describe below both a flexible, but dynamically
checked approach, as well as a more restricted, statically checked approach.

6.1 Dynamic Approach

The use of a run-time check at every relationship addition would allow us to
represent most of the possible multiplicities that can be expressed in UML.
When, say, too many courses are added to the Attends relationship, an exception
could be raised:

relationship Attends (many Student, 2 Course) { int mark; }
...
Attends.add(alice, programming);
Attends.add(alice, semantics);
Attends.add(alice, types); // Exception!

We deviate from UML slightly: an association annotated at one end with ‘2’
would always have exactly two associated instances. Instead, we interpret our 2
annotation on Course as ‘0..2’ in UML notation: that is, courses start without
any students.

6.2 Static Approach

Our preference, however, is for a static approach to the expression of multi-
plicities. While less flexible, we need not generate constraint-checking code for
relationship additions, and we provide more robust guarantees that the multi-
plicity constraints are satisfied. Rather than give the formal details, we shall give
an overview of this extension to RelJ.

We only allow one and many annotations. The former is equivalent to ‘0..1’
in UML, the latter to ‘0..*’:

relationship Attends (many Student, many Course);
relationship Failed (many PassedStudent, one Course);

In the declarations above, we see that students’ course attendance is unrestricted,
but that a PassedStudent may have failed at most one course.

We further restrict relationship inheritance so that a many-to-one relation-
ship may only inherit from a many-to-one or many-to-many relationship. We
impose similar restrictions on many-to-many and one-to-many relationship def-
initions. We then add to the invariants of Sect. 2.

Invariant 3 For a relationship r, declared “relationship r (n1, n2)”, where
n1 is annotated with one, there is at most one n1-instance related through r to
every n2-instance. The converse is true where n2 is annotated with one.

There is a tension between Invariants 1 and 3. Consider the following rela-
tionship definitions, where a course can only be taught by a single lecturer, and
where lecturers enjoy teaching hard courses, but teach them slowly:

relationship Teaches (one Lecturer, many Course);
relationship ExcitedlyTeaches extends Teaches

(one Lecturer, many HardCourse);
relationship SlowlyTeaches extends Teaches

(one Lecturer, many HardCourse);

charlie = new Lecturer();
deirdre = new Lecturer();
advancedWidgets = new HardCourse();

Suppose that charlie ExcitedlyTeaches advancedWidgets, then by Invari-
ant 1, charlie also Teaches advancedWidgets.

Now suppose that deirdre is to slowly teach advancedWidgets:

SlowlyTeaches.add(deirdre, advancedWidgets);

By Invariant 1, deirdre must also be related to advancedWidgets via
Teaches. However, by Invariant 3, charlie and deirdre cannot both Teach
advancedWidgets. In our formalised semantics, we remove charlie from
Teaches with advancedWidgets: the add becomes an assignment, rather than
an addition, in this case. Furthermore, by Invariant 1, charlie cannot be in
ExcitedlyTeaches with advancedWidgets once he has been removed from
Teaches—therefore, he is also removed from ExcitedlyTeaches.

This behaviour, where not only sub-relationships of r are altered by a change
to r’s contents, but possibly also the contents of parents and siblings of r, might
seem unexpected. At the same time, they make sense when examining examples,
and provide a means for avoiding run-time checks.

7 Conclusion

In this paper, we have presented RelJ, a core fragment of Java that offers first-
class support for first-class relationships. Unlike other work, we have formally
specified our language; giving mathematical definitions of its type system and
operational semantics. Given such definitions we are able prove an important
correctness property of our language.

7.1 Related Work

Modelling languages like UML [9] and ER-diagrams [5] provide associations and
relationships as core abstractions. Several database systems, for example object
databases adhering to the ODMG standard [12], also provide relationships as
primitives. Unfortunately, programming languages provide no first-class access
to such primitives, so weak APIs must be used instead.

As we mentioned earlier, Rumbaugh [13] was the first to point out that
relationships have an important rôle to play in general object-oriented languages,
and gave an informal description of a language based on Smalltalk. However, the
matter of relationship inheritance was mentioned only as an analogue to class
inheritance, and there was no formal treatment of this or the language as a
whole.

Noble has presented some patterns for programming with relationships [10].
In fact, many of these patterns could be used in translating RelJ programs to
‘pure’ Java. Noble and Grundy also suggested that relationships should be made
explicit in object-oriented programs [11]. Again, neither work provides any con-
crete details of language support for relationships.

After completing the first draft of this work we discovered the paper by
Albano, Ghelli and Orsini [1], which describes a language based on associations
(relationships) for use in an object-oriented database environment. Their data
model is quite different from ours; for example, they treat classes as containers,
or extents [12]. Thus values can inhabit multiple classes, and classes also support
multiple inheritance. In fact, classes turn out to be unary associations, which is
the core abstraction in Albano et al.’s model.

Their model also provides a rich range of constraints; for example, surjec-
tivity and cardinality constraints for associations, and disjointness constraints

on classes. These are compiled to the appropriate runtime checks. (They take
advantage of the underlying database infrastructure and utilize triggers and
transactions.) Finally, they give no formal description of the language.

Our work, in contrast, takes as its starting point the Java object model and
hence much of the complexity of Albano et al.’s model is simply not available.
However, a notion of ‘container’ can be easily coded up. First assume a class
Singleton and a single object of that class, called default. We can then define
containers for the Person and Student classes of Fig. 2 as follows (where we
assume a super-relationship Extent between Singleton and Object classes).

relationship Persons extends Extent

(Singleton, Person) {

}

relationship Students extends Persons

(Singleton, Student) {

}

So to place Tom in the Persons container we simply write
Persons.add(default, Tom). Similarly Students.add(default, Jerry)
would add the object Jerry to the Students container, and by delegation also
in the Persons container. The expression default.Persons would return the
current contents of the Persons container. (Syntactic sugar could easily be
added to make this code a little more compact.)

Interest in relationships is not restricted to modelling and programming lan-
guages. In the timeframe of the next generation of Microsoft Windows, code-
named ‘Longhorn’, the Windows storage subsystem will be replaced with a new
system called WinFS. WinFS provides a database-like file store, the core of which
is a collection of items, like objects, which represent data such as images, Outlook
contacts, and user-defined items. The other key component of the WinFS data
model is relationships, which are defined between items. WinFS thus represents
a move away from the traditional tree-based file system hierarchy to an arbi-
trary graph-based file system, where the key abstraction is the relationship. At
the time of writing, details of the API for WinFS are scarce, but it is clear that
a language such as RelJ would provide a more direct programming framework,
where various compile-time checks and optimizations would be possible. When
the details of WinFS are finalized and made public, it would be interesting to
compare various systems routines written in a language such as RelJ with those
written using the APIs.

7.2 Further work

Clearly RelJ is just a first step in providing comprehensive first-class support of
relationships in an object-oriented language. There are several features available
in modelling languages, such as UML, that cannot currently be expressed in
RelJ; notably, we only support relationships that are one-way. We hope to add
relationships that may be traversed in both directions safely, as well as further
investigating multiplicities.

In this paper we have not given details of how RelJ can be implemented. To
support it directly in the runtime would require considerable extension of the
JVM. The design and evaluation of such an extension is interesting future work.
As an alternative, we have informally specified a systematic translation of RelJ
into ‘pure’ Java. In the future, we plan to formalize this translation and prove
it correct.

Another direction we wish to consider is extending RelJ with more query-like
facilities (in a style similar to Cω [3]). For example, one might add a simple
filter facility, e.g. the expression alice.Attends[it.title.matches("*101")]
would return the beginners’ courses that alice is currently attending. (The
subexpression in square brackets is a simple boolean-valued expression, where
it is bound to each element of the relationship in turn.)

Finally, we conclude by recording our hope that our language may provide a
first step in the process of principled unification of modelling languages (UML,
ER-diagrams), programming languages (Java, C]), and data query and specifi-
cation languages (SQL, schema design).

Acknowledgments

Much of this work was completed whilst Bierman was at the University of Cam-
bridge Computer Laboratory and supported by EU grants Appsem-II and EC
FET-GC project IST-2001-33234 Pepito. Wren is currently supported by an
EPSRC studentship. We are grateful to Sophia Drossopoulou and her group for
useful comments on this work, as well as to Matthew Fairbairn, Giorgio Ghelli,
Alan Mycroft, James Noble, Matthew Parkinson, Andrew Pitts, Peter Sewell
and the attendees of FOOL 2005.

References

1. A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for a strongly typed
object-oriented database programming language. In Proceedings of VLDB, 1991.

2. C. Anderson and S. Drossopoulou. δ: An imperative object-based calculus with
delegation. In Proceedings of USE, 2002.

3. G. Bierman, E. Meijer, and W. Schulte. The essence of Cω. In Proceedings of
ECOOP, 2005.

4. G. Bierman, M. Parkinson, and A. Pitts. MJ: A core imperative calculus for Java
and Java with effects. Technical Report 563, University of Cambridge Computer
Laboratory, 2003.

5. P. P.-S. Chen. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

6. S. Drossopoulou. An abstract model of Java dynamic linking and loading. In
Proceedings of Types in Compilation (TIC), 2000.

7. S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited,
September 2000.

8. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings
of POPL, pages 171–183, 1998.

9. I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development pro-
cess. Addison-Wesley, 1999.

10. J. Noble. Basic relationship patterns. In Pattern Languages of Program Design,
vol. 4. Addison Wesley, 1999.

11. J. Noble and J. Grundy. Explicit relationships in object-oriented development. In
Proceedings of TOOLS, 1995.

12. R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

13. J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In
Proceedings of OOPSLA, pages 466–481, 1987.

14. J. Smith and D. Smith. Database abstractions: Aggregation and generalizations.
ACM Transactions on Database Systems, 2(2):105–133, 1977.

15. P. Stevens and R. Pooley. Using UML: software engineering with objects and
components. Addison-Wesley, 1999.

16. D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings of
OOPSLA, pages 227–242. ACM Press, 1987.

17. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

A Details of Type System and Semantics

This appendix contains the details of the semantics not covered in the main
body of the paper.

A.1 Typing Rules

In addition to the subtyping rules given in Sect. 3, the following rules populate
the subtyping relation with the immediate supertypes provided by the language
syntax, and give the reflexive, transitive closure:

(STRef)

P ` t
` t ≤ t

(STTrans)

` t1 ≤ t2
` t2 ≤ t3
` t1 ≤ t3

(STClass)

C(c1) = (c2, ,)
` c1 ≤ c2

(STRel)

R(r1) = (r2, , , ,)
` r1 ≤ r2

The typing rules for the RelJ statements and expressions not typed in Sect. 3
are shown in Fig. 7.

We omit the typing of literal values true, false, null and empty, which
are typed in the obvious way – boolean, n and set<n> respectively. Variables
are typed by TSVar simply by look-up in the typing environment. Note that
TSVar covers the type of this by its inclusion in VarName. New class-instance
allocation is typed in the obvious way. The equality test is valid as long as both
expressions are addresses. (Similar rules are required for e1 and e2 as set<−> or
boolean types, but these are obvious and omitted.) Field look-up is typed from
the field table of the receiver’s static type. Rules TSVarAdd to TSFldSub
demonstrate object addition and removal from set values. In all cases, the right-
hand operand must be the address of an object with a type subordinate to
the set’s static type. The entire expression takes the right-hand operand’s type.
Variables and fields may be assigned values subordinate to the left-hand side’s
declared type. Method call is typed directly from the method look-up table. The

(TSVar)

Γ (x) = t
Γ ` x : t

(TSNew)

P ` c
Γ ` new c() : c

(TSEq)

Γ ` e1 : n
Γ ` e2 : n′

Γ ` e1 == e2 : boolean

(TSFld)

Γ ` e : n
FDn(f) = t
Γ ` e.f : t

(TSAdd)

Γ ` e1 : set<n1>

Γ ` e2 : n2

` n1 ≤ n3

` n2 ≤ n3

Γ ` e1 + e2 : set<n3>

(TSSub)

Γ ` e1 : set<n1>

Γ ` e2 : n2

` n1 ≤ n3

` n2 ≤ n3

Γ ` e1 - e2 : set<n3>

(TSAss)

x 6= this

Γ ` x : t1
Γ ` e : t2
` t2 ≤ t1

Γ ` x = e : t2

(TSFldAss)

Γ ` e1 : n
Γ ` e2 : t1

FDn(f) = t2
` t1 ≤ t2

Γ ` e1.f = e2 : t1

(TSCall)

Γ ` e1 : n
Γ ` e2 : t1

MDn(m) = (x,L, t2, t3,)
` t1 ≤ t2

Γ ` e1.m(e2) : t3

(TSCond)

Γ ` e : boolean
Γ ` s1

Γ ` s2

Γ ` s3

Γ ` if (e) {s1} else {s2}; s3

(TSSkip)

Γ ` ε

Fig. 7. The remaining type rules of RelJ

for statement was typed in the body of the paper. The conditional’s typing-
checking is standard, recalling that we do not assign types to statements. All
statements require that their continuation statement is also well-typed, and we
explicitly type the empty statement (ε), which is usually omitted in program
text.

Finally, a program is well-typed if all of its classes and relationships are well-
typed, if classes and relationships are disjoint, and if the subtyping relationship
is antisymmetric:

(TSProgram)

∀n ∈ dom(CP) ∪ dom(RP) : P ` n
∀n1, n2 : P ` n1 ≤ n2 ∧ P ` n2 ≤ n1 ⇒ n1 = n2

` P

A.2 Operational Semantics

First, we give full definitions of new, which returns an initialised class instance;
initial, which returns an appropriate initial value for a variable of type t; dynType,
which returns the dynamic type of an address in the store; and of fld, which
returns the value of field f in the object at ι in store σ, delegating the field

lookup to the superinstance as appropriate.

newP (c) =

{
〈〈Object||〉〉 if c = Object

〈〈c||f1 : initialP (FDP,c(f1)), . . . , fi : initialP (FP,c(fi))〉〉 otherwise

where {f1, f2, . . . , fi} = dom(FDP,c)

initialP (t) =

null if t = n′

false if t = boolean

∅ if t = set<n>

dynType(o) = n where o = 〈〈n|| . . .〉〉 ∨ o = 〈〈n, , , || . . .〉〉

fld(σ, f, ι) =

{
σ(ι)(f) if f ∈ dom(σ(ι)) or

fld(σ, f, ι′) if f 6∈ dom(σ(ι)) ∧ σ(ι) = 〈〈r, ι′, , ||...〉〉

The remaining rules of the operation semantics are then as follows:
OSEmpty: 〈Γ, σ, ρ, λ, empty〉 P 〈Γ, σ, ρ, λ, ∅〉
OSVar: 〈Γ, σ, ρ, λ, x〉 P 〈Γ, σ, ρ, λ, λ(x)〉
OSFldN: 〈Γ, σ, ρ, λ, null.f〉〈Γ, σ, ρ, λ, NullPtrError〉
OSFld: 〈Γ, σ, ρ, λ, ι.f〉 P 〈Γ, σ, ρ, λ, fld(σ, ι, f)〉
OSRelInstN: 〈Γ, σ, ρ, λ, null:r〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
OSEq: 〈Γ, σ, ρ, λ, u == u〉 P 〈Γ, σ, ρ, λ, true〉
OSNeq: 〈Γ, σ, ρ, λ, u == u′〉 P 〈Γ, σ, ρ, λ, false〉 where u 6= u′

OSNew: 〈Γ, σ, ρ, λ, new c()〉 P 〈Γ, σ[ι 7→ newP (c)], ρ, λ, ι〉 where ι 6∈ dom(σ)

OSBody: 〈Γ, σ, ρ, λ, { return u; }〉 P 〈Γ, σ, ρ, λ, u〉
OSAdd: 〈Γ, σ, ρ, λ, u + ι〉 P 〈Γ, σ, ρ, λ, u ∪ {ι}〉
OSAddN: 〈Γ, σ, ρ, λ, u + null〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
OSSub: 〈Γ, σ, ρ, λ, u - ι〉 P 〈Γ, σ, ρ, λ, u \ {ι}〉
OSSubN: 〈Γ, σ, ρ, λ, u - null〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
OSVarAss: 〈Γ, σ, ρ, λ, x = u〉 P 〈Γ, σ, ρ, λ[x 7→ u], u〉
OSFldAssN: 〈Γ, σ, ρ, λ, null.f = u〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
OSRelAddN: 〈Γ, σ, ρ, λ, r.add(ιnull1 ,ιnull2)〉 P 〈Γ, σ, ρ, λ, NullPtrError〉

where ιnull1 = null or ιnull2 = null

OSRelRemN: 〈Γ, σ, ρ, λ, r.rem(ιnull1 ,ιnull2)〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
where ιnull1 = null or ιnull2 = null

OSCallN: 〈Γ, σ, ρ, λ, null.m(u)〉 P 〈Γ, σ, ρ, λ, NullPtrError〉
OSStat: 〈Γ, σ, ρ, λ, u; s〉 P 〈Γ, σ, ρ, λ, s〉
OSCondT: 〈Γ, σ, ρ, λ, if (true) {s1} else {s2}; s3〉 P 〈Γ, σ, ρ, λ, s1 s3〉
OSCondF: 〈Γ, σ, ρ, λ, if (false) {s1} else {s2}; s3〉 P 〈Γ, σ, ρ, λ, s2 s3〉

