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Abstract. This paper proposes a number of type system and language
extensions to natively support relational and hierarchical data within a
statically typed object-oriented setting. In our approach SQL tables and
XML documents become first class citizens that benefit from the full
range of features available in a modern programming language like C]

or Java. This allows objects, tables and documents to be constructed,
loaded, passed, transformed, updated, and queried in a unified and type-
safe manner.

1 Introduction

The most important current open problem in programming language research is
to increase programmer productivity, that is to make it easier and faster to write
correct programs [29]. The integration of data access in mainstream program-
ming languages is of particular importance—millions of programmers struggle
with this every day. Data sources and sinks are typically XML documents and
SQL tables but they are currently rather poorly supported in common object-
oriented languages.

This paper addresses how to integrate tables and documents into modern object-
oriented languages by providing a novel type system and corresponding language
extensions.

1.1 The need for a unification

Distributed web-based applications are typically structured using a three-tier
model that consists of a middle tier that contains the business logic that extracts
relational data from a data services tier and processes it into hierarchical data
that is displayed in the user interface tier (alternatively, in a B2B scenario,
this hierarchical data might simply be transferred to another application). The
middle tier is typically programmed in an object-oriented language such as Java
or C].

As a consequence, middle tier programs have to deal with relational data (SQL
tables), object graphs, and hierarchical data (HTML, XML). Unfortunately these



three different worlds are not very well integrated. As the following ADO.Net
based example shows, access to a database usually involves sending a string
representation of a SQL query over an explicit connection via a stateful API
and then iterating over a weakly typed representation of the result set:

SqlConnection Conn = new SqlConnection(...);
SqlCommand Cmd = new SqlCommand
("SELECT Name, HP FROM Pokedex", Conn);

Conn.Open();
SqlDataReader Rdr = Cmd.ExecuteReader();

HTML or XML documents are then created by emitting document fragments in
string form, without separating the model and presentation:

while (Rdr.Read()) {
Response.Write("<tr><td>");
Response.Write(Rdr.GetInt32(0));
Response.Write("</td><td>");
Response.Write(Rdr.GetString(1));
Response.Write("</td></tr>");

}

Communication between the different tiers using untyped strings is obviously
very fragile with lots of opportunities for silly errors and no possibility for static
checking. In fact, representing queries as strings can be a security risk (the
so-called ‘script code injection’ problem). Finally, due to the poor integration,
performance suffers badly as well.

1.2 Previous attempts

It is not an easy task to gracefully unify the worlds of objects, documents and
tables, so it should not come as a surprise that no main-stream programming
language has yet emerged that realizes this vision.

Often language integration only deals with SQL or with XML but not with both
[4, 14, 6, 9, 18]. Alternatively they start from a completely new language such as
XQuery or XDuce [3, 12], which is a luxury that we cannot afford. Approaches
based on language binding using some kind of pre-compiler such as XSD.exe,
Castor, or JAXB do not achieve a real semantic integration. The impedance
mismatch between the different type systems then leads to strange anomalies or
unnatural mappings. Another popular route to integrate XML and SQL is by
means of domain specific embedded languages [13] typically using a functional
language such as Scheme or Haskell [26, 27, 22, 23, 19, 15, 10, 32, 33, 4] as the host.
In our experience however, the embedded domain specific language approach
does not scale very well, and it is particularly difficult to encode the domain
specific type systems [30] and syntax into the host language.



1.3 The Xen solution

The examples above demonstrate that at a foundational level there is an impedance
mismatch between the XML, SQL and object data-models. In our opinion the
impedance mismatch is too big to attempt a complete integration. (The impedance
mismatch between the object and XML data-models is treated in detail in a com-
panion paper [25].)

Given these problems, our approach is to first take as our starting point the
type system and object data-model of the middle tier programming language.
This is the computational model that programmers are familiar with, and that
is supported by the underlying execution engine.

We look at XML fidelity in terms of being able to serialize and deserialize as
many possible documents that are expressible by some given XML schema lan-
guage, and not at how closely we match one of the XML data models in our
programming language once we have parsed an XML document. In other words,
we consider XML 1.0 as simply syntax for serialized object instances of our en-
riched host language. For SQL fidelity we take the same approach: we require
that SQL tables can be passed back and forth without having the need to intro-
duce additional layers like ADO.NET.

Hence, rather than trying to blindly integrate the whole of the XML and SQL
data-models, we enrich the type system of the object-oriented host language (in
our case C]) with a small number of new type constructors such as streams,
tuples, and unions. These have been carefully designed so that they integrate
coherently with the existing type system.

On top of these type system extensions, we then add two new forms of expres-
sions to the base language: generalized member access provides path expressions
to traverse hierarchical data, and comprehension queries to join elements from
different collections. Rather than limiting comprehension queries to tabular data
or path expressions on hierarchical data, we allow both forms of expressions to
be used on any collection, no matter whether the data is in-memory or remotely
stored in a database. To seamlessly handle queries on both on remote data
sources and local data sources we use similar deferred execution implementation
techniques as in HaskellDB [19]. Depending on the data source, the result of a
query is either a materialized collection or a SQL program that can be sent to
the database.

The result is Xen, a superset of C] that seamlessly blends the worlds of objects,
tables and documents. The code fragment below shows how Xen is able to express
the same functionality that we have seen previously.

tr* pokemon =
select <tr><td>{Name}</td><td>{HP}</td></tr>
from Pokedex;

Table t =



<table><tr><th>Name</th><th>HP</th></tr>{pokemon} </table>;

Response.Write(t);

In Xen, strongly typed XML values are first-class citizens (i.e. the XML literal
<table>...</table> has type static Table) and SQL-style select queries are
built-in. Xen thus allows for static checking, and because the SQL and XML
type systems are integrated into the language, the compiler can do a better job
at generating efficient code that might run on the client but which also might
be sent to the server.

Although Xen by design does not support the entirety of the XML stack and
some of the more advanced features of SQL, we believe that our type system and
language extensions are rich enough to support many potential scenarios. For
example we have been able to program the complete set of XQuery Use Cases,
and several XSL stylesheets, and we can even serialize the classic XML Hamlet
document without running into any significant fidelity problems.

The next sections show how we have grown a modern object-oriented language
(we take C] as the host language, but the same approach will work with Java,
Visual Basic, C++, etc.) to encompass the worlds of tables and documents by
adding new types (§2) and expressions (§3).

2 The Xen type system

In this section we shall cover the extensions to the C] type system—streams,
tuples, discriminated unions, and content classes—and for each briefly consider
the new query capabilities. In contrast to nominal types such as classes, structs,
and interfaces, the new Xen types are mostly structural types, like arrays in Java
or C].

We will introduce our type system extensions by example. Formal details of the
Xen type system can be found in a companion paper [24].

2.1 Streams

Streams represent ordered homogeneous collections of zero or more values. In
Xen streams are most commonly generated by yield return blocks. Stream
generators are like ordinary methods except that they may yield multiple values
instead of returning a single time. The following method From generates a finite
stream of integers n,n + 1, ...,m:

static int* From(int n, int m){ while(n<=m) yield return n++; }

From the view of the host language, streams are typed refinements of C]’s iter-
ators. Iterators encapsulate the logic for enumerating elements of collections.



Given a stream, we can iterate over its elements using C]’s existing foreach
statement. For instance, the following loop prints the integers from n to m.

foreach(int i in From(n,m)) { Console.WriteLine(i); }

Streams and generators are not new concepts. They are supported by a wide
range of languages in various forms [11, 20, 17, 21, 28]. Our approach is a little
different in that:

– We classify streams into a hierarchy of streams of different length.
– We automatically flatten nested streams.
– We identify the value null with the empty stream.

To keep type-checking tractable, we restrict ourselves to the following stream
types: T∗ denotes possibly empty and unbounded streams, T? denotes streams
of at most one element, and T ! denotes streams with exactly one element. We
will use T? to represent optional values, where the non-existence is represented
by the value null and analogously we use T ! to represent non-null values.

The different stream types form a natural subtype hierarchy, where subtyping
corresponds to stream inclusion We write S <: T to denote that type S is a
subtype of type T and we write S ∼= T to denote that S is equivalent to T . Xen
observes the axioms T ! <: T , T <: T? and T? <: T∗. For instance T? <: T∗
reflects the fact that a stream of at most one element is also a stream of at least
zero elements. Non-stream types T into the subtype hierarchy by placing them
between non-null values T ! and possibly null values T?. Thus allows for example
to assign the value 3 to the type int?.

Like C] arrays, streams are covariant. For unbounded streams the upcast of the
elements is via an identity conversion. This restriction guarantees that upcasts
of streams are always constant time, and that the object identity of the stream
is maintained. Suppose Button is a subclass of Control, then this rule says
that Button* is a subtype of a stream of controls Control*. If the conversion
is not the identity, we have to explicitly copy the stream. For example, we can
convert stream xs of type int* into a stream of type object* using the apply-
to-all expression xs.{ return (object)it; }. Optional and non-null types are
covariant with respect to arbitrary conversions on their element types.

In Xen streams are always flattened, there are no nested streams of streams.
At the theoretical level this implies a number of type equivalences, for example
T∗? ∼= T∗ reflects the fact that at most one stream of zero or more elements
flattens into a single stream of zero or more elements.

Flattening of stream types is essential to efficiently deal with recursively defined
streams. Consider the following recursive variation of the function From that we
defined previously:

int* From(int n, int m){
if (n>m) {



yield break;
} else {
yield return n++; yield return From(n,m);

}
}

The recursive call yield return From(n,m); yields a stream forcing the type of
From to be a nested stream. The non-recursive call yield return n++; yields a
single integer thus forcing the return type of From to be a normal stream. As the
type system treats the types int* and int** as equivalent this is type-correct.

Without flattening we would be forced to copy the stream produced by the
recursive invocation, leading to a quadratic instead of a linear number of yields:

int* From(int n, int m){
if (n >m) {
yield break;

} else {
yield return n++;
foreach(int it in From(n,m)) yield return it;

}
}

Flattening of stream types does not imply that the underlying stream is flat-
tened via some coercion, every element in a stream is yield-ed at most once.
Iterating over a stream effectively perform a depth-first traversal over the n-ary
tree produced by the stream generators.

Non-nullness. The type T ! denotes streams with exactly one element, and since
we identify null with the empty stream, this implies that values of type T ! can
never be null.

Being able to express that a value cannot be null via the type system allows
static checking for null pointers (see [7, 8] for more examples). This turns many
(potentially unhandled) dynamic errors into compile-time errors.

One of the several methods in the .NET base class library that throws an
ArgumentNullException when its argument is null is the function IPAddress.Parse.
Consequently, the implementation of IPAddress.Parse needs an explicit null
check:

public static IPAddress Parse(string ipString) {
if (ipString == null) throw new ArgumentNullException("ipString");
...

}

Dually, clients of IPAddress.Parse must be prepared to catch an ArgumentNullException.
Nothing of this is apparent in the type of the Parse method in C]. In Java the
signature of Parse would at least show that it possibly throws an exception.



It would be much cleaner if the type of IPAddress.Parse indicated that it
expects its string argument to be non-null:

public static IPAddress Parse(string! a);

Now, the type-checker statically rejects any attempt to pass a string that might
be null to IPAddress.Parse.

2.2 Anonymous structs

Tuples, or anonymous structs as we call them, encapsulate heterogeneous ordered
collections values of fixed length. Members of anonymous structs can optionally
be labelled, and labels can be duplicated, even at different types. Members of
anonymous structs can be accessed by label or by position. Anonymous structs
are value types, and have no object identity.

The function DivMod returns the quotient and remainder of its arguments as a
tuple that contains two named integer fields struct{int Div, Mod;}:

struct{int Div, Mod;} DivMod(int x, int y) {
return new(Div = x/y, Mod = x%y);

}

The members of an anonymous struct may be unlabelled, for example, we can
create a tuple consisting of a labelled Button and an unlabelled TextBox as
follows:

struct{Button enter; TextBox;} x =
new(enter=new Button(), new TextBox());

An unlabelled member of a nominal type is a shorthand for the same member
implicitly labelled with its type.

As mentioned earlier, members of tuples can be accessed either by position, or
by label. For example:

int m = new(47,11)[0];
Button b = x.enter;

As for streams, tuples are covariant provided that the upcast-conversion that
would be applied is the identity. Subtyping is lifted over field declarations as ex-
pected. This means that we can assign new(enter=new Button(), new TextBox())
to a variable of type struct{Control enter; Textbox;}.



2.3 Streams+anonymous structs = tables

Relational data is stored in tables, which are sets of rows. Sets can be represented
by streams, and rows by anonymous structs, thus streams and anonymous structs
together can be used to model relational data.

The table below contains some basic facts about Pokemon characters such as
their name, their strength, their kind, and the Pokemon from which they evolved
(see http://www.pokemon.com/pokedex/ for more details about these interest-
ing creatures).

Name HP Kind Evolved
Meowth 50 Normal
Rapidash 70 Fire Ponyta

Charmelon 80 Fire Charmander
Zubat 40 Plant

Poliwag 40 Water
Weepinbell 70 Plant Bellsprout

Ponyta 40 Fire

This table can be modelled by the variable Pokedex below:

enum Kind {Water, Fire, Plant, Normal, Rock}

struct{string Name; int HP; Kind Kind; string? Evolved;
}* Pokedex;

The fact that basic Pokemon are not evolutions of other Pokemon shows up in
that the Evolved column has type string?.

2.4 Discriminated union

A value of a discriminated union holds (at different times) any of the values of
its members. Like anonymous structs, the members of discriminated unions can
be labelled or unlabelled.

Discriminated unions often appear in content classes (see §2.5 below). The type
Address uses a discriminated union to allow either a member Street of type
string or a member POBox of type int:

class Address {
struct{
choice{ string Street; int POBox; };
string City; string? State; int Zip;
string Country;

};
}



The second situation in which discriminated unions are used is in the result
types of generalized member access (see §3.2). For example, when p has type
Pokemon, the wildcard expression p.* selects all members of p which returns a
stream containing all the members of a Pokemon and has type

choice{string; int; Kind; string?}*

Using the subtype rules for choice and streams this is equivalent to
choice{string?; int; Kind;}*.

Unlike unions in C/C++ and variant records in Pascal where users have to keep
track of which type is present, values of an discriminated unions in Xen are
implicitly tagged with the static type of the chosen alternative, much like unions
in Algol68. In other words, discriminated unions in Xen are essentially a pair of a
value and its static type. The type component can be tested with the conformity
test e was T . The expression e was T is true for exactly one T in the union. This
invariant is maintained by the type system. You can get the value component of
a discriminated union value by downcasting.

Labelled members of discriminated unions are just nested singleton anonymous
structs, for example choice{int Fahrenheit; int Celsius;} is a shorthand for
the more verbose choice{struct{int Fahrenheit;}; struct{int Celsius;};}.
Discriminated unions are idempotent (duplicates are removed), associative and
commutative (nesting and order are ignored).

Values of non-discriminated unions can be injected into a discriminated union.
This rule allows us to conveniently inject values into a discriminated union as in
the example below:

choice{int Fahrenheit; int Celsius;} = new(Fahrenheit=47);

Finally, streams distribute over nested discriminated unions, Again this is essen-
tial for recursively defined streams as in the following example which returns a
stream of integers terminated by true:

choice{int; bool;}* f(int n) {
if(n==0){
yield return true;

} else {
yield return n;
yield return f(--n);

}
}

2.5 Content classes

Now that we have introduced streams, anonymous structs, and discriminated
unions, our type system is rich enough to model a large part of the XSD schema



language; our aim is to cover as much of the essence of XSD [31] as possible
whilst avoiding most of its complexity.

The correspondence between XSD particles such as <sequence> and <choice>
with local element declarations and the type constructors struct and choice
with (labelled) fields should be intuitively clear. Likewise, the relationship of
XSD particles with occurrence constraints to streams is unmistakable. For T∗
the attribute pair (minOccurs, maxOccurs) is (0, unbounded), for T? it is
(0, 1), and for T ! it is (1,1).

The content class Address that we defined in §2.4 corresponds to the XSD
schema Address below:

<element name="Address"><complexType>
<sequence>
<choice>
<element name="Street" type="string">
<element name="POBox" type="integer">

</choice>
<element name="City" type="string">
<element name="State" type="string" minOccurs="0"/>
<element name="Zip" type="integer"/>
<element name="Country" type="string"/>
</sequence>

</complexType></element>

A Xen content class is simply a normal C] class with a single unlabelled member
and zero or more methods. As a consequence, the content can only ever be
accessed via its individually named children, which allows the compiler to choose
the most efficient data layout.

The next example schema defines two top level elements Author and Book where
Book elements can have zero or more Author members:

<element name="Author"><complexType>
<sequence>
<element name="Name" type="string"/>

</sequence>
</complexType></element>

<element name="Book"><complexType>
<sequence>
<element name="Title" type="string"/>
<element ref="Author" minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType></element>

In this case, the local element reference is modelled by an unlabelled field and
the two elements are mapped onto the following two type declarations:



class Author { string Name; }
class Book { struct{ string Title; Author*; } }

All groups such as the one used in the following schema for the complex type
Name

<element name="Name"><complexType>
<all>
<element name="First" type="string"/>
<element name="Last" type="string"/>
</all>

</complexType></element>

are mapped to ordinary fields of the containing type:

class Name { string First; string Last; }

As these examples show, both top-level element declarations and named com-
plex type declarations are mapped to top-level types. This allows us to unify
derivation of complex types and substitution groups of elements using standard
inheritance. Further details of the relationship between the XML and Xen data-
models can be found in a companion paper [25].

3 Xen expressions

In the previous sections we have concentrated on the Xen type system. In this
section we will consider new Xen expression forms to construct, transform, query
and combine Xen values.

3.1 XML constructors

Xen internalizes XML serialized objects into the language, conveniently allowing
programmers to use XML fragments as object literals. For instance, we can create
a new instance of an Address object using the following XML object literal:

Address a = <Address>
<Street>One Microsoft Way</Street>
<City>Redmond</City>

</Address>;

The Xen compiler contains a validating XML parser that analyzes the XML
literal and “deserializes” it at compile time into code that will construct the
correct Address instance. This allows Xen programmers to treat XML fragments
as first-class values in their code.



XML literals can also have placeholders to describe dynamic content (anti-
quoting). We use the XQuery convention whereby an arbitrary expression or
statement block can be embedded inside an element by escaping it with curly
braces:

Author NewAuthor(string name) {
return <Author>{name.ToUpper()}</Author>;

}

Embedded expressions must return or yield values of the required type (in this
case string). Validation of XML literals with placeholders is non-trivial and is
the subject of a forthcoming paper.

Note that XML literals are treated by Xen as just object constructors, there
is nothing special about content classes. In fact, we can write XML literals to
construct values of any type, for example, the assignment

Button b = <Button>
<Text>Click Me</Text>
</Button>;

creates an instance of the standard Button class and sets its Text field to the
string "Click Me".

3.2 Stream generators, iterators and lifting

To make the creation of streams as concise as possible, we allow anonymous
method bodies as expressions. In the example below we assign the (conceptually)
infinite stream of positive integers to the variable nats:

// 0, 1, 2, ...
int* nats = { int i=0; while(true) yield return i++; };

Our stream constructors (*, ?, !) are functors, and hence we implicitly lift op-
erations on the element type of a stream (such as member or property access
and method calls) over the stream itself. For instance, to convert each individual
string in a stream ss of strings to uppercase, we can simply write ss.ToUpper().

We do not restrict this lifting to member access. Xen generalizes this with an
apply-to-all block. We can write the previous example as ss.{ return it.ToUpper(); }.
The implicit argument it refers successively to each element of the stream Ss.

In fact, the apply-to-all block itself can yield a stream, in which case the resulting
nested stream is flattened in the appropriate way. For example (where nats is a
stream of integers):

// 1, 2,2, 3,3,3, 4,4,4,4, ...
int* rs = nats.{ for(i=0; i<it; i++) yield return it; };



If an apply-to-all block returns void, no new stream is constructed and the
block is eagerly applied to all elements of the stream. For example to print all
the elements of a stream we can just write:

nats.{ Console.WriteLine(it); };

Apply-to-all blocks can be stateful, so we can use them to do reductions (in the
functional community called folds). For example, we can sum all integers in an
integer stream xs as follows:

int sum(int* xs){
int s = 0; xs.{ s += it; }; return s;

}

We need to be careful when lifting over non-null types, since the fact that the
receiver object is not null does not imply that its members are not null either:

Button! b = <Button/>;
Control p = b.Parent; // Parent might be null

Hence the return type of lifting over a non-null type is not guaranteed to return
a non-null type.

Optional types provide a standard implementation of the null design pattern;
when a receiver of type T? is null, accessing any of its members returns null:

string? t = null;
int? n = t.Length; // n = null

In Objective-C [16] this is the standard behaviour for any object that can be
null.

Member access is not only lifted over streams, but over all structural types.
For example the expression xs.x will return the stream true, 1, 2 of type
choice{bool; int;}+ when xs is defined as:

struct{ bool x; struct{int x;}*; } xs =
new( x=true

, {yield return new(x=1); yield return new(x=2);}
);

Lifting over discriminated unions introduces a possibility of nullness for members
that are not in all of the alternatives. Suppose x has type choice{ int; string; }.
Since only string has a Length member, the type of x.Length is int? which
reflects the fact that in case the dynamic type of x is int, the result of x.Length
will be null. Since int and string both have a member GetType(), the return
type of x.GetType() is Type:



choice{ int; string; } x = 4711;
int? n = x.Length; // null
Type t = x.GetType(); // System.Int32

In case the alternatives of a union have a member of different type in common,
the result type is the union of the types of the respective members.

Binary and unary operators are lifted element-wise over streams. For example
we can add two optional integers x+y to get another optional integer. If either x
or y is null the result of adding them is null as well. Lifting of optional types
implements SQL’s three-value logic.

Often we want to filter a stream according to some predicate on the elements
of the stream. For example, to construct a stream with only odd numbers, we
filter out all even numbers from the stream nats of natural numbers using the
filter expression nats[it%2==1]. For each element in the stream to be filtered,
the predicate is evaluated with that element bound to it. Only if the predicate
is true the element becomes part of the new stream.

int* odds1 = nats[it%2 == 1];

In fact, filters can be encoded using an apply-to-all block:

int* odds2 = nats.{if(it%2 == 1) yield return it;};

3.3 Further generalized member access

As we have seen, Xen elegantly generalizes familiar C] member access resulting
in compact and clear code. However we should like to provide more flexible forms
of member access: Xen provides wildcard, transitive and type-based access. These
forms are similar to the concepts of nametest, abbreviated relative location paths
and name filters in XPath [1], but have been adapted to work uniformly on object
graphs.

Wildcards provide access to all members of a type without needing to specify
the labels. For example, suppose that we want to have all fields of an Address:

choice{string; int;}* addressfields = Microsoft.*;

The wildcard expression returns the content of all accessible fields and properties
of the variable Microsoft in their declaration order. In this case "One Microsoft Way",
"Redmond", 98052, "USA".

Transitive member access, written as e...m, returns all accessible members m
that are transitively reachable from e in depth-first order. The following decla-
ration of authors (lazily) returns a stream containing all Authors of all Books
in the source stream books:



Book F = <Book>
<Title>Faust</Title>
<Author>Goethe</Author>

</Book>;
Book K = <Book>

<Title>De Klompeniers</Title>
<Author>Jac. Broersen</Author>

</Book>;

Book* books = { yield F; yield K; };
string* authors = books...Author;

Transitive member access abstracts from the concrete representation of a tree; as
long as the mentioned member is reachable and accessible, its value is returned.

Looking for just a field name might not be sufficient, especially for transitive
queries where there might be several reachable members with the same name,
but of different type. In that case we allow an additional type-test to restrict the
matching members. A type-test on T selects only those members whose static
type is a subtype of T . For instance, if we are only interested in Microsoft’s POBox
number, and Zip code, we can write the transitive query Microsoft...int::*.

3.4 Comprehensions

The previous sections presented our solutions to querying documents. However
for accessing relational data, which we model as streams of anonymous structs,
simple SQL queries are more natural and flexible. Here we only consider the
integration of the SQL select-from-where clause, and defer the discussion of
more advanced features such as data manipulation and transactions to a future
paper.

The fundamental operations of relational algebra are selection, projection, union,
difference and join. Here are two simple SQL-style comprehension queries:

Pokemon* ps1 =
select * from Pokedex where Kind == Normal;

struct{string Name; Kind Kind;}* ps2 =
select Name, Kind from Pokedex;

In practice, the result types of SQL queries can be quite involved and hence it
becomes painful for programmers to explicitly specify types. Since the compiler
already knows the types of sub-expressions, the result types of queries can be
inferred automatically. Providing type declarations for method local variables is
not necessary, and we can simply write:

ps2 = select Name, Kind from Pokedex;



without having to declare the type of ps2.

Union and difference present no difficulty in our framework. They can easily be
handled with existing operations on streams. Union concatenates two streams
into a single stream. Difference takes two streams, and returns a new stream
that contains all values that appear in the first but not in the second stream.

The real power of comprehensions comes from join. Join takes two input streams
and creates a third stream whose values are composed by combining members
from the two input streams. For example, here is an expression that selects pairs
of Pokemons that have evolved from each other:

select p.Name, q.Name
from p in Pokedex, q in Pokedex
where p.Evolved == q

Again, we should like to emphasize the elegant integration of data in Xen. The
select expression works on arbitrary streams, whether in memory or on the hard
disk; streams simply virtualize data access. Strong typing makes data access
secure. But there is no excessive syntactic burden for the programmer as the
result types of queries are inferred.

4 Conclusion

The language extensions proposed in this paper support both the SQL [2] and
the XML schema type system [31] to a large degree, but we have not dealt
with all of the SQL features such as (unique) keys, and the more esoteric XSD
features such as redefine. Similarly, we capture much of the expressive power
of XPath [1], XQuery [3] and XSLT [5], but we do not support the full set of
XPath axis. We are able to deal smoothly with namespaces, attributes, blocking,
and facets however. Currently we are investigating whether and which additional
features need to be added to our language.

In summary, we have shown that it is possible to have both SQL tables and XML
documents as first-class citizens in an object-oriented language. Only a bridge
between the type worlds is needed. Building the bridge is mainly an engineering
task. But once it is available, it offers the best of three worlds.
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