The essence of data access inC
The power is in the dot!

Gavin Bierman, Erik Meijer?, and Wolfram Schulte

! Microsoft Research, UKgmb@microsoft.com
2 Microsoft Corporation, USAemei jer@microsoft .com
3 Microsoft Research, USAschulte@microsoft . com

Abstract. In this paper we describe the data access featuresvpB@ experi-
mental programming language based dncGrrently under development at Mi-
crosoft Research. Ltargets distributed, data-intensive applications andmkc
ingly extends ¢'s support of both data and control. In the data dimensionait p
vides a type-theoretic integration of the three prevaleé anodels, namely the
object, relational, and semi-structured models of datahéncontrol dimension
Cw provides elegant primitives for asynchronous commuracatin this paper
we concentrate on the data dimension. Our aim is to desdréessencef these
extensions; by which we mean we identify, exemplify and falize their essen-
tial features. Our tool is a small core language «F @hich is a valid subset of
the full Cw language. Using this core language we are able to formatitethe
type system and the operational semantics of the data atagssent of G.

1 Introduction

Programming languages, like living organisms, need toicantsly evolve in response
to their changing environment. These evolutionary stepstypically quite modest:

most commonly the provision of better or reorganized APlsc&3ionally a more rad-
ical evolutionary step is taken. One such example is thetiadddf generic classes to
both Java [6] and §25].

We should like to argue that the time has come for anotheelawglutionary step to
be taken. Much software is now intended for distributed, Alvabed scenarios. It is
typically structured using a three-tier model consistih@ eniddle tier containing the

business logic that extracts relational data fromiada services tie(a database) and
processes it to produce semi-structured data (typicallyLXk be displayed in the
user interface tier

It is the writing of these middle tier applications that wevsl like to address. These

applications are most commonly written in an object-oeenanguage such as Java
or C! and have to deal with relational data (essentially SQL &)blebject graphs, and

semi-structured data (XML, HTML).

In addition, these applications are fundamentally corentrrBecause of the inherent
latency in network communication, the more natural modetaicurrency is asyn-
chronous. Accordingly, & provides a simple model of asynchronous (one-way) con-
currency based on the join calculus [12]. For the rest ofghjger, we shall focus exclu-
sively on the data access aspects ©f e concurrency primitives have been discussed

elsewhere [3]. Thus when we write.Cwe mean the language excluding the concur-
rency primitives.

Unfortunately common programming practice, and native sdgiport for data access
(e.g. JDBC and ADO.NET) leave a lot to be desired. For exayguasider the fol-
lowing fragment taken (and mildly adapted) from the JDBtiatl to query a SQL
database (a user-supplied country is stored in variaijat).

Connection con = DriverManager.getConnection(...);
Statement stmt = con.createConnection();
String query = "SELECT * FROM COFFEES WHERE Country=’"+input+"’";
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {
String s = rs.getString("Cof_Name");
float n = rs.getFloat("Price");
System.out.println(s+" - "+n);

}

Using strings to represent SQL queries is not only clumsyaltsd removes any pos-
sibility for static checking. The impedance mismatch bemwéhe language and the
relational data is quite striking; e.g. a value is projected of a row by passing a
string denoting the column name and using the appropriateersion function. Per-
haps most seriously, the passing of queries as stringseis afsecurity risk (the “script
code injection” problem—e.g. consider the case when thiablrinput is the string
"2 O0R 1=1; --")[17].

Unfortunately API support in both Java anéi6r XML and XPath/XQuery is depress-
ingly similar (even those APIs that map XML values tightlyaio object representation
still offer querying facilities by string passing).

Our contention is that object-oriented languages needdlvevo support data access
satisfactorily. This is hardly a new observation; a largember of academic languages
have offered such support for both relational and semitired data (see, e.g. [1, 2,
20,19, 15, 4]). In spite of the obvious advantages of thesguages, it appears that
their acceptance has been hampered by the fact that thejddferént” from more
mainstream application languages, such as Java ango€ example, HaskellDB [19]
proposes extensions to the lazy functional language, Haskel TL [20] is a hybrid
functional/imperative language with advanced type anduteslystems. We approach
this language support problem from a different directiohjoh is to extend the com-
mon application languages themselves rather than creatiother new language.

Closer to our approach is SQLJ [24]. This defines a way of enibgd5QL commands
directly in Java code. Moreover the results of SQL commaadse stored in Java vari-
ables andice versaThus SQL commands are statically checked by the SQLJ cempil
SQLJ compilation consists of two stages; first to pre-pretes embedded SQL, and
second the ‘pure Java’ compilation. Thus the embedded S@Ek tonot part of the
languageper se(in fact all the embedded code is prefixed by the keyw#rgl). The
chief difference is that & offers an integration of both the XML and relational data
models with an object model.

Design objectives of @ The aim of our project was to evolve an existing language,
C!, to provide first-class support for the manipulation of tielaal and semi-structured
data. (Although we have started wittf,@ur extensions apply equally well to other
object-oriented languages, including Java.)

Addressing the title of our paper, the essence of the regulinguage, G, is twofold:

its extensions to the ‘Qype system and, perhaps more importantly, the elegant-prov
sion of query-like capabilities (the sub-title of our pap&w has been carefully de-
signed around a set of core design principles.

1. Cw is a coherent extension of (the safe fragment éf)i@. C programs should be
valid Cw programs with the same behaviour.

2. The type system of & is intended to be both as simple as possible and closely
aligned to the type system in the XPath/XQuery standard.i@anded users are
C! programmers who are familiar with XPath/XQuery.

3. From a programming perspective, the real powerwfd@mes from its query-like
capabilities. These have been achieved by generalizingbmeaccess to allow
simple XPath-like path expressions.

Paper organization The rest of the paper is organized as follows§hwe give a
comprehensive overview to thesQrogramming languagéln §3.1 we identify and
formalize FQu, a core fragment of &. In §3.2 we detail a simpler fragment, & and

in §3.4 show how F@ can be compiled to 1G. Using this compilation, we are able to
show a number of properties of kGn §3.5, including a type soundness theorem. We
briefly discuss some related work§d and conclude if5.

2 Anintroduction to C w

Our design goal was to evolve’ @ provide an integration of the object, relational
and semi-structured data models. One possibility wouldlzaltl these data models to
our programming language in an orthogonal way, e.g. by dhoyinew typesML<.S>
andTABLE<R>, whereS and R are XML and relational schema respectively. We have
sought to integrate these models d¢pgneralization rather than by ad-hoc specializa-
tions. In the rest of this section we shall present the kegsdeehind @, and give a
number of small programs to illustrate these ideas. Thismseshould serve as a pro-
grammer’s introduction to &. We assume that the reader is familiar with Zava-like
languages.

2.1 New types

Cw is an extension of € so the familiar primitive types such as integers, boolgans
floats are present, as well as classes and interfaces. Isdbi®n we shall consider
in turn the extensions to the type system—streams, anonystoucts, discriminated
unions, and content classes—and for each consider the reny gapabilities.

4 An preliminary version of @ was (informally) described in [22]. We have subsequentiy-si
plified the language, and our chief contribution here is enfidization §53—4).

Streams The first structural type we add is a stream type; stream&sept ordered
homogeneous collections of zero or more values. For exanpte: is the type for
homogeneous sequences of integers. Streamsiar€ aligned with iterators, which
will appear in G 2.0. Gu streams are typically generated using iterators, which are
blocks that contaiyield statements. For example, theomTo method:

virtual int* FromTo(int b, int e){
for (i = b; i <= e; i++) yield return i;

}

generates a finite, increasing stream of integers. Impibytanshould be noted that,
just as for €, invoking such a method body dosstimmediately execute the iterator
block, but rather immediately returns a closure. (Thussreams are essentially lazy
lists, in the Haskell sense.) This closure is consumed by treach statement, e.g.
the following code fragment builds a finite stream and theraies over the elements,
printing each one to the screen.

int* OneToHundred = FromTo(1,100);
foreach (int i in OneToHundred) Console.WriteLine(i);

A vital aspect of @ streams is that they are alwdiesttenedthere are no nested streams
of streams. @ streams thus coincide with XPath/XQuery sequences whiehakso
flattened. This alignment is a key design decision far. @ enables the semantics of
our generalized member access to match the path select@Qudry. We give further
details later.

In addition, flattening of stream types also allows us to igffity deal with recursively
defined streams. Consider the following recursive vaniatithe functiorFromTo that
we defined previously:

virtual int* FromTo2(int b, int e){
if (b>e) yield break;
yield return b;
yield return FromTo2(b+1,e);

}

The statemengield break; returns the empty stream. The non-recursivegadlld
return byields asingle integer. The recursive galkld returnFromTo2(b+1,n);
yields a stream of integers. As the type system treats thestigpt* and int** as
equivalent this is type correct.

Without flattening we would be forced to copy the stream poeduby the recursive
invocation, leading to a quadratic instead of a linear nunobgields:

virtual int* FromTo3(int b, int e){
if (b>e) yield break;
yield return b;
foreach (int i in FromTo3(b+1,e)) yield return i;

}

Note that @’s flattening of stream types doastimply that the underlying stream is
flattened via some coercion; every element in a streayriédd-ed at most once. As
we will see in the operational semanti¢83), iterating over a stream will effectively
perform a depth-first traversal over theary tree produced by the iterator.

Cw offers a limited but extremely useful form obvariancefor streams. Covariance is
allowed provided that the conversion on the element typbdsdentity; for example
Buttonx* is a subtype obbject* whereasint* is not(as the conversion fronnt to
object involves boxing). This notion is a simple variant of the ootiof covariance
for arrays in C, although it is statically safe (unlike array covariancese can not
overwrite elements of streams.

The rationale for this is that implicit conversions shoul Imited to constant-time
operations. Coercing a stream of typetton* to typeobject* takes constant-time,
whereas coercingint* to object* would be linear in the length of the stream, as the
boxing conversion fromnt to object is not the identity.

A key programming feature of &is generalized member access; as the subtitle sug-
gests the familiar ‘dot’ operator is now much more powerliilus if the receiver is a
stream the member access is mapped over the elemen®€lgHundred. ToString ()
implicitly maps the method call over the elements of thesstrBneToHundred and re-
turns a value of typetring*. This feature significantly reduces the burden on the
programmer. Moreover, member access has been generalizielehaves like path
expressionFor exampleQneToHundred. ToString () .PadLeft (10) converts all the
elements of the streabmheToHundred to a string, and then pads each string, returning
a stream of these padded strings.

Sometimes one wishes to map more than a simple member acegsh®elements of

a stream. @ offers a convenient shorthand called &pply-to-all expressionwritten
e.{s}, which applies the blocKs}, wheres denotes a sequence of statements, to
each element in the streaa? The block may contain the variabig which plays a
similar role as the implicit receiver argumetttis in a method body and is bound to
each successive element of the iterated stream. (Suchssiqume are reminiscent of
Smalltalkdo: methods.) For example, the following code first creates tream of
natural numbers from to 256, converts each of the elements to a hex string, converts
each of these to upper case, and then applies an apply-¢oaission to print the
elements to the screen:

FromTo(1,256) .ToString("x") .ToUpper().{ Console.WriteLine(it); };

Anonymous structsThe second structural type we add are anonymous structshwhi
encapsulate heterogeneous ordered collections of valmeanonymous struct is like
a tuple in ML or Haskell and is written astruct{int i; Button;} for example.

A value of this type contains a memberof type int and an unlabelled member of
type Button. We can construct a value of this type with the expressien{i=42,
new Button()}.

To access components of anonymous structs we (again) digadhe notion of mem-
ber access. Thus assuming a valuef the previous type, we write.i to access

® We shall adopt the FJ shorthand [18] and wiites mean a sequence of

the integer value. Unlabelled members are accessed by ghsition; for example
x[1] returns theButton member. As for streams, member access is lifted over un-
labelled members of anonymous structs. To acces®4la&Color property of the
Button component in variable we can just writex . BackColor, which is equivalent
tox[1] .BackColor.

At this point we can reveal even more of the power af<generalized member access.
Given a streanfriends of typestruct{string name;int age;}*, the expression
friends.age returns a stream of integers. The member access isbotestructural
types. The following query-like statement prints the nawfasne’s friends:

friends.name.{ ConsoleWriteLine(it);};

Interestingly, @ also allows repeated occurrences of the same member nafma wit
an anonymous struct type, even at different types. For elgrapsume the following
declarationstruct{int i; Button; float i;} z; Thenz.i projects the twa
members ok into a new anonymous struct that is equivaleniéa{z[0] ,z[2]} and

of typestruct{int;float;}.

Cw provides a limited form of covariance for anonymous strijotst as for streams. For
example, the anonymous strucgtruct{int;Button;} is a subtype of
struct{int; Control;}.Howeveritisnota subtype otruct{object; Control;}
since the conversion frornmt to object is not an identity conversion.«&£does not
support width subtyping for anonymous structs.

Choice typesThe third structural type we add is a particular form of diminated
union type, which we call a choice type. This is written, feample choice{int; bool;}.
As the name suggests, a value of this type is either an intag@tboolean, and may
hold either at any one time. Unlike unions in C/C++ and varianords in Pascal where
users have to keep track of which type is present, valuesistaiminated union in @

are implicitly tagged with the static type of the chosenralé¢ive, much like unions in
Algol68. In other words, discriminated union values aresatially a pair of a value and

its static type.

There is no syntax for creating choice values; the injeasamplicit (i.e. it is generated
by the compiler).

choice{int;Button;} x = 3;
choice{int;Button;} y = new Button();

Cw provides a teste was 7, on choice values to test the valusttic type. Thus
x was int would returntrue, whereag was int would returnfalse.

Assuming that an expressienis of typechoice{7}, the expressior was 7 is true
for exactly oner in 7. This invariant is maintained by the type system. The onghs|
complication arises from subtyping, e.qg.

choice{Control; object;} z = new Button();

As Button is a subtype of botllontrol andobject, which type tag is generated by
the compiler? A choice type can be thought of as providifanaily of overloaded con-
structor methods, one for each component type. Just asafiodatd object creation in

Java/C, thebestconstructor method is chosen. In the example above, cleattyrol
is better tharpbject. Thusz was Control returnstrue. The notion of “best” for
Cw is the routine extension of that for!C

As the reader may have guessed, member access has also heetiged over discrim-
inated unions. Here the behaviour of member access is legsuzhand has been de-
signed to coincide with XPath. Consider a valuef type choice{char; Button;}.
The member access GetHashCode () succeeds irrespective of whether the value is a
character or 8utton object. In this case the type of the expressiofietHashCode ()

is int.

However the member may not be supported by all the possiloigonent types, e.g.
w.BackColor. Classic treatments of union types would probably condidisrto be
type incorrect [23, p.207]. However& choice types follow the semantics of XPath
where, for example, the quefyo/bar returns théar nodes under theoo node if any
exist, andthe empty sequendenone exist. Thus in @, the expression.BackColor

is well-typed, and will return a value of ty@lor?. This is another new type inkC
and is a variant of the nullable type to appear i2X. A value of typeColor? can

be thought of as a singleton stream, thus it is either emptpntains a singl€olor
value (whenw contains eéButton). Again, we emphasize that this behaviour precisely
matches that of XPath.

Cw follows the design of €in allowing all values to be boxed and hence all value types
are a subtype of the supertypeject. Thus both anonymous structs and choice types
are considered to be subtypes of the clasgect.

Content classesTo allow close integration with XSD and other XML schema lan-
guages, we have included the notion of@ntent classn Cw. A content class is a
normal class that has a singlalabelledtype that describes the content of that class,
as opposed to the more familiar (named) fields. The follovisregsimple example of a
content class.

class friend{
struct{ string name; int age; };
void incAge(){...}

}

Again we have generalized member access over content €ladses the expression
Bill.age returns an integer, wheBsi11 is a value of typefriend.

From an XSD perspective, classes correspond to global ekedeslarations, while
the content type of classes correspond to complex typethdfuromparisons with the
XML data model are immediately below, but a more compreherstiudy can be found
elsewhere [21].

2.2 XML programming

It should be clear that the new type structures ofate sufficient to model simple XML
schema. For example, the following XSD schema

<element name="Address"><complexType><sequence>
<choice>
<element name="Street" type="string"/>
<element name="POBox" type="int"/>
</choice>
<element name="City" type="string"/>
</sequence></complexType></element>

can be represented (somewhat more succinctly!) as¢heo@tent class declaration:

class Address {
struct{
choice{ string Street; int POBox; };
string City;
};
}

The full Cw language supports XML literals as syntactic sugar for §eed object
graphs. For example, we can create an instance ofdheess class above using the
following literal:

Address a = <Address>
<Street>13 Elm St</Street>
<City>Hollywood</City>
</Address>;

The Gu compiler contains a validating XML parser that deseriditge above literal
into normal constructor calls. XML literals can also contayped holes, much as in
XQuery, that allow us to embed expressions to compute palediteral. This is espe-
cially convenient for generating streams.

The inclusion of XML literals and the semantics of the gefieed member access
mean that XQuery code can be almost directly written in €or example, consider
one of the XQuery Use Cases [9], that processes a bibliogifilpl{assume that this is
stored in variablés) and for each book in the bibliography, lists the title anthaus,
grouped inside aesult element. The suggested XQuery solution is as follows.

for $b in $bs/book
return <result>{$b/title}{$b/author}<result>

The Gu solution is almost identical:

foreach (b in bs.book)
yield return <result>{b.title}{b.author}</result>;

The full Cw language adds several more powerful query expressionsse tliscussed
in this paper. For instance, filter expressiarig’] return the elements in the stream
e that satisfy the boolean expressieh As labels can be duplicated in anonymous
structs and discriminated unions, the full language altmwal type-based selection.
For example, given a value of type struct{ int a; struct{stringa;};} we
can select only thetring membera by writing x. string: : a.

Transitive queries are also supported in the fulll@guage: the expressien. .7: :m
selects all members of typer that are transitively reachable fraenTransitive queries
are inspired by the XPath descendant axis.

2.3 Database programming

Relational tables are merely streams of anonymous stitiatsexample, the relational
table created with the SQL declaration:

CREATE TABLE Customer (name string, custid int);

can be represented inCstruct{string name; int custid}* Customer;

In addition to path-like queries, the fulliClanguage also supports familiar SQL ex-
pressions, includingelect-from-where, various joins and grouping operators. Per-
haps more importantly, these statements can be useshpwalue of the appropriate
type, whether that value resides in a database or in memengeh one can write SQL
queries in @ code that does not access a database! One of the XQuery see{6&
asks to list the title prices for each book that is sold by latbksellerss andBN. Using
aselect statement and XML-literals, this query can be written in & the following
expression:

select <book-with-prices>
<title>{a.title}</title>
<price-A>{a.price}</price-A>
<price-BN>{bn.price}</price-BN>
</book-with-prices>
from book a in A.book, book bn in BN.book
where a.title == bn.title

Note the use of XML placeholders.title} and {bn.price}: when this code is
evaluated new titles and new prices are computed from thdirgs of theselect-
from-where clause.

So far we have shown how we can query values using generatizedber and SQL
expressions, but asuCis an imperative language, we also allow to perform updates.
This paper, however, focuses on the type extensions andalizieel member access
only.

3 The essence of &

In the rest of this paper we study formally the essencewf &/ which we mean we
identify its essential features. We adopt a formal, mathmalaapproach and define
a core calculus, FeatherweightvCor FGu for short, similar to core subsets of Java
such as FJ [18], MJ [5] and ClassicJava [11]. This core cauihilst lightweight,
offers a similar computational “feel” to the full&Zlanguage: it supports the new type
constructors and generalized member access: B@ completely valid subset of.C

in that every F@ program is literally an executable.Gprogram.

The rest of this section is organized as followsi®l we define the syntax and type
system for F@. Rather than give an operational semantics directly fowm@ prefer
to first “compile out” some of its features, in particularrggalized member access.
This both greatly simplifies the resulting operational setita and demonstrates that
Cuw’s features do not require extensive new machinery. Thi8.ia we define a target
language, Inner &, or ICw, for this “compilation”. ICw is essentially the same lan-
guage, but for a handful of new language constructs and a siongier type system. In
§3.3 we give an operational semantics ford @rograms. Ir§3.4 we specify the com-
pilation of FGuv programs into 1@ programs. This translation is, on the whole, quite
straightforward. We conclude the sectior§B5 by stating some properties of our cal-
culi and the compilation. Most important is the type-soussbproperty for 1&. Space
prevents us from providing any details of the proofs, buy i@ proved using standard
techniques and are similar to analagous theorems for fratgnoé Java [18, 5].

3.1 A core calculus:FCw

Syntax An FCw program consists of one or more class declarations. Eash dkxcla-
ration defines zero or more methods and contains exactly olabeiled type that we
call thecontent type(We can code up a conventional/Cw class declaration with a
number of field declarations using an anonymous structsy Flows C! and requires
methods to be explicitly marked asrtual or override. Given a program we assume
that there is a unique designated method within the cladamddions that serves as the
entry point.

Program p = cd
Class Definition ed ::= class c:c {T;md}
Method Definition md ::= virtual 7 m (T z){s}

| override 7 m (7 T){3s}

FCw supports two main kinds of typegalue typesandreference typesAs usual, the
distinguished type&oid is used for methods that do not return anythimgt 1 is only
used to typenull references, as with*CValue types include the base typesl and
int and the structural types: anonymous structs and discrietdnanions. Reference
types are either class types or streams. As usual only refetgpes have objectidentity
and are represented at runtime by references into the heags®ime a designated
special classbject.

Types
Tu=1 Value types Reference Types

| p Reference types pu=c Classes

| wvoid |null Void and null types | o* Stream types
Value Types | o7 Singleton stream type
yu=b Base types

| struct{fd} Anonymous structs Field Definition

| choice{k} Choice types fd ::= 7 f; Named member
Base Types | 7; Unnamed member

b ::= bool |int

We employ the shorthand ando to denote any typexcepta choice type and stream
type (singleton or non-singleton), respectively. As @attens stream types, we have
made the simplification to RC of removing nested stream types altogether from the

type grammar. We have also simplified &@hoice types so that the members are
unlabelled and we also exclude (for simplification) nestedice types. These can be
coded up in F@ using unlabelled anonymous structs.

FCw expressions, as forfCare split into ordinary expressions and promotable ex-
pressions. Promotable expressions are expressions thaktaased as statements. We
assume a number of built-in primitive operators, suckad | and&&. In the gram-

mar we writee @ e, where® denotes an instance of one of these operators. We do not
formalize these operators further as their meaning is clear

Expression

ex=bli Literals Promotable expression
ede Built-in operators pe=zx=e Variable assignment
z Variable | e.m(e) Method invocation
null Null | e.{e} Apply-to-all
(Me Cast Binding expression
eis T Dynamic typecheck be :=f=e Named binding

new 7(e) Object creation

|
|
|
|
| : . ling
| ewas x Static typecheck for choice values | e Unnamed binding
|
| new {be} Anonymous struct creation

|

|

|

e.f Field access
e[l Field access by position
pe Promotable expression

We have made a simplification in the interests of space toiceapply-to-all expres-
sions to contain an expression rather than a sequence efr&ats. This simplifies the
typing rules, but as apply-to-all expressions can be codedjdoreach loops it is not
a serious restriction.

Statements in FE are standard. As mentioned earlier we have adopted teed
statement that will appear in‘@.0 to generate streams.

Statement s ::= ; Skip
| pe; Promoted expression
| if (e) s elses Conditional
| Tz=¢; Variable declaration
| return e; Return statement
| return; Empty return
| yield return e; Yield statement
| yield break; End of stream
| foreach (o z in e) s Foreach loop
| while (e) s While loop
| {3} Block

In what follows we assume that kCprograms are well-formed, e.g. no cyclic class
hierarchies, correct method body construction, etc. Thesditions can be easily for-
malized but we suppress the details for lack of space.

Subtyping Before we define the typing judgements for & @rograms we need to de-
fine a number of auxiliary relations. First we define the splvty relation. We write
7 <: 7' to mean that type is a subtype of type’. The rules defining this relation are
as follows.

! / 1"

T T T <IT classc: ¢
[Refl] ~ [Trans] [Box] — [Sub]
TT TT v <:object c<:c
r<t f=f o <:o' IdConv(o,0o")
[Nuli] — [FD] - [Stream]
nll <: p Tf<Tf o*/? <:0'*/7
[SBox] [SSub] [Sing]
o* <:object o7 <:o% o<:07
fd <:fd' IdConv(fd, fd")
— — [Struct] — [SubChoice]
struct{fd} <: struct{fd’'} Kk <: choice{k; K’}
" <K IdConv (R, k')
[Choice]

choice{R} <: choice{r’ K"}

Most of these rules are straightforward. The r[#¢ream] contains notationd*/?)
that we use throughout this paper. It is uses to denote twarinss of the rule, one
where we select the left of the /" in all cases (in this cas¢ and one where we select
the right in all cases. It doasot include cases where we individually select left and
right alternatives. The rulegStream] and[Struct] make use of a predicate/Conv,
which relates two types andr’ if there is an identity conversion between them. Thus
IdConv(Button, object) but notldConv(int, object). In this short paper we shall
not give its straightforward definition.

Generalized member accesés we have seen a key programming feature of i€
generalized member access. Capturing this behaviour ityfieesystem can be tricky,

but we have adopted a rather elegant solution, whereby weedifio auxiliary rela-
tions. The first, writterr.f : 7/, tells us that given a value of typeaccessing member

f will return a value of typer’. We define a similar relation for function member ac-
cess, writtenr.m(7’) : 7. Having generalized member access captured by a separate
typing relation greatly simplifies the typing judgementsdapressions. As generalized
member access is a key feature af,@ve shall give it in detail.

The definition of this relation over stream types is as fodow

/

of :d of:d'%/7 om(T):o om(T):o'x/7 o.m(T): void

oxf:o'x oxf:o'x oxm(T):0'*x oxm(T):0'*x o*.m(T):void

The first two rules map the member access over the stream migmeaking sure that
we do not create a nested stream type. The next two rulesriatiftn member access
are similar. The last rule captures the intuition that maggivoid-valued method over
a stream, forces the evaluation of the stream and does oot revalue.

Before defining the rules for member access over anonymougstwe need to define
rules for member access over named field definitions. Thiseigypstraightforward and
as follows.

r.m () 1"

)‘7_//

’)
Tff:7 Tfm(T’

Now we consider the rules for generalized member accesaoeaymous structs. First
we give the degenerate cases where only one component ssifpomember access.

ANk e{1...n}. fdp.f:Ti Ak e {1...n}. fdp.m(7'): 7"
struct{fdi; ... fdn;}.fi 7 struct{fdi;...fdn;}.m(T): 7"

The non-degenerate cases are then as follows.

IS C{l...n}|S| >2Ap =|S|AVE € [1..p].fds, .f: Tk

struct{fdi; ... fdn; }.f: struct{m;... 7p; }

IS C{1...n}|S| > 2Ap=|S|AVEk € [1..p]. fds,.m(7): 77,

struct{fdi; ... fdn;}.m(T): struct{r{; ... 7,;}

Thus a subsetS, of the components support the member, and we map the member
access over these components in order. The overall retpenigyan anonymous struct
of the component return types.

We now consider the rules for generalized member accesshuae types. Again we
consider these rules depending on how many componentsguppanember access.
First we give the simple case whath possible components support the member access.

Vee{l...n}. ke.f:7T Vke{l...n}. kp.m(7) : 7’

choice{ri;...kn;}.f: 7 choice{ki;...kn;}.m(T): 7

We also have the case when only one of the possible compagpisrts the member
access. These rules are as follows (we omit the nested cases)

Nke{l...n}kpf:o n>1 3Nke{l...n}.rkem(T):0 n>1

choice{k1;...kn;}.f : 07 choice{ki; ... kn;}.m(T) : 07

The reader will recall that the return type of this genemdimember access involves
a singleton stream type. Finally we give the cases where thareone of the possible
components supports the member access.

IS C{l...n}.|S| >2Ap=|S|AVE € [1..p]. ks,.f : K

choice{ki;...Kkn;}.f: choice{k]; .. ,f-c;);}?

IS C{l...n}|S| > 2Ap =S| AVE € [1..p]. ks,.m(T) : K}

choice{k1; ...kn;}.m(7) : choice{x]; .. .n;,;}?

Generalized member access over singleton streams isvedyasitraightforward; the
only complication being again to ensure that no nestedrsseae generated.

of:d o.f:o'%)? o.m(7): o’ o.m(T):a'*/?

or.fi0’? o?.fio'*/7 o?m(T):0'? o?.m(T):o'x/?

Finally we need to define rules for generalized member acmesssclasses. Clearly
these need to reflect the standard €mantics: function member access on classes
searches the class hierarchy until a matching method isdfdéimnve find a matching

methodr'm(7"") in classc, we need to check the actual types of the arguments to the
types expected by:. This behaviour is given by the following two rules.

class c:c'{r;md} t'm(T")e€md T<: 717

)
class c:c'{r;md} T'm(T")g€md . .mF):T
)

Next we consider the rules for generalized field access.€Tisest small subtlety here
concerning recursive class definitions; consider the ¥otig recursive classist of
lists of integers:class List { struct{ int head; List; } }

Given an instances of typeList, we do not wanks .head to recursively select all
head fields inxs. However simply unfolding the content type and using thesuyjiven
earlier for generalized access over anonymous structssthegcisely what would hap-
pen!

There are a number of solutions, but in order to make theype system as simple as
possible, we follow e.g. Haskell and SML and break recursjdes at nominal types.
In our setting that means that we simply do not perform mendsgkup on nominal
members of the content of nominal types. Using these refinled rthe result type of
xs.head is int.

Formalizing this is trivial but time-consuming. We define#rer family of generalized
member access judgements, writtem f: 7/, which is identical to the previous rules
except they are not defined for nominal types. We elide thaitiefis here.

To define field access on nominal types, we first define fornth#ycontent type of a
class, writtercontent(c) for some clasg, as follows.

class c:object{7;md} class c: ¢'{r;md} content(c') =1’

content(c) =T content(c) = struct{r’;7;}

The rule for generalized member access over classes siegulgtees for the membgr
on the content type of clags and is given by the following rule.

content(c) =7 Tef:7

cf:7’

Generalized index accesAs we mentioned earlier, elements of anonymous structs can
be accessed by position. This is captured by the followitg ru

type(fdi) = 7
struct {fdi;...fdn;}0il:7

As the reader might have expected, this index access is@emetover the other types;
the rather routine details are omitted.

Typing judgements We are now able to define typing judgements for.-@Ve de-
fine three relations corresponding to the three syntactegoaies of expressions, pro-
motable expressions and statements. For all three judgemenwriteI” to mean a
partial function from program identifiers to types. The jedtents for expressions and
promotable expressions are writtéht e: 7 andI" F pe: 7, respectively. These are
given in Fig. 1.

Most of these rules are routine; we shall discuss a few of theermteresting details
here. In the ruldTStruct], we have made use of a typing judgement for a binding
expression. This is defined as follows:

I'terT
I'tf=erf

The compactness of the rulgBField], [TIndex] and[TMeth] shows the elegance of
having captured generalized member access with auxil@agions.

The ruled TAAExp1] and[TAAEXxpZ2] ensure that the return type of an apply-to-all ex-
pression is not nested. The ryAAEXxp3] ensures the appropriate mixed flattening of
streams. The rulfTAAExp4] captures the intuition that applyingraid-typed expres-
sion to a stream forces the evaluation of that stream andelt@ecoverall type is also
void.

The typing judgement for F& statements is writtel’; 7 + s and is intended to mean
that a statementis well-typed in the typing environmeidt. If it returns a value (either
via a normaketurn or ayield return)then that value is of type.

The rules[TForeachl] and[TForeach2] reflect the fact that the type of the stream
elements can be cast to the type of the bound variable. Thibe&ither via an upcast
([TForeach1]) or a downcast[T Foreach2]) (again this matches‘@.0).

3.2 Aninner calculus: ICw

Rather than consider further our featherweight calculus) FA@e shall in fact define
another core calculus for& This inner calculus, called LG, is intended to be similar
but lower-level than FG; it can be thought of as the internal language of a compiler.

The chief simplification in 1@ is that its type system doe®t support generalized
member access. The intention is that we compile out gezethinember access when
translating F@ programs into |@ programs. We give some details of this compilation
in §3.4. Apart from a simplified type system, we can define quitgy an operational
semantics for |@; this is given in§3.3.

FFe:TandFFpe:T‘

[TInt]

I'Fi:int I'F b:bool

et (T'<n)vr<t)

I'EMer

I'F e:choice{x x; K"}

I' F e was k:bool

I'te:m 7 <:content(c)

I'Fnewc(e):c

!

I'ker T
[TIndex]

T[] :

I'telil:+

'kter Tke:r rm(T):T

I'e.mCe): 7"

I'Feox/? Tit:olke:o'x/?

I'e.{e}:0'/?

I'te:o%/?

[TBool]
[TSub]
[TWas]

[TNew]

[TMeth]

r
[TAAEXxp2]

[Tid]

T

[TNull]

I'z:7mF o I' F null:null

'kFer (F'<nVvE<T)

[TIs]
I' eis 1:bool

I\ be:fd

— — [TStruct]
I' - new {be}: struct{fd}

I'Fer 1.f:7

[TField]
I'Fe.f:7

'zt I'ter <7

[TAss]
' zxz=e:71
I'-eox/? Iit:oke'o

T'ke.{e}:o'x/?

[TAAEXxp1]

Feox/? Tit:oke:o'?7/*

[TAAEXp3]
I'Fe.{e}:0'*

Iit:oF e':void

I'ke.

I'tkF3s

[TAAExp4]
{e'}:void

I'F pe

[TSkip] — [TNest]
itk Iy {3}

I'ke:bool I';7hs

[TWhile]
I';7 - while (e) s

'kFer <1
[TRet]

I'; 7+ return e;

I'kFeo o <o

r
[TYield1]

I;r

pe:T
[TProm]

[TRetV]
pe;

I';void - return;
I' - e:bool

I'iths I';7h s

[Tif]
I';7HAif (e) s1 else s

[TYieldB]
I';ox |- yield break;

/ / " 1
Feo'x/? o <0 Izio';7ks

I';ox |- yield return e;

I'Feox o%x<:o'x

r
[TYield2]

. — [TForeach1l]
;7 foreach (0 z ine)s

! 1 ! 1
Feo'x/? o' <0 Izio';T7ks

I';o'x | yield return e;

. — [TForeach?2]
;7 foreach (0 z ine)s

Fig. 1. Typing judgements for FG expressions, promotable expressions and statements

The grammar of 1@ is then a simple varianr of the grammar for #CSome extra
expression and statement forms are added (which refledtsike-level nature of @)
and likewise a couple are removed from the grammar as thagdumdant. We do not
expect these new syntactic forms to be made available todtyer@rammer (although
they could be). The extensions are as follows:

Expression
en=... Promotable expression
| new7(3) Closure creation pe :=...
| new (x,e) Choice creation | 7({3H Block expression
| e.Content Class content Statement
| eatk Choice content s u=..

| yield return (7,e); Typed yield

Thus ICGv includes expressions to create closure and choice elem@atsclude an
operatore . Content to extract the content element from an objecGiven an element
e of a choice type, we add an operatiorat ~ to extract itsk-valued content. (If it is
of another type, this will raise an exception.) We add (tydddck expressions to 1€,
and in addition we provide a typed eld statement.

The two syntactic forms that we removed from the grammar af B€z: (1) We remove
field accesses. f completely; they are replaced by positional accesse¢ L€l; and (2)
We remove the untypeglield statement; alyields in ICw are explicitly typed.

We can define typing judgements ford@xpressions and statements, which are written
I'> e:Tandl’; T > s, respectively. Most of these rules are identical to thosé-faw;

we shall just give the rules for the new syntactic forms. Tiles for creating closure
and choice elements are as follows:

I'io*x/?71>3 I'erx K<k

I' >newox/7(3):0%/? I' > new (k,e):choice{r;}

The typing rules for extracting the content of content ckasg choice elements are as
follows:

I'>e:c I' > e:choice{k;k'}

I' > e.Content: content(c) I'>eatk K

The typing rule for block expressions aptle1d statements are as follows:

I'st>3 7 # void

' r({3}): 7 I';o*/7 | yield break;
I'>eo o <o I'>e:ox/? ox/? <:T T # object
;07 > yield return (o', e); I'; 7> yield return (o%*/7,¢);

3.3 Operational semantics forlCw

In this section we formalize the dynamics ofd®y defining an operational semantics.
We follow FJ [18] and MJ [5] and give this in the form of a smsiép reduction relation,

although a big-step evaluation relation can easily be defiHence we use evaluation
contexts to encode the evaluation strategy in the now familay [11]—the definition
of ICw evaluation contexts is routine and omitted. First we defireevialue forms of
ICw expressions and statements (whirés the value form of a binding expression):

Expression values Statement values
v ::=b|4|null |void Basicvalues sv = ; Skip
| r Reference | return v; Return value
| new {buv} Struct value | return;
| new (x,v) Choice value | yield return (7,v); Typed yield value
|

yield break; End of stream value

Evaluation of IG expressions and statements takes place in the context ateg st
which is a pairl H, R), whereH is a heap and is a stack frame. A heap is represented
as a finite partial map from referenceto runtime objects, and a stack frame is a finite
partial map from variable identifiers to values. A runtimgeal, as for G, is a pair

(1, cn) wherer is a type and:n is a canonical, which is either a value or a closure. A
closure is the runtime representation of a stream and isanrs a paif R, s)* whereR

is a stack frame anglis a statement sequence. The superscriptflaglicates whether
the closure isresh or aclone. We will explain this distinction later. In what follows we
assume that expressions and statements are well-typed.

In Fig. 2 we define the evaluation relation ford@xpressions, writtel§, e — S5’ ¢/,
which means that given a stafe expressiore reduces by one or possibly more steps
to ¢’ and a (possibly updated) staté (We use an auxiliary functionalue defined as

follows: value(f = v) defy, value(v) def v.) These rules are routine.

As is usual we have a number of cases that lead to a predicablestate, e.g. following
a dereference of aull object. These errors in k&Care CastX , ChoiceX , NullX and
NullableX . We say that a paif, e isterminalif e is one of these errors, or it is a value.

The evaluation relation for 1€ promotable expressions is writtéh pe — S’, pe’ and
is also given in Fig. 2. The rules for method invocation dessome explanation: they
are differentiated according to whether the methodoisd-returning. If it is not then
the method body is unfolded, and executed until it is of theffeeturn v; wherev is

a value. This value is then the result of the method invooatiothe method isroid-
valued, then we unfold the method body and execute it unilof the formreturn;.
The result is the special valueid.

The evaluation relation for statements is writt€ns — S’, s’ and in Fig. 3 we give
just some of the interesting cases, which are those dealthgfereach loops. As we
have mentioned, & streams are aligned with?@.0 iterators: there theoreach loop

is actually syntactic sugar: first of all @Enumerator<T>is obtained from the iterator
block (which should be of typgEnumerable<T>) using theGetEnumerator method.
This is walked over usinfoveNext andCurrent members. Semantically important
is thatGetEnumerator actually copies the enumerable object. In our semantics we
faithfully encode this by tagging closures, and creatifunes as appropriate. Thus
whilst iterating over a stream we update the reference icepleulegFVC], [FSC] and
[FNC]), but everyforeach creates its own copy from faesh original (rules[FVF],
[FSF] and[FNF]). In rule [FBr] we write « to range over bothlone andfresh.

Expressions

H(r)=(r"yen) 7' <7

(H,R),z — (H, R), R(z) (H,R),(m)r — (H,R),r
H(r)y=(r',en) 7' &7 H(r)y=(r",en) 7' <7
(H,R), (1)r — (H,R), CastX (H,R),r isT™ — (H,R),true

H(r)y=(r",en) 7 £:7

(H,R),r is7 — (H,R),false S,new (k,v) was Kk — S, true

Kk # K r & dom(H)
S,new (x,v) was K — S, false (H, R),new c(v) — (H[r — (c,v)], R),

r & dom(H)
(H,R),new o%/?(3) — (H[r — (o%/?,(R,3)™"],R), r

H(r) = (c,cn)

(H,R),r.content — (H,R),cn S,null.content — S, NullX

0<i<n Kk # K

S,new {buwo, .., bu,}[4] — S, new (k,v) at Kk — S, v S ,new (k,v) at k' —
S, value(bv;) S, ChoiceX

‘ Promotable expressimts

(H,R),5—" (H',R'),return v;s’

(H,R),z=v— (H,R[z — v]),v (H,R), ({3} — (H',R'),v

7' # void

= (¢, }
(H,[]);{cthis =r;TZT =7;35} =" (H R) return v’; s’

H(r) 2) method(m,c) =1 (TZ){5
S,null.m @) — S, NullX (H,R),r.m@) — (H',R),v

H(r)=(c,-) method(m,c)=void (TZ){5} _
(H,[]),{cthis =r;7TT=7;5} =" (H',R’),return ;s

(H,R),r.m @) — (H',R),void

Fig. 2. Evaluation rules for |@ expressions and promotable expressions

[FNull
S,foreach (0 r innull)s — S, ;

H(r)= (7", (R,sN*) (H,R),s =" (H',R"),yield break ;s”

[FBr]
(H,R),foreach (o xinr) s — (H',R),;
H(r)= (7, (R' 57)fresh) r" & dom(H")
(H,R'),s" —* (H',R"),yield return (¢',v);s” v # null (FVF]
(H,R),foreach (c z inr) s —
(H'[r" — (1, (R",s7)")], R),{{o & = v; s} foreach (¢ z in 1) s}

HO) = (7 (1 B
(H,R'),s" —* (H',R"),yield return (¢’,v);s” v # null

[FvC]

(H,R),foreach (c z inr) s —
(H'[r — (', (R", 7)), R), {{o = = v; s} foreach (o z in r) s}
H(T) ((R/)fresh) o 7! Q dom(H/)
(H,R"),s’ —* (H',R"),yield return (o'*,v);s” v # null [(FSF]
H,R), foreach oczrinr) s —
()
(7, s , R),{foreach (o0 z in v) s foreach (c x in r') s
H RN clone R).{ () (/) }
H(T’) ((R/)clone) o
(H,R"),s" —* (H',R"),yield return (o'*,v);s” v # null (FSC]
(H,R),foreach (c z inr) s —
r— (77, , s ,R),{foreach (¢ z in v) s foreach (c x inr) s
H/ ’ RN clone R).{ () () s}
H(r)= (1, (R' 57)freshy r' & dom(H'")
(H,R"),s’ —* (H',R"),yield return (7,null);s” [FNF]
(H,R),foreach (c x inr) s —
(H'[r' — (7', (R",57)"")], R), foreach (¢ z in ') s
H(T (7_ (R/)clone)

) =
(H,R"),s" —* (H',R"),yield return (,null);s”
(H,R),foreach (o0 z in) s — (H'[r — (7', (R",57)"")], R), foreach (¢ & in 1) s

I

[FNC]

Fig. 3. Evaluation rules for |@ foreach loops

Rules[FSF] and[FSC] embody the flattening of streams. To evaluat®aeach loop
we first evaluate the stream untiljitelds a value. If that value is itself a stream, then
we should first execute thivreach loop on this stream.

3.4 Compiling FCw to ICw

In this section we give some details of the compilation ofF@to ICw. Much of this
compilation is routine, so in the interests of space we slwaltentrate only on the most
interesting aspect: generalized member access.

We employ a “coercion” technique, in that we translateithelicit generalized mem-
ber access of F& into anexplicit ICw code fragment. This can be expressed as an
inductively defined relation, writtefr.f: 7'| ~» g and|r.m(7/): 7’| ~» g for member
and function member access respectively. A judgentefit7’| ~ ¢ is intended to
mean that if invoking a membegron an element of type returns an element of type
7/, theng is the IGu coercion that encodes the explicit access of the appregriam-
ber. In Fig. 4 we give some details of the compilation of gatized member access
(GMA) for members, i.e. thér.f: /| ~» g relation. (The version for function members
(methods) is similar and omitted.) In the definition we hamgp®yed a function-like
syntax for coercions, although they are really contextd,vae have dropped the types
from various block expressions. We have used the shorthaetld return’(7,e);

to mean the statement sequegdeld return(r,e);yield break; and have also
used two functionsvalue that returns the element of a singleton stream or raises an
exception if it empty, antiasValue that returns a boolean depending on whether the
singleton stream has an element or not. These can be coeetlydand their definitions
are omitted.

For example, we can compile an instance of member accessdn &G, as follows:
we first compile the expressianinto ICw, yielding e/, and also generate a coercion,
g, corresponding to the member access. The result of the ¢atiopiof e. f is then
simply g(e’). We write the compilation of, e.g. an expressienas|I" F e: 7| ~ ¢’.

Incoherence by designlava and €are by design incoherent [7]. Both languages use
a notion of “best” conversion when there is more than oneveasion between two
types. If there does not exist a best conversion, a comipile-érror is generated. In
compiling FGu to ICw we use this notion of a best conversion when dealing withsrule
that use subtyping. We do not formalize this notion of “Béstre; both the Java and
C! language specifications give precise details. The new fyp@s do not complicate
this notion greatly: For example, there are two conversiigeenint andobject:

one using the rulgBox], the other using the rulgSubChoice] and[Box] along with
[Trans] (i.e. int <: choice{int;string;} <: object). It is clear that the first
conversion is better. The other critical pairs are simjl@adsy to resolve.

3.5 Properties ofFCw and ICw

In this section we briefly mention some properties otdhd 1Go and the compilation.
We do not give any details of the proofs, as they are standaid@low analogous
theorems for Java [18, 5]; details will appear in a forthoogrtiechnical report.

Compiling GMA over streamF

lo.f:a'| ~ g

|o*.f:o'*| ~ z — 2.{g(it)}

‘ Compiling GMA over anonymous struqts

IS C{1l...n}|S| >2.Ap=|S|AVEk € [1..p]. |fds,.f : T&| ~ gk

struct{fd:; ... fdn;}.f:struct{ri;...7p; }| ~ 2z — new{q1(2[11), ..., g, (2 [p])}
Fke{l...n}. |fde.f : k|~ g
|struct{fdi; ... fdn;}.f: k| ~ 2 +— g(2[k])

‘ Compiling GMA over choice typeﬁ

IS C{l...n}.|S| >2Ap=|S|AVEk € [L..p]. |ks,-f : K| ~ gk

|choice{r1; ...kn;}.f : choice{k; ...K};}7]
~ 2
({if(z was Ks;)
{return new choice{k};...k;;}?(yield return’(xs, ,new(ks, ,g1(z at ks;))););}
---if (2 was Ks,)
{return new choice{k];...k,;}?(yield return'(xs,,new(xs,,gy(z at ks,))););}

else return null;})

|[ke.f 7|~ g VE1<k<n

|choice{Kk1i;...kn;}.f : 7|~ z+— ({ if(z was k1) return gi(z at K1); ---
if (2 was k,) return ¢,(z at K,);})

Hke{l...n}. |kk.f:0]l~g n>1

|choice{k1;...fn; }.f 1 07
~» 2z — ({if (2 was k) return new o7(yield return’'(c,g(z at Kz)););
else return null;})

‘ Compiling GMA over singleton streanﬁs

lo.f:0'| ~ g

lo?.f:0'?| ~ 2z +— ({if (HasValue(2)) return new o'?(yield return’(o’,g(Value(2))););
else return null;})

lo.f:0'%/?| ~ g

|o?.f:0'%/?| ~ 2z +— ({if (HasValue(z)) return g(Value(z));
else return null;})

Fig. 4. Compilation of Generalized Member Access

Our main resultis that |G is type-sound, which is captured by the following propextie
(We use generalized judgements, €.g: (.5, ¢): 7 to mean that the expressieris well-
typed and also that the stafeis well-formed with respect t@', in the familiar way. As
is usual [18] we also need to add “stupid” typing rules foe formal proof.)

Theorem 1 (Type soundness fotCw).

1. If I'>(S,e):7and(S,e) — (57, ¢) then3r’ such thatl” > (S5', ¢'): 7 and
T <T

2. If I';t> sand(S, s) — (57, ') then3r’ such thatl”; 7' > (97, s') and 7’ <: 7.

3. If I'> (9, e): 7 then either(S, e) is terminal or3S’, ¢’ such thai S, e) — (', ¢’).

4. If I'; 7> (S, s) then either(S, s) is terminal or3S’, s’ such that(S, s) — (S5, s').

We can also prove that our compilation of 6@ ICw is type-preserving, i.e. ifan k&
expressiore in environmentl” has typer , then there is a compilation efresulting in
an |Cw expressiore’, such that’ in I" also has type-.

Theorem 2 (Type preservation of compilation).

1. If ' e:7thende’ suchthail' - e: 7| ~ ¢’ andI' > e': 7.
2. If I';7+ sthends’ suchthaf ;7 - s| ~ s’ and ;7 > s'.

4 Related work

Numerous languages have been proposed for manipulatatgredl and semi-structured
data. For reasons of space we focus here only on those forséemtured data (some
of the languages for relational data were cited iy

A number of special-purpose functional languages [15,#ha@e been proposed for
processing XML values. This stands in contrast to our apgroahich aims at extend-
ing an existing widely-used object-oriented programmanggluage.

The languages most similar ta.Gire XJ [14] and Xtatic [13]. XJ adds XML and XPath
as afirst-class construct to Java, and uses logical XMLetassrepresent XSDs. In this
way XJ allows compile time checking of XML fragments; howesmce the impedance
mismatch between XML and objects is quite large, it does eat dith a mix of data
from the the object and the XML world. One consequence isexample, that XPath
queries are restricted to work on XML data only.

Xtatic extends Ewith a separate category of regular expression types [LBLyPing is
structural. While this gives a lot of flexibility this neitheonforms with XML Schema,
where subtyping is defined by name through restrictions amehsions, nor does it
allow a free mix of objects and XML. Further, Xtatic uses paitmatching for XML
projections, which fits well with the chosen type system buks first-class queries.

In contrast to XJ and Xtatic, & does not treat XML as a distinct and separate class.
Its ingenuity lies in the uniform integration of the new sing, choice and struct types
into the existing types and the generalization of membeesse- “the power is in
the dot”. In fact, generalized member access indChieves many of the benefits that

other type systems try to solve. For example, a long starliolglem is how to write a
query over data that comes from two sources that are similadulo some distribution
rules, but not the same [8]. The type algebra of regular esgiwa types often allows
a factorization which makes this scenario possible. Gdmethmember access, on the
other hand, handles this problem itself, without the needfstribution rules at the
type level.

Another popular approach to deal with XML in an object-otezhlanguage is by using
so called data-bindings. A data-binding generates somoaglir typed object repre-
sentation from a given XML schema (XSD). JAXB for Java and.exd in the .NET
framework generate classes from a given XSD. However, iftehdampossible to gen-
erate reasonable bindings, since the rich type system ofsX&Dnot adequately be
mapped onto classes and interfaces. As a consequenceuhlimgamappings are often
weakly typed.

Cw takes a different but simpler view: XML is considered to besdadization syntax
for the rich type system of & We are not tied to a particular XML data model. While
Cw by design doesn’t support the entirety of the full XML staickour experience &'s
type system and language extensions are rich enough todupglistic scenarios. We
have written a large number of applications, including tbeplete set of XQuery Use
Cases, several XSL stylesheets, and a substantial ap@pi¢a0OKLOC) to manage TV
listings.

5 Conclusions and future work

In this paper we have considered the problem of manipulatfational and semi-

structured data within common object-oriented langua@ésobserved that existing
methods using APIs provide poor support for these commoticapipn scenarios.

Therefore, we have proposed a series of elegant extensiaBisthat provides type-

safe, first-class access to, and querying of, these formataf e also have built a full

compiler that implements our design. In this paper we hawvdistl these extensions
formally.

This work represents an industrial application of formaltimoels; on the whole, we
found the process of formalizing our intuitions extremedeful, and indeed we man-
aged to trap a number of subtle design flaws in the procesaddition we had to
formalize a fragment of € which was a little subtle in places. For example, we believe
that this paper gives the first formal operational semarfiticgerators.) That said, we
also found it useful to be simultaneously developing a céengdn a small number of
occasions we found that our formalization was too highdlemethat it failed to cap-
ture some lower-level issues. Also whilst &@& small enough to prove theorems about
by hand, we should have liked to formalized a larger fragnoétite language. At the
moment, this seems unrealistic without more highly devetbmachine assistance.

One aspect of this project that we should like to considehérris the compilation.
The Common Type System (CTS) for the Common Language Rur{t@hR) whilst
general, lacks support for structural types. As our curcempiler targets .NET 1.1,
this means that the choice and anonymous structs types bawe ‘tsimulated”. In

future work, we plan to study extending the CLR with struatiwypes. This would also
enable more effective compilation of other languages tfffat structural types, such
as functional languages. It would also be interesting tdystuhether the lightweight
covariance of @ could be added to the CTS and other languages.

Implementation status A prototype G compiler is freely available. It covers the en-
tire safe fragment of €and includes all the data access features described inahis p
per (and more) and also the “polyphonic” concurrency ptives [3]. (Available from
http://research.microsoft.com/comega.)

References

12.

13.
14.

15.

16.

17.
18.

19.

20.

21.

. A. Albano, G. Ghelli, and R. Orsini. Types for databaske: Galileo experience. IRro-
ceedings of DBPL1989.

. A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A prograimglanguage for object data-
basesJournal of Very Large Data Basg4(3):403—-444, 1995.

. N. Benton, L. Cardelli, and C. Fournet. Modern concuryeslastractions for € TOPLAS
26(5):769-804, 2004.

. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XMLtriegeneral-purpose lan-
guage. IrProceedings of ICFP2003.

. G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imgtare core calculus for Java
and Java with effects. Technical Report 563, University af®ridge, 2003.

. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Makire future safe for the past:
Adding genericity to Java. IRroceedings of OOPSI,A998.

. V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrdwritance as implicit coer-
cion. Information and computatiqrd3(1):172—-221, 1991.

. P.Buneman and B.C. Pierce. Union types for semistrutta¢a. InProceedings of IDPL

1998.

. D. Chamberlin et al. XQuery use casestp://www.w3.org/TR/xquery-use-cases/.
10.
11.

S. Boag et al. XQuenhttp://www.w3.org/TR/xquery.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classea$ mixins. InProceedings of POPL
1998.

C. Fournét and G. Gonthier. The reflexive chemical abstnachine and the join-calculus.
In Proceedings of POPL1996.

V. Gapeyev and B.C. Pierce. Regular object type®réceedings of ECOOR003.

M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarland R. Bordawekar. XJ:
Integration of XML processing into Java. Technical reptBfyl Research, 2003.

H. Hosoya and B.C. Pierce. XDuce: A typed XML processamgliage. IProceedings of
WebDB 2000.

H. Hosoya, J. Vouillon, and B.C. Pierce. Regular expoesypes for XML. InProceedings
of ICFP, 2000.

M. Howard and D. LeBlandWriting Secure CodeMicrosoft Press, 2003.

A. Igarashi, B.C. Pierce, and P. Wadler. Featherweigld:JA minimal core calculus for
Java and GJACM TOPLAS23(3):396-450, 2001.

D. Leijen and E. Meijer. Domain Specific Embedded Comgpilén Proceedings of Confer-
ence on Domain-Specific Languag#&999.

F. Matthes, S. Muig, and J.W Schmidt. Persistent poiphic programming in Tycoon:
An introduction. Technical report, University of Glasgd/@94.

E. Meijer, W. Schulte, and G.M. Bierman. Programmindhweitcles, triangles and rectan-
gles. InProceedings of XM 2003.

22. E. Meijer, W. Schulte, and G.M. Bierman. Unifying tablebjects and documents. In
Proceedings of DP-COO0]2003.

23. B.C. PierceTypes and programming languagedIT Press, 2002.

24. J. PriceJava programming with Oracle SQL®D'Reilly, 2001.

25. D. Yu, A. Kennedy, and D. Syme. Formalization of genefacghe .NET common language
runtime. InProceedings of POP12004.

