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Abstract. In this paper we describe the data access features of Cω, an experi-
mental programming language based on C] currently under development at Mi-
crosoft Research. Cω targets distributed, data-intensive applications and accord-
ingly extends C]’s support of both data and control. In the data dimension it pro-
vides a type-theoretic integration of the three prevalent data models, namely the
object, relational, and semi-structured models of data. Inthe control dimension
Cω provides elegant primitives for asynchronous communication. In this paper
we concentrate on the data dimension. Our aim is to describe theessenceof these
extensions; by which we mean we identify, exemplify and formalize their essen-
tial features. Our tool is a small core language, FCω, which is a valid subset of
the full Cω language. Using this core language we are able to formalize both the
type system and the operational semantics of the data accessfragment of Cω.

1 Introduction

Programming languages, like living organisms, need to continuously evolve in response
to their changing environment. These evolutionary steps are typically quite modest:
most commonly the provision of better or reorganized APIs. Occasionally a more rad-
ical evolutionary step is taken. One such example is the addition of generic classes to
both Java [6] and C][25].

We should like to argue that the time has come for another large evolutionary step to
be taken. Much software is now intended for distributed, web-based scenarios. It is
typically structured using a three-tier model consisting of a middle tiercontaining the
business logic that extracts relational data from adata services tier(a database) and
processes it to produce semi-structured data (typically XML) to be displayed in the
user interface tier.

It is the writing of these middle tier applications that we should like to address. These
applications are most commonly written in an object-oriented language such as Java
or C] and have to deal with relational data (essentially SQL tables), object graphs, and
semi-structured data (XML, HTML).

In addition, these applications are fundamentally concurrent. Because of the inherent
latency in network communication, the more natural model ofconcurrency is asyn-
chronous. Accordingly, Cω provides a simple model of asynchronous (one-way) con-
currency based on the join calculus [12]. For the rest of thispaper, we shall focus exclu-
sively on the data access aspects of Cω; the concurrency primitives have been discussed



elsewhere [3]. Thus when we write Cω, we mean the language excluding the concur-
rency primitives.

Unfortunately common programming practice, and native APIsupport for data access
(e.g. JDBC and ADO.NET) leave a lot to be desired. For example, consider the fol-
lowing fragment taken (and mildly adapted) from the JDBC tutorial to query a SQL
database (a user-supplied country is stored in variableinput).

Connection con = DriverManager.getConnection(...);

Statement stmt = con.createConnection();

String query = "SELECT * FROM COFFEES WHERE Country=’"+input+"’";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("Cof_Name");

float n = rs.getFloat("Price");

System.out.println(s+" - "+n);

}

Using strings to represent SQL queries is not only clumsy butalso removes any pos-
sibility for static checking. The impedance mismatch between the language and the
relational data is quite striking; e.g. a value is projectedout of a row by passing a
string denoting the column name and using the appropriate conversion function. Per-
haps most seriously, the passing of queries as strings is often a security risk (the ‘‘script
code injection” problem—e.g. consider the case when the variableinput is the string
"’ OR 1=1; --") [17].

Unfortunately API support in both Java and C] for XML and XPath/XQuery is depress-
ingly similar (even those APIs that map XML values tightly toan object representation
still offer querying facilities by string passing).

Our contention is that object-oriented languages need to evolve to support data access
satisfactorily. This is hardly a new observation; a large number of academic languages
have offered such support for both relational and semi-structured data (see, e.g. [1, 2,
20, 19, 15, 4]). In spite of the obvious advantages of these languages, it appears that
their acceptance has been hampered by the fact that they are ‘‘different” from more
mainstream application languages, such as Java and C]. For example, HaskellDB [19]
proposes extensions to the lazy functional language, Haskell; and TL [20] is a hybrid
functional/imperative language with advanced type and module systems. We approach
this language support problem from a different direction, which is to extend the com-
mon application languages themselves rather than creatinganother new language.

Closer to our approach is SQLJ [24]. This defines a way of embedding SQL commands
directly in Java code. Moreover the results of SQL commands can be stored in Java vari-
ables andvice versa. Thus SQL commands are statically checked by the SQLJ compiler.
SQLJ compilation consists of two stages; first to pre-process the embedded SQL, and
second the ‘pure Java’ compilation. Thus the embedded SQL code is not part of the
languageper se(in fact all the embedded code is prefixed by the keyword#sql). The
chief difference is that Cω offers an integration of both the XML and relational data
models with an object model.



Design objectives of Cω The aim of our project was to evolve an existing language,
C], to provide first-class support for the manipulation of relational and semi-structured
data. (Although we have started with C], our extensions apply equally well to other
object-oriented languages, including Java.)

Addressing the title of our paper, the essence of the resulting language, Cω, is twofold:
its extensions to the C] type system and, perhaps more importantly, the elegant provi-
sion of query-like capabilities (the sub-title of our paper). Cω has been carefully de-
signed around a set of core design principles.

1. Cω is a coherent extension of (the safe fragment of) C], i.e. C] programs should be
valid Cω programs with the same behaviour.

2. The type system of Cω is intended to be both as simple as possible and closely
aligned to the type system in the XPath/XQuery standard. Ourintended users are
C] programmers who are familiar with XPath/XQuery.

3. From a programming perspective, the real power of Cω comes from its query-like
capabilities. These have been achieved by generalizing member access to allow
simple XPath-like path expressions.

Paper organization The rest of the paper is organized as follows. In§2 we give a
comprehensive overview to the Cω programming language.4 In §3.1 we identify and
formalize FCω, a core fragment of Cω. In §3.2 we detail a simpler fragment, ICω, and
in §3.4 show how FCω can be compiled to ICω. Using this compilation, we are able to
show a number of properties of FCω in §3.5, including a type soundness theorem. We
briefly discuss some related work in§4 and conclude in§5.

2 An introduction to C ω

Our design goal was to evolve C] to provide an integration of the object, relational
and semi-structured data models. One possibility would be to add these data models to
our programming language in an orthogonal way, e.g. by including new typesXML<S>
andTABLE<R>, whereS andR are XML and relational schema respectively. We have
sought to integrate these models bygeneralization, rather than by ad-hoc specializa-
tions. In the rest of this section we shall present the key ideas behind Cω, and give a
number of small programs to illustrate these ideas. This section should serve as a pro-
grammer’s introduction to Cω. We assume that the reader is familiar with C]/Java-like
languages.

2.1 New types

Cω is an extension of C], so the familiar primitive types such as integers, booleans,
floats are present, as well as classes and interfaces. In thissection we shall consider
in turn the extensions to the type system—streams, anonymous structs, discriminated
unions, and content classes—and for each consider the new query capabilities.

4 An preliminary version of Cω was (informally) described in [22]. We have subsequently sim-
plified the language, and our chief contribution here is a formalization (§§3–4).



StreamsThe first structural type we add is a stream type; streams represent ordered
homogeneous collections of zero or more values. For example, int* is the type for
homogeneous sequences of integers. Streams in Cω are aligned with iterators, which
will appear in C] 2.0. Cω streams are typically generated using iterators, which are
blocks that containyield statements. For example, theFromTo method:

virtual int* FromTo(int b, int e){

for (i = b; i <= e; i++) yield return i;

}

generates a finite, increasing stream of integers. Importantly, it should be noted that,
just as for C], invoking such a method body doesnot immediately execute the iterator
block, but rather immediately returns a closure. (Thus Cω streams are essentially lazy
lists, in the Haskell sense.) This closure is consumed by theforeach statement, e.g.
the following code fragment builds a finite stream and then iterates over the elements,
printing each one to the screen.

int* OneToHundred = FromTo(1,100);

foreach (int i in OneToHundred) Console.WriteLine(i);

A vital aspect of Cω streams is that they are alwaysflattened; there are no nested streams
of streams. Cω streams thus coincide with XPath/XQuery sequences which are also
flattened. This alignment is a key design decision for Cω: it enables the semantics of
our generalized member access to match the path selection ofXQuery. We give further
details later.

In addition, flattening of stream types also allows us to efficiently deal with recursively
defined streams. Consider the following recursive variation of the functionFromTo that
we defined previously:

virtual int* FromTo2(int b, int e){

if (b>e) yield break;

yield return b;

yield return FromTo2(b+1,e);

}

The statementyield break; returns the empty stream. The non-recursive callyield

return b yields a single integer. The recursive callyield return FromTo2(b+1,n);

yields a stream of integers. As the type system treats the typesint* andint** as
equivalent this is type correct.

Without flattening we would be forced to copy the stream produced by the recursive
invocation, leading to a quadratic instead of a linear number of yields:

virtual int* FromTo3(int b, int e){

if (b>e) yield break;

yield return b;

foreach (int i in FromTo3(b+1,e)) yield return i;

}



Note that Cω’s flattening of stream types doesnot imply that the underlying stream is
flattened via some coercion; every element in a stream isyield-ed at most once. As
we will see in the operational semantics (§3.3), iterating over a stream will effectively
perform a depth-first traversal over then-ary tree produced by the iterator.

Cω offers a limited but extremely useful form ofcovariancefor streams. Covariance is
allowed provided that the conversion on the element type is the identity; for example
Button* is a subtype ofobject* whereasint* is not (as the conversion fromint to
object involves boxing). This notion is a simple variant of the notion of covariance
for arrays in C], although it is statically safe (unlike array covariance) as we can not
overwrite elements of streams.

The rationale for this is that implicit conversions should be limited to constant-time
operations. Coercing a stream of typeButton* to typeobject* takes constant-time,
whereas coercingint* to object* would be linear in the length of the stream, as the
boxing conversion fromint to object is not the identity.

A key programming feature of Cω is generalized member access; as the subtitle sug-
gests the familiar ‘dot’ operator is now much more powerful.Thus if the receiver is a
stream the member access is mapped over the elements, e.g.OneToHundred.ToString()

implicitly maps the method call over the elements of the streamOneToHundred and re-
turns a value of typestring*. This feature significantly reduces the burden on the
programmer. Moreover, member access has been generalized so it behaves like apath
expression. For example,OneToHundred.ToString().PadLeft(10)converts all the
elements of the streamOneToHundred to a string, and then pads each string, returning
a stream of these padded strings.

Sometimes one wishes to map more than a simple member access over the elements of
a stream. Cω offers a convenient shorthand called anapply-to-all expression, written
e.{s}, which applies the block{s}, wheres denotes a sequence of statements, to
each element in the streame.5 The block may contain the variableit which plays a
similar role as the implicit receiver argumentthis in a method body and is bound to
each successive element of the iterated stream. (Such expressions are reminiscent of
Smalltalkdo: methods.) For example, the following code first creates the stream of
natural numbers from1 to 256, converts each of the elements to a hex string, converts
each of these to upper case, and then applies an apply-to-allexpression to print the
elements to the screen:

FromTo(1,256).ToString("x").ToUpper().{ Console.WriteLine(it); };

Anonymous structsThe second structural type we add are anonymous structs, which
encapsulate heterogeneous ordered collections of values.An anonymous struct is like
a tuple in ML or Haskell and is written asstruct{int i; Button;} for example.
A value of this type contains a memberi of type int and an unlabelled member of
type Button. We can construct a value of this type with the expression:new{i=42,

new Button()}.

To access components of anonymous structs we (again) generalize the notion of mem-
ber access. Thus assuming a valuex of the previous type, we writex.i to access

5 We shall adopt the FJ shorthand [18] and writex to mean a sequence ofx .



the integer value. Unlabelled members are accessed by theirposition; for example
x[1] returns theButton member. As for streams, member access is lifted over un-
labelled members of anonymous structs. To access theBackColor property of the
Button component in variablex we can just writex.BackColor, which is equivalent
to x[1].BackColor.

At this point we can reveal even more of the power of Cω’s generalized member access.
Given a streamfriends of typestruct{string name;int age;}*, the expression
friends.age returns a stream of integers. The member access is overbothstructural
types. The following query-like statement prints the namesof one’s friends:

friends.name.{ ConsoleWriteLine(it);};

Interestingly, Cω also allows repeated occurrences of the same member name within
an anonymous struct type, even at different types. For example, assume the following
declaration:struct{int i; Button; float i;} z; Thenz.i projects the twoi
members ofz into a new anonymous struct that is equivalent tonew{z[0],z[2]} and
of typestruct{int;float;}.

Cω provides a limited form of covariance for anonymous structs, just as for streams. For
example, the anonymous structstruct{int;Button;} is a subtype of
struct{int; Control;}. However it isnota subtype ofstruct{object; Control;}

since the conversion fromint to object is not an identity conversion. Cω does not
support width subtyping for anonymous structs.

Choice typesThe third structural type we add is a particular form of discriminated
union type, which we call a choice type. This is written, for example,choice{int; bool;}.
As the name suggests, a value of this type is either an integeror a boolean, and may
hold either at any one time. Unlike unions in C/C++ and variant records in Pascal where
users have to keep track of which type is present, values of a discriminated union in Cω
are implicitly tagged with the static type of the chosen alternative, much like unions in
Algol68. In other words, discriminated union values are essentially a pair of a value and
its static type.

There is no syntax for creating choice values; the injectionis implicit (i.e. it is generated
by the compiler).

choice{int;Button;} x = 3;

choice{int;Button;} y = new Button();

Cω provides a test,e was τ , on choice values to test the value’sstatic type. Thus
x was int would returntrue, whereasy was int would returnfalse.

Assuming that an expressione is of typechoice{τ}, the expressione was τ is true
for exactly oneτ in τ . This invariant is maintained by the type system. The only slight
complication arises from subtyping, e.g.

choice{Control; object;} z = new Button();

As Button is a subtype of bothControl andobject, which type tag is generated by
the compiler? A choice type can be thought of as providing afamilyof overloaded con-
structor methods, one for each component type. Just as for standard object creation in



Java/C], thebestconstructor method is chosen. In the example above, clearlyControl

is better thanobject. Thusz was Control returnstrue. The notion of ‘‘best” for
Cω is the routine extension of that for C].

As the reader may have guessed, member access has also been generalized over discrim-
inated unions. Here the behaviour of member access is less obvious, and has been de-
signed to coincide with XPath. Consider a valuew of typechoice{char; Button;}.
The member accessw.GetHashCode() succeeds irrespective of whether the value is a
character or aButton object. In this case the type of the expressionw.GetHashCode()

is int.

However the member may not be supported by all the possible component types, e.g.
w.BackColor. Classic treatments of union types would probably considerthis to be
type incorrect [23, p.207]. However, Cω’s choice types follow the semantics of XPath
where, for example, the queryfoo/bar returns thebar nodes under thefoo node if any
exist, andthe empty sequenceif none exist. Thus in Cω, the expressionw.BackColor
is well-typed, and will return a value of typeColor?. This is another new type in Cω
and is a variant of the nullable type to appear in C] 2.0. A value of typeColor? can
be thought of as a singleton stream, thus it is either empty orcontains a singleColor
value (whenw contains aButton). Again, we emphasize that this behaviour precisely
matches that of XPath.

Cω follows the design of C] in allowing all values to be boxed and hence all value types
are a subtype of the supertypeobject. Thus both anonymous structs and choice types
are considered to be subtypes of the classobject.

Content classesTo allow close integration with XSD and other XML schema lan-
guages, we have included the notion of acontent classin Cω. A content class is a
normal class that has a singleunlabelledtype that describes the content of that class,
as opposed to the more familiar (named) fields. The followingis a simple example of a
content class.

class friend{

struct{ string name; int age; };

void incAge(){...}

}

Again we have generalized member access over content classes. Thus the expression
Bill.age returns an integer, whereBill is a value of typefriend.

From an XSD perspective, classes correspond to global element declarations, while
the content type of classes correspond to complex types. Further comparisons with the
XML data model are immediately below, but a more comprehensive study can be found
elsewhere [21].

2.2 XML programming

It should be clear that the new type structures of Cω are sufficient to model simple XML
schema. For example, the following XSD schema



<element name="Address"><complexType><sequence>

<choice>

<element name="Street" type="string"/>

<element name="POBox" type="int"/>

</choice>

<element name="City" type="string"/>

</sequence></complexType></element>

can be represented (somewhat more succinctly!) as the Cω content class declaration:

class Address {

struct{

choice{ string Street; int POBox; };

string City;

};

}

The full Cω language supports XML literals as syntactic sugar for serialized object
graphs. For example, we can create an instance of theAddress class above using the
following literal:

Address a = <Address>

<Street>13 Elm St</Street>

<City>Hollywood</City>

</Address>;

The Cω compiler contains a validating XML parser that deserializes the above literal
into normal constructor calls. XML literals can also contain typed holes, much as in
XQuery, that allow us to embed expressions to compute part ofthe literal. This is espe-
cially convenient for generating streams.

The inclusion of XML literals and the semantics of the generalized member access
mean that XQuery code can be almost directly written in Cω. For example, consider
one of the XQuery Use Cases [9], that processes a bibliography file (assume that this is
stored in variablebs) and for each book in the bibliography, lists the title and authors,
grouped inside aresult element. The suggested XQuery solution is as follows.

for $b in $bs/book

return <result>{$b/title}{$b/author}<result>

The Cω solution is almost identical:

foreach (b in bs.book)

yield return <result>{b.title}{b.author}</result>;

The full Cω language adds several more powerful query expressions to those discussed
in this paper. For instance, filter expressionse[e ′] return the elements in the stream
e that satisfy the boolean expressione ′. As labels can be duplicated in anonymous
structs and discriminated unions, the full language also allows type-based selection.
For example, given a valuex of type struct{ int a; struct{string a;};} we
can select only thestring membera by writing x.string::a.



Transitive queries are also supported in the full Cω language: the expressione...τ::m
selects all membersm of typeτ that are transitively reachable frome. Transitive queries
are inspired by the XPath descendant axis.

2.3 Database programming

Relational tables are merely streams of anonymous structs.For example, the relational
table created with the SQL declaration:

CREATE TABLE Customer (name string, custid int);

can be represented in Cω: struct{string name; int custid}* Customer;

In addition to path-like queries, the full Cω language also supports familiar SQL ex-
pressions, includingselect-from-where, various joins and grouping operators. Per-
haps more importantly, these statements can be used onany value of the appropriate
type, whether that value resides in a database or in memory; hence, one can write SQL
queries in Cω code that does not access a database! One of the XQuery use-cases [9]
asks to list the title prices for each book that is sold by bothbooksellersA andBN. Using
aselect statement and XML-literals, this query can be written in Cω as the following
expression:

select <book-with-prices>

<title>{a.title}</title>

<price-A>{a.price}</price-A>

<price-BN>{bn.price}</price-BN>

</book-with-prices>

from book a in A.book, book bn in BN.book

where a.title == bn.title

Note the use of XML placeholders{a.title} and{bn.price}: when this code is
evaluated new titles and new prices are computed from the bindings of theselect-
from-where clause.

So far we have shown how we can query values using generalizedmember and SQL
expressions, but as Cω is an imperative language, we also allow to perform updates.
This paper, however, focuses on the type extensions and generalized member access
only.

3 The essence of Cω

In the rest of this paper we study formally the essence of Cω, by which we mean we
identify its essential features. We adopt a formal, mathematical approach and define
a core calculus, Featherweight Cω, or FCω for short, similar to core subsets of Java
such as FJ [18], MJ [5] and ClassicJava [11]. This core calculus, whilst lightweight,
offers a similar computational ‘‘feel” to the full Cω language: it supports the new type
constructors and generalized member access. FCω is a completely valid subset of Cω
in that every FCω program is literally an executable Cω program.



The rest of this section is organized as follows. In§3.1 we define the syntax and type
system for FCω. Rather than give an operational semantics directly for FCω we prefer
to first ‘‘compile out” some of its features, in particular generalized member access.
This both greatly simplifies the resulting operational semantics and demonstrates that
Cω’s features do not require extensive new machinery. Thus in§3.2 we define a target
language, Inner Cω, or ICω, for this ‘‘compilation”. ICω is essentially the same lan-
guage, but for a handful of new language constructs and a muchsimpler type system. In
§3.3 we give an operational semantics for ICω programs. In§3.4 we specify the com-
pilation of FCω programs into ICω programs. This translation is, on the whole, quite
straightforward. We conclude the section in§3.5 by stating some properties of our cal-
culi and the compilation. Most important is the type-soundness property for ICω. Space
prevents us from providing any details of the proofs, but they are proved using standard
techniques and are similar to analagous theorems for fragments of Java [18, 5].

3.1 A core calculus:FCω

SyntaxAn FCω program consists of one or more class declarations. Each class decla-
ration defines zero or more methods and contains exactly one unlabelled type that we
call thecontent type. (We can code up a conventional C]/Cω class declaration with a
number of field declarations using an anonymous struct.) FCω follows C] and requires
methods to be explicitly marked asvirtual oroverride. Given a program we assume
that there is a unique designated method within the class declarations that serves as the
entry point.

Program p ::= cd

Class Definition cd ::= class c:c {τ;md}

Method Definition md ::= virtual τ m(τ x){s}

| override τ m(τ x){s}

FCω supports two main kinds of types:value typesandreference types. As usual, the
distinguished typevoid is used for methods that do not return anything;null is only
used to typenull references, as with C]. Value types include the base typesbool and
int and the structural types: anonymous structs and discriminated unions. Reference
types are either class types or streams. As usual only reference types have object identity
and are represented at runtime by references into the heap. We assume a designated
special classobject.

Types
τ ::= γ Value types Reference Types

| ρ Reference types ρ ::= c Classes
| void | null Void and null types | σ* Stream types

Value Types | σ? Singleton stream type
γ ::= b Base types

| struct{fd} Anonymous structs Field Definition
| choice{κ} Choice types fd ::= τ f ; Named member

Base Types | τ; Unnamed member
b ::= bool |int

We employ the shorthandκ andσ to denote any typeexcepta choice type and stream
type (singleton or non-singleton), respectively. As Cω flattens stream types, we have
made the simplification to FCω of removing nested stream types altogether from the



type grammar. We have also simplified FCω choice types so that the members are
unlabelled and we also exclude (for simplification) nested choice types. These can be
coded up in FCω using unlabelled anonymous structs.

FCω expressions, as for C], are split into ordinary expressions and promotable ex-
pressions. Promotable expressions are expressions that can be used as statements. We
assume a number of built-in primitive operators, such as==, || and&&. In the gram-
mar we writee ⊕ e, where⊕ denotes an instance of one of these operators. We do not
formalize these operators further as their meaning is clear.

Expression
e ::= b | i Literals Promotable expression

| e ⊕ e Built-in operators pe ::= x = e Variable assignment
| x Variable | e.m(e) Method invocation
| null Null | e.{e} Apply-to-all
| (τ)e Cast Binding expression
| e is τ Dynamic typecheck be ::= f = e Named binding
| e was κ Static typecheck for choice values | e Unnamed binding
| new τ(e) Object creation
| new {be} Anonymous struct creation
| e.f Field access
| e[i] Field access by position
| pe Promotable expression

We have made a simplification in the interests of space to restrict apply-to-all expres-
sions to contain an expression rather than a sequence of statements. This simplifies the
typing rules, but as apply-to-all expressions can be coded usingforeach loops it is not
a serious restriction.

Statements in FCω are standard. As mentioned earlier we have adopted theyield

statement that will appear in C] 2.0 to generate streams.

Statement s ::= ; Skip
| pe; Promoted expression
| if (e) s else s Conditional
| τ x = e; Variable declaration
| return e; Return statement
| return; Empty return
| yield return e; Yield statement
| yield break; End of stream
| foreach (σ x in e) s Foreach loop
| while (e) s While loop
| {s} Block

In what follows we assume that FCω programs are well-formed, e.g. no cyclic class
hierarchies, correct method body construction, etc. Theseconditions can be easily for-
malized but we suppress the details for lack of space.

Subtyping Before we define the typing judgements for FCω programs we need to de-
fine a number of auxiliary relations. First we define the subtyping relation. We write
τ <: τ ′ to mean that typeτ is a subtype of typeτ ′. The rules defining this relation are
as follows.



[Refl]
τ <: τ

τ <: τ ′ τ ′ <: τ ′′

[Trans]
τ <: τ ′′

[Box]
γ <: object

class c : c
′

[Sub]
c <: c

′

[Null]
null <: ρ

τ <: τ ′

f = f
′

[FD]
τ f <: τ ′

f
′

σ <: σ′

IdConv(σ, σ′)
[Stream]

σ*/? <: σ′

*/?

[SBox]
σ* <: object

[SSub]
σ? <: σ*

[Sing]
σ <: σ?

fd <: fd ′ IdConv(fd , fd ′)
[Struct]

struct{fd} <: struct{fd ′}
[SubChoice]

κ <: choice{κ; κ′}

κ <: κ′ IdConv(κ, κ′)
[Choice]

choice{κ} <: choice{κ′ κ′′}

Most of these rules are straightforward. The rule[Stream] contains notation (σ*/?)
that we use throughout this paper. It is uses to denote two instances of the rule, one
where we select the left of the ‘/’ in all cases (in this caseσ*) and one where we select
the right in all cases. It doesnot include cases where we individually select left and
right alternatives. The rules[Stream] and [Struct] make use of a predicateIdConv ,
which relates two typesτ andτ ′ if there is an identity conversion between them. Thus
IdConv (Button, object) but notIdConv (int, object). In this short paper we shall
not give its straightforward definition.

Generalized member accessAs we have seen a key programming feature of Cω is
generalized member access. Capturing this behaviour in thetype system can be tricky,
but we have adopted a rather elegant solution, whereby we define two auxiliary rela-
tions. The first, writtenτ.f : τ ′, tells us that given a value of typeτ accessing member
f will return a value of typeτ ′. We define a similar relation for function member ac-
cess, writtenτ.m(τ ′) : τ ′′. Having generalized member access captured by a separate
typing relation greatly simplifies the typing judgements for expressions. As generalized
member access is a key feature of Cω, we shall give it in detail.

The definition of this relation over stream types is as follows.

σ.f : σ′

σ*.f : σ′

*

σ.f : σ′

*/?

σ*.f : σ′

*

σ.m(τ) : σ′

σ*.m(τ) : σ′

*

σ.m(τ ) : σ′

*/?

σ*.m(τ) : σ′

*

σ.m(τ ) : void

σ*.m(τ ) : void

The first two rules map the member access over the stream elements, making sure that
we do not create a nested stream type. The next two rules for function member access
are similar. The last rule captures the intuition that mapping avoid-valued method over
a stream, forces the evaluation of the stream and does not return a value.

Before defining the rules for member access over anonymous structs, we need to define
rules for member access over named field definitions. This is pretty straightforward and
as follows.



τ f .f : τ

τ.m(τ ′) : τ ′′

τ f .m(τ ′) : τ ′′

Now we consider the rules for generalized member access overanonymous structs. First
we give the degenerate cases where only one component supports the member access.

∃!k ∈ {1 . . .n}. fdk .f : τk

struct{fd1; . . . fdn;}.f : τk

∃!k ∈ {1 . . . n}. fdk .m(τ ′): τ ′′

struct{fd1; . . . fdn;}.m(τ): τ ′′

The non-degenerate cases are then as follows.

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p].fdSk
.f : τk

struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. fdSk
.m(τ): τ ′

k

struct{fd1; . . . fdn;}.m(τ): struct{τ ′

1; . . . τ ′

p;}

Thus a subset,S , of the components support the member, and we map the member
access over these components in order. The overall return type is an anonymous struct
of the component return types.

We now consider the rules for generalized member access overchoice types. Again we
consider these rules depending on how many components support the member access.
First we give the simple case whenall possible components support the member access.

∀k ∈ {1 . . .n}. κk .f : τ

choice{κ1; . . . κn;}.f : τ

∀k ∈ {1 . . .n}. κk .m(τ) : τ ′

choice{κ1; . . . κn;}.m(τ) : τ ′

We also have the case when only one of the possible componentssupports the member
access. These rules are as follows (we omit the nested cases).

∃!k ∈ {1 . . .n}. κk .f : σ n > 1

choice{κ1; . . . κn;}.f : σ?

∃!k ∈ {1 . . .n}. κk .m(τ) : σ n > 1

choice{κ1; . . . κn;}.m(τ) : σ?

The reader will recall that the return type of this generalized member access involves
a singleton stream type. Finally we give the cases where morethan one of the possible
components supports the member access.

∃S ⊆ {1 . . . n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk
.f : κ′

k

choice{κ1; . . . κn;}.f : choice{κ′

1; . . . κ′

p;}?

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. κSk
.m(τ) : κ′

k

choice{κ1; . . . κn;}.m(τ ) : choice{κ′

1; . . . κ′

p;}?



Generalized member access over singleton streams is relatively straightforward; the
only complication being again to ensure that no nested streams are generated.

σ.f : σ′

σ?.f : σ′

?

σ.f : σ′

*/?

σ?.f : σ′

*/?

σ.m(τ ): σ′

σ?.m(τ ): σ′

?

σ.m(τ): σ′

*/?

σ?.m(τ): σ′

*/?

Finally we need to define rules for generalized member accessover classes. Clearly
these need to reflect the standard C] semantics: function member access on classes
searches the class hierarchy until a matching method is found. If we find a matching
methodτ ′m(τ ′′) in classc, we need to check the actual types of the arguments to the
types expected bym. This behaviour is given by the following two rules.

class c:c
′

{τ;md} τ ′

m(τ ′′) ∈ md τ <: τ ′′

c.m(τ): τ ′

class c:c
′

{τ;md} τ ′

m(τ ′′) 6∈ md c
′.m(τ): τ ′

c.m(τ): τ ′

Next we consider the rules for generalized field access. There is a small subtlety here
concerning recursive class definitions; consider the following recursive classList of
lists of integers:class List { struct{ int head; List; } }

Given an instancexs of typeList, we do not wantxs.head to recursively select all
head fields inxs. However simply unfolding the content type and using the rules given
earlier for generalized access over anonymous structs thatis precisely what would hap-
pen!

There are a number of solutions, but in order to make the Cω type system as simple as
possible, we follow e.g. Haskell and SML and break recursivecycles at nominal types.
In our setting that means that we simply do not perform memberlookup on nominal
members of the content of nominal types. Using these refined rules, the result type of
xs.head is int.

Formalizing this is trivial but time-consuming. We define another family of generalized
member access judgements, writtenτ • f : τ ′, which is identical to the previous rules
except they are not defined for nominal types. We elide the definitions here.

To define field access on nominal types, we first define formallythe content type of a
class, writtencontent(c) for some classc, as follows.

class c:object{τ;md}

content(c) = τ

class c : c
′

{τ;md} content(c′) = τ ′

content(c) = struct{τ ′

;τ;}

The rule for generalized member access over classes simply searches for the memberf

on the content type of classc, and is given by the following rule.

content(c) = τ τ • f : τ ′

c.f : τ ′



Generalized index accessAs we mentioned earlier, elements of anonymous structs can
be accessed by position. This is captured by the following rule.

type(fdi ) = τi

struct {fd1; . . . fdn;}[i]: τi

As the reader might have expected, this index access is generalized over the other types;
the rather routine details are omitted.

Typing judgements We are now able to define typing judgements for FCω. We de-
fine three relations corresponding to the three syntactic categories of expressions, pro-
motable expressions and statements. For all three judgements we writeΓ to mean a
partial function from program identifiers to types. The judgements for expressions and
promotable expressions are writtenΓ ` e: τ andΓ ` pe: τ , respectively. These are
given in Fig. 1.

Most of these rules are routine; we shall discuss a few of the more interesting details
here. In the rule[TStruct], we have made use of a typing judgement for a binding
expression. This is defined as follows:

Γ ` e: τ

Γ ` f = e: τ f

The compactness of the rules[TField], [TIndex] and [TMeth] shows the elegance of
having captured generalized member access with auxiliary relations.

The rules[TAAExp1] and[TAAExp2] ensure that the return type of an apply-to-all ex-
pression is not nested. The rule[TAAExp3] ensures the appropriate mixed flattening of
streams. The rule[TAAExp4] captures the intuition that applying avoid-typed expres-
sion to a stream forces the evaluation of that stream and hence the overall type is also
void.

The typing judgement for FCω statements is writtenΓ ; τ ` s and is intended to mean
that a statements is well-typed in the typing environmentΓ . If it returns a value (either
via a normalreturn or ayield return) then that value is of typeτ .

The rules[TForeach1] and [TForeach2] reflect the fact that the type of the stream
elements can be cast to the type of the bound variable. This can be either via an upcast
([TForeach1]) or a downcast ([TForeach2]) (again this matches C] 2.0).

3.2 An inner calculus: ICω

Rather than consider further our featherweight calculus FCω, we shall in fact define
another core calculus for Cω. This inner calculus, called ICω, is intended to be similar
but lower-level than FCω; it can be thought of as the internal language of a compiler.

The chief simplification in ICω is that its type system doesnot support generalized
member access. The intention is that we compile out generalized member access when
translating FCω programs into ICω programs. We give some details of this compilation
in §3.4. Apart from a simplified type system, we can define quite simply an operational
semantics for ICω; this is given in§3.3.



Γ ` e: τ andΓ ` pe: τ

[TInt]
Γ ` i : int

[TBool]
Γ ` b: bool

[TId]
Γ, x : τ ` x : τ

[TNull]
Γ ` null: null

Γ ` e: τ ′ (τ ′ <: τ ) ∨ (τ <: τ ′)
[TSub]

Γ ` (τ)e: τ

Γ ` e: τ ′ (τ ′ <: τ ) ∨ (τ <: τ ′)
[TIs]

Γ ` e is τ :bool

Γ ` e: choice{κ′ κ; κ′′}
[TWas]

Γ ` e was κ: bool

Γ ` be: fd
[TStruct]

Γ ` new {be}: struct{fd}

Γ ` e: τ τ <: content(c)
[TNew]

Γ ` new c(e): c

Γ ` e: τ τ.f : τ ′

[TField]
Γ ` e.f : τ ′

Γ ` e: τ τ [i ] : τ ′

[TIndex]
Γ ` e[i]: τ ′

Γ ` x : τ Γ ` e: τ ′ τ ′ <: τ
[TAss]

Γ ` x=e: τ

Γ ` e: τ Γ ` e ′: τ ′ τ.m(τ ′): τ ′′

[TMeth]
Γ ` e.m(e ′): τ ′′

Γ ` e: σ*/? Γ, it : σ ` e
′: σ′

[TAAExp1]
Γ ` e.{e

′

}: σ′

*/?

Γ ` e: σ*/? Γ, it : σ ` e
′: σ′

*/?
[TAAExp2]

Γ ` e.{e
′

}: σ′

*/?

Γ ` e: σ*/? Γ, it : σ ` e
′: σ′

?/*
[TAAExp3]

Γ ` e.{e
′

}: σ′

*

Γ ` e: σ*/? Γ, it : σ ` e
′: void

[TAAExp4]
Γ ` e.{e

′

}: void

Γ ; τ ` s

[TSkip]
Γ ; τ ` ;

Γ ; τ ` s
[TNest]

Γ ; τ ` {s}

Γ ` pe: τ
[TProm]

Γ ; τ ′ ` pe;
[TRetV]

Γ ; void ` return;

Γ ` e: bool Γ ; τ ` s
[TWhile]

Γ ; τ ` while (e) s

Γ ` e: bool Γ ; τ ` s1 Γ ; τ ` s2
[TIf]

Γ ; τ ` if (e) s1 else s2

Γ ` e: τ ′ τ ′ <: τ
[TRet]

Γ ; τ ` return e;

[TYieldB]
Γ ;σ* ` yield break;

Γ ` e: σ′ σ′ <: σ
[TYield1]

Γ ; σ* ` yield return e;

Γ ` e: σ′

*/? σ′ <: σ′′ Γ, x : σ′′; τ ` s
[TForeach1]

Γ ; τ ` foreach (σ′′

x in e)s

Γ ` e: σ* σ* <: σ′

*
[TYield2]

Γ ; σ′

* ` yield return e;

Γ ` e: σ′

*/? σ′′ <: σ′ Γ, x : σ′′; τ ` s
[TForeach2]

Γ ; τ ` foreach (σ′′

x in e)s

Fig. 1.Typing judgements for FCω expressions, promotable expressions and statements



The grammar of ICω is then a simple varianr of the grammar for FCω. Some extra
expression and statement forms are added (which reflects thelower-level nature of ICω)
and likewise a couple are removed from the grammar as they areredundant. We do not
expect these new syntactic forms to be made available to the Cω programmer (although
they could be). The extensions are as follows:

Expression
e ::= . . . Promotable expression

| new τ(s) Closure creation pe ::= . . .
| new (κ,e) Choice creation | τ({s}) Block expression
| e.Content Class content Statement
| e at κ Choice content s ::= . . .

| yield return (τ,e); Typed yield

Thus ICω includes expressions to create closure and choice elements. We include an
operatore.Content to extract the content element from an objecte. Given an element
e of a choice type, we add an operatione at κ to extract itsκ-valued content. (If it is
of another type, this will raise an exception.) We add (typed) block expressions to ICω,
and in addition we provide a typedyield statement.

The two syntactic forms that we removed from the grammar of FCω are: (1) We remove
field accessese.f completely; they are replaced by positional access, i.e.e[i]; and (2)
We remove the untypedyield statement; allyields in ICω are explicitly typed.

We can define typing judgements for ICω expressions and statements, which are written
Γ � e: τ andΓ ; τ � s , respectively. Most of these rules are identical to those for FCω;
we shall just give the rules for the new syntactic forms. The rules for creating closure
and choice elements are as follows:

Γ ; σ*/? � s

Γ � new σ*/?(s): σ*/?

Γ � e: κ′ κ′ <: κ

Γ � new (κ,e): choice{κ;}

The typing rules for extracting the content of content classand choice elements are as
follows:

Γ � e: c

Γ � e.Content: content(c)

Γ � e: choice{κ;κ′}

Γ � e at κ: κ

The typing rule for block expressions andyield statements are as follows:

Γ ; τ � s τ 6= void

Γ � τ({s}): τ Γ ; σ*/? ` yield break;

Γ � e: σ′ σ′ <: σ

Γ ; σ*/? � yield return (σ′

,e);

Γ � e: σ*/? σ*/? <: τ τ 6= object

Γ ; τ � yield return (σ*/?,e);

3.3 Operational semantics forICω

In this section we formalize the dynamics of ICω by defining an operational semantics.
We follow FJ [18] and MJ [5] and give this in the form of a small-step reduction relation,



although a big-step evaluation relation can easily be defined. Hence we use evaluation
contexts to encode the evaluation strategy in the now familiar way [11]—the definition
of ICω evaluation contexts is routine and omitted. First we define the value forms of
ICω expressions and statements (wherebv is the value form of a binding expression):

Expression values Statement values
v ::= b | i | null | void Basic values sv ::= ; Skip

| r Reference | return v; Return value
| new {bv} Struct value | return;

| new (κ,v) Choice value | yield return (τ,v); Typed yield value
| yield break; End of stream value

Evaluation of ICω expressions and statements takes place in the context of a state,
which is a pair(H ,R), whereH is a heap andR is a stack frame. A heap is represented
as a finite partial map from referencesr to runtime objects, and a stack frame is a finite
partial map from variable identifiers to values. A runtime object, as for C], is a pair
(τ, cn) whereτ is a type andcn is a canonical, which is either a value or a closure. A
closure is the runtime representation of a stream and is written as a pair(R, s)α whereR
is a stack frame ands is a statement sequence. The superscript flagα indicates whether
the closure isfresh or aclone. We will explain this distinction later. In what follows we
assume that expressions and statements are well-typed.

In Fig. 2 we define the evaluation relation for ICω expressions, writtenS , e → S ′, e ′,
which means that given a stateS , expressione reduces by one or possibly more steps
to e ′ and a (possibly updated) stateS ′. (We use an auxiliary functionvalue defined as

follows: value(f = v)
def
= v , value(v)

def
= v .) These rules are routine.

As is usual we have a number of cases that lead to a predicable error state, e.g. following
a dereference of anull object. These errors in ICω areCastX ,ChoiceX ,NullX and
NullableX . We say that a pairS , e is terminalif e is one of these errors, or it is a value.

The evaluation relation for ICω promotable expressions is writtenS , pe → S ′, pe ′ and
is also given in Fig. 2. The rules for method invocation deserve some explanation: they
are differentiated according to whether the method isvoid-returning. If it is not then
the method body is unfolded, and executed until it is of the form return v; wherev is
a value. This value is then the result of the method invocation. If the method isvoid-
valued, then we unfold the method body and execute it until itis of the formreturn;.
The result is the special valuevoid.

The evaluation relation for statements is writtenS , s → S ′, s ′ and in Fig. 3 we give
just some of the interesting cases, which are those dealing with foreach loops. As we
have mentioned, Cω streams are aligned with C] 2.0 iterators: there theforeach loop
is actually syntactic sugar: first of all anIEnumerator<T> is obtained from the iterator
block (which should be of typeIEnumerable<T>) using theGetEnumeratormethod.
This is walked over usingMoveNext andCurrent members. Semantically important
is thatGetEnumerator actually copies the enumerable object. In our semantics we
faithfully encode this by tagging closures, and creatingclones as appropriate. Thus
whilst iterating over a stream we update the reference in place (rules[FVC], [FSC] and
[FNC]), but everyforeach creates its own copy from afresh original (rules[FVF],
[FSF] and[FNF]). In rule [FBr] we writeα to range over bothclone andfresh.



Expressions

(H ,R), x → (H ,R),R(x)

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), (τ)r → (H ,R), r

H (r) = (τ ′, cn) τ ′ 6<: τ

(H ,R), (τ)r → (H ,R),CastX

H (r) = (τ ′, cn) τ ′ <: τ

(H ,R), r is τ → (H ,R),true

H (r) = (τ ′, cn) τ ′ 6<: τ

(H ,R), r is τ → (H ,R),false S , new (κ, v) was κ → S , true

κ 6= κ′

S , new (κ, v) was κ′ → S , false

r 6∈ dom(H )

(H ,R), new c(v) → (H [r 7→ (c, v)], R), r

r 6∈ dom(H )

(H ,R),new σ*/?(s) → (H [r 7→ (σ*/?, (R, s)fresh)],R), r

H (r) = (c, cn)

(H ,R), r.content → (H ,R), cn S , null.content → S ,NullX

0 ≤ i ≤ n

S , new {bv0, .., bvn}[i] →
S , value(bvi )

S , new (κ, v) at κ → S , v

κ 6= κ′

S , new (κ, v) at κ′ →
S , ChoiceX

Promotable expressions

(H ,R), x = v → (H ,R[x 7→ v ]), v

(H ,R), s →∗ (H ′,R′), return v ; s ′

(H ,R), τ({s}) → (H ′,R′), v

S , null.m(v) → S ,NullX

H (r) = (c, ) method(m, c) = τ ′(τ x){s} τ ′ 6= void

(H , [ ]), {c this = r;τ x = v;s} →∗ (H ′,R′), return v ′;s ′

(H ,R), r.m(v) → (H ′,R), v ′

H (r) = (c, ) method(m, c) = void (τ x){s}
(H , [ ]), {c this = r;τ x = v;s} →∗ (H ′,R′), return ;s ′

(H ,R), r.m(v) → (H ′,R),void

Fig. 2.Evaluation rules for ICω expressions and promotable expressions



[FNull]
S , foreach (σ x in null)s → S , ;

H (r) = (τ ′, (R′, s ′)α) (H ,R′), s ′ →∗ (H ′,R′′), yield break ;s ′′

[FBr]
(H ,R), foreach (σ x in r) s → (H ′,R), ;

H (r) = (τ ′, (R′, s ′)fresh) r ′ 6∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v 6= null

[FVF]
(H ,R),foreach (σ x in r) s →
(H ′[r ′ 7→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′, v);s ′′ v 6= null

[FVC]
(H ,R), foreach (σ x in r) s →
(H ′[r 7→ (τ ′, (R′′, s ′′)clone)],R), {{σ x = v ; s} foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ 6∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v 6= null

[FSF]
(H ,R), foreach (σ x in r) s →
(H ′[r ′ 7→ (τ ′, (R′′, s ′′)clone)], R),{foreach (σ x in v) s foreach (σ x in r ′) s}

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (σ′*, v);s ′′ v 6= null

[FSC]
(H ,R), foreach (σ x in r) s →
(H ′[r 7→ (τ ′, (R′′, s ′′)clone)],R), {foreach (σ x in v) s foreach (σ x in r) s}

H (r) = (τ ′, (R′, s ′)fresh) r ′ 6∈ dom(H ′)
(H ,R′), s ′ →∗ (H ′, R′′), yield return (τ, null);s ′′

[FNF]
(H ,R),foreach (σ x in r) s →
(H ′[r ′ 7→ (τ ′, (R′′, s ′′)clone)],R), foreach (σ x in r ′) s

H (r) = (τ ′, (R′, s ′)clone)
(H ,R′), s ′ →∗ (H ′,R′′), yield return (τ, null);s ′′

[FNC]
(H ,R),foreach (σ x in r) s → (H ′[r 7→ (τ ′, (R′′, s ′′)clone)], R),foreach (σ x in r) s

Fig. 3. Evaluation rules for ICω foreach loops



Rules[FSF] and[FSC] embody the flattening of streams. To evaluate aforeach loop
we first evaluate the stream until ityields a value. If that value is itself a stream, then
we should first execute theforeach loop on this stream.

3.4 Compiling FCω to ICω

In this section we give some details of the compilation of FCω into ICω. Much of this
compilation is routine, so in the interests of space we shallconcentrate only on the most
interesting aspect: generalized member access.

We employ a ‘‘coercion” technique, in that we translate theimplicit generalized mem-
ber access of FCω into anexplicit ICω code fragment. This can be expressed as an
inductively defined relation, written|τ.f : τ ′| ; g and|τ.m(τ ′): τ ′′| ; g for member
and function member access respectively. A judgement|τ.f : τ ′| ; g is intended to
mean that if invoking a memberf on an element of typeτ returns an element of type
τ ′, theng is the ICω coercion that encodes the explicit access of the appropriate mem-
ber. In Fig. 4 we give some details of the compilation of generalized member access
(GMA) for members, i.e. the|τ.f : τ ′| ; g relation. (The version for function members
(methods) is similar and omitted.) In the definition we have employed a function-like
syntax for coercions, although they are really contexts, and we have dropped the types
from various block expressions. We have used the shorthandyield return′(τ,e);
to mean the statement sequenceyield return(τ,e);yield break; and have also
used two functions:Value that returns the element of a singleton stream or raises an
exception if it empty, andHasValue that returns a boolean depending on whether the
singleton stream has an element or not. These can be coded directly and their definitions
are omitted.

For example, we can compile an instance of member access in FCω, e.f , as follows:
we first compile the expressione into ICω, yielding e ′, and also generate a coercion,
g, corresponding to the member access. The result of the compilation of e.f is then
simplyg(e ′). We write the compilation of, e.g. an expression,e, as|Γ ` e: τ | ; e ′.

Incoherence by designJava and C] are by design incoherent [7]. Both languages use
a notion of ‘‘best” conversion when there is more than one conversion between two
types. If there does not exist a best conversion, a compile-time error is generated. In
compiling FCω to ICω we use this notion of a best conversion when dealing with rules
that use subtyping. We do not formalize this notion of ‘‘best” here; both the Java and
C] language specifications give precise details. The new typesin Cω do not complicate
this notion greatly: For example, there are two conversionsbetweenint andobject:
one using the rule[Box], the other using the rules[SubChoice] and[Box] along with
[Trans] (i.e. int <: choice{int;string;} <: object). It is clear that the first
conversion is better. The other critical pairs are similarly easy to resolve.

3.5 Properties ofFCω and ICω

In this section we briefly mention some properties of FCω and ICω and the compilation.
We do not give any details of the proofs, as they are standard and follow analogous
theorems for Java [18, 5]; details will appear in a forthcoming technical report.



Compiling GMA over streams

|σ.f : σ′| ; g

|σ*.f : σ′

*| ; z 7→ z.{g(it)}

Compiling GMA over anonymous structs

∃S ⊆ {1 . . .n}.|S | ≥ 2. ∧ p = |S | ∧ ∀k ∈ [1..p]. |fdSk
.f : τk | ; gk

|struct{fd1; . . . fdn;}.f : struct{τ1; . . . τp ; }| ; z 7→ new{g1(z[1]), . . . ,gp(z[p])}

∃!k ∈ {1 . . . n}. |fdk .f : τk | ; g

|struct{fd1; . . . fdn;}.f : τk | ; z 7→ g(z[k])

Compiling GMA over choice types

∃S ⊆ {1 . . .n}.|S | ≥ 2 ∧ p = |S | ∧ ∀k ∈ [1..p]. |κSk
.f : κ′

k | ; gk

|choice{κ1; . . . κn;}.f : choice{κ′

1; . . . κ′

p;}?|
; z 7→

({if(z was κS1
)

{return new choice{κ′

1; . . . κ′

p;}?(yield return′(κS1
,new(κS1

,g1(z at κS1
))););}

· · · if(z was κSp)

{return new choice{κ′

1; . . . κ′

p;}?(yield return′(κSp,new(κSp,gp(z at κSp ))););}
else return null;})

|κk .f : τ | ; gk ∀k .1 ≤ k ≤ n

|choice{κ1; . . . κn;}.f : τ | ; z 7→ ({ if(z was κ1) return g1(z at κ1); · · ·
if(z was κn) return gn (z at κn );})

∃!k ∈ {1 . . .n}. |κk .f : σ| ; g n > 1

|choice{κ1; . . . κn ; }.f : σ?|
; z 7→ ({if(z was κk) return new σ?(yield return′(σ,g(z at κk )););

else return null;})

Compiling GMA over singleton streams

|σ.f : σ′| ; g

|σ?.f : σ′?| ; z 7→ ({if (HasValue(z)) return new σ′?(yield return′(σ′,g(Value(z))););
else return null;})

|σ.f : σ′

*/?| ; g

|σ?.f : σ′*/?| ; z 7→ ({if (HasValue(z)) return g(Value(z));
else return null;})

Fig. 4.Compilation of Generalized Member Access



Our main result is that ICω is type-sound, which is captured by the following properties.
(We use generalized judgements, e.g.Γ �(S , e): τ to mean that the expressione is well-
typed and also that the stateS is well-formed with respect toΓ , in the familiar way. As
is usual [18] we also need to add ‘‘stupid” typing rules for the formal proof.)

Theorem 1 (Type soundness forICω).

1. If Γ � (S , e): τ and (S , e) → (S ′, e ′) then∃τ ′ such thatΓ � (S ′, e ′): τ ′ and
τ ′ <: τ .

2. If Γ ; τ � s and(S , s) → (S ′, s ′) then∃τ ′ such thatΓ ; τ ′
� (S ′, s ′) andτ ′ <: τ .

3. If Γ �(S , e): τ then either(S , e) is terminal or∃S ′, e ′ such that(S , e) → (S ′, e ′).
4. If Γ ; τ �(S , s) then either(S , s) is terminal or∃S ′, s ′ such that(S , s) → (S ′, s ′).

We can also prove that our compilation of FCω to ICω is type-preserving, i.e. if an FCω
expressione in environmentΓ has typeτ , then there is a compilation ofe resulting in
an ICω expressione ′, such thate ′ in Γ also has typeτ .

Theorem 2 (Type preservation of compilation).

1. If Γ ` e: τ then∃e ′ such that|Γ ` e: τ | ; e ′ andΓ � e ′: τ .
2. If Γ ; τ ` s then∃s ′ such that|Γ ; τ ` s | ; s ′ andΓ ; τ � s ′.

4 Related work

Numerous languages have been proposed for manipulating relational and semi-structured
data. For reasons of space we focus here only on those for semi-structured data (some
of the languages for relational data were cited in§1).

A number of special-purpose functional languages [15, 4, 10] have been proposed for
processing XML values. This stands in contrast to our approach, which aims at extend-
ing an existing widely-used object-oriented programming language.

The languages most similar to Cω are XJ [14] and Xtatic [13]. XJ adds XML and XPath
as a first-class construct to Java, and uses logical XML classes to represent XSDs. In this
way XJ allows compile time checking of XML fragments; however since the impedance
mismatch between XML and objects is quite large, it does not deal with a mix of data
from the the object and the XML world. One consequence is, forexample, that XPath
queries are restricted to work on XML data only.

Xtatic extends C] with a separate category of regular expression types [16]. Subtyping is
structural. While this gives a lot of flexibility this neither conforms with XML Schema,
where subtyping is defined by name through restrictions and extensions, nor does it
allow a free mix of objects and XML. Further, Xtatic uses pattern matching for XML
projections, which fits well with the chosen type system but lacks first-class queries.

In contrast to XJ and Xtatic, Cω does not treat XML as a distinct and separate class.
Its ingenuity lies in the uniform integration of the new stream, choice and struct types
into the existing types and the generalization of member access— ‘‘the power is in
the dot”. In fact, generalized member access in Cω achieves many of the benefits that



other type systems try to solve. For example, a long standingproblem is how to write a
query over data that comes from two sources that are similar,modulo some distribution
rules, but not the same [8]. The type algebra of regular expression types often allows
a factorization which makes this scenario possible. Generalized member access, on the
other hand, handles this problem itself, without the need for distribution rules at the
type level.

Another popular approach to deal with XML in an object-oriented language is by using
so called data-bindings. A data-binding generates some strongly typed object repre-
sentation from a given XML schema (XSD). JAXB for Java and xsd.exe in the .NET
framework generate classes from a given XSD. However, it is often impossible to gen-
erate reasonable bindings, since the rich type system of XSDs cannot adequately be
mapped onto classes and interfaces. As a consequence the resulting mappings are often
weakly typed.

Cω takes a different but simpler view: XML is considered to be a serialization syntax
for the rich type system of Cω. We are not tied to a particular XML data model. While
Cω by design doesn’t support the entirety of the full XML stack,in our experience Cω’s
type system and language extensions are rich enough to support realistic scenarios. We
have written a large number of applications, including the complete set of XQuery Use
Cases, several XSL stylesheets, and a substantial application (50KLOC) to manage TV
listings.

5 Conclusions and future work

In this paper we have considered the problem of manipulatingrelational and semi-
structured data within common object-oriented languages.We observed that existing
methods using APIs provide poor support for these common application scenarios.
Therefore, we have proposed a series of elegant extensions to C] that provides type-
safe, first-class access to, and querying of, these forms of data. We also have built a full
compiler that implements our design. In this paper we have studied these extensions
formally.

This work represents an industrial application of formal methods; on the whole, we
found the process of formalizing our intuitions extremely useful, and indeed we man-
aged to trap a number of subtle design flaws in the process. (Inaddition we had to
formalize a fragment of C], which was a little subtle in places. For example, we believe
that this paper gives the first formal operational semanticsfor iterators.) That said, we
also found it useful to be simultaneously developing a compiler. On a small number of
occasions we found that our formalization was too high-level, in that it failed to cap-
ture some lower-level issues. Also whilst FCω is small enough to prove theorems about
by hand, we should have liked to formalized a larger fragmentof the language. At the
moment, this seems unrealistic without more highly developed machine assistance.

One aspect of this project that we should like to consider further is the compilation.
The Common Type System (CTS) for the Common Language Runtime(CLR) whilst
general, lacks support for structural types. As our currentcompiler targets .NET 1.1,
this means that the choice and anonymous structs types have to be ‘‘simulated”. In



future work, we plan to study extending the CLR with structural types. This would also
enable more effective compilation of other languages that offer structural types, such
as functional languages. It would also be interesting to study whether the lightweight
covariance of Cω could be added to the CTS and other languages.

Implementation statusA prototype Cω compiler is freely available. It covers the en-
tire safe fragment of C] and includes all the data access features described in this pa-
per (and more) and also the ‘‘polyphonic” concurrency primitives [3]. (Available from
http://research.microsoft.com/comega.)
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