
Semantic Subtyping with an SMT Solver

Gavin M. Bierman
Microsoft Research
gmb@microsoft.com

Andrew D. Gordon
Microsoft Research
adg@microsoft.com

Cătălin Hriţcu
Saarland University

hritcu@cs.uni-saarland.de

David Langworthy
Microsoft Corporation
dlan@microsoft.com

Abstract
We study a first-order functional language with the novel combina-
tion of the ideas of refinement type (the subset of a type to satisfy
a Boolean expression) and type-test (a Boolean expression testing
whether a value belongs to a type). Our small core calculus can
express a rich variety of typing idioms; for example, intersection,
union, negation, singleton, nullable, variant, recursive, and alge-
braic types are all derivable. We formulate a semantics in which
expressions denote terms, and types are interpreted as first-order
logic formulas. Subtyping is defined as valid implication between
the semantics of types. The formulas are interpreted in a specific
model that we axiomatize using standard first-order theories. On
this basis, we present a novel type-checking algorithm able to elim-
inate many dynamic tests and to detect many errors statically. The
key idea is to rely on an SMT solver to compute subtyping effi-
ciently. Moreover, interpreting types as formulas allows us to call
the SMT solver at run-time to compute instances of types.

1. Introduction
This paper studies first-order functional programming in the pres-
ence of both refinement types (types qualified by Boolean expres-
sions) and type-tests (Boolean expressions testing whether a value
belongs to a type). The novel combination of type-test and refine-
ment types appears in a recent commercial functional language,
code-named M [2], whose types correspond to relational schemas,
and whose expressions compile to SQL queries. Refinement types
are used to express SQL table constraints within a type system, and
type-tests are useful for processing relational data, for example, by
discriminating dynamically between different forms of union types.
Still, although useful and extremely expressive, the combination of
type-test and refinement is hard to type-check using conventional
syntax-driven subtyping rules. The preliminary release of M1 uses
such subtyping rules and has difficulty with certain sound idioms
(such as uses of singleton and union types). Hence, type safety is
enforced by dynamic checks, or not at all.

This paper studies the problem of type-checking code that uses
type-tests and refinements via a core calculus, named Dminor, a
core calculus whose syntax is a small subset of M, and which
is expressive enough to encode all the essential features of the
full M language. In the remainder of this section, we elaborate
on the difficulties of type-checking Dminor (and hence M), and
outline our solution, which is to use semantic subtyping rather than
syntactic rules.

1 http://msdn.microsoft.com/en-us/data/default.aspx

1.1 Programming with Type-Test and Refinement
The core types of Dminor are structural types for scalars, (un-
ordered) collections, and records. (We base the syntax and termi-
nology of Dminor on the database-oriented language M, and hence
refer to records as entities.) We write S <: T for the subtype rela-
tion, meaning that every value of type S is also of type T .

Two central primitives of Dminor are the following:

• A refinement type, (x : T where e), consists of the values x of T
satisfying the Boolean expression e.
• A type-test expression, e in T , returns true or false depending on

whether or not the value of e belongs to the type T .

As we shall see, many types are derivable from these primitive
constructs and their combination. For example, the singleton type
[v], which contains just the value v, is derived as the refinement
type (x : Any where x == v), where Any is the type of all values.
The union type T |U , which contains the values of T together with
the values of U , is derived as (x : Any where (x in T) || (x in U)).

Here is a snippet from a typical Dminor (and M) program
for processing a DSL, a language of while-programs. The type
is a union of different sorts of statements, each of which is an
entity with a kind field of singleton type. (The snippet relies on an
omitted—but similar—recursive type of arithmetic expressions.)

type Statement =
{kind:["assignment"]; var: Text; rhs: Expression;} |
{kind:["while"]; test:Expression; body:Statement;} |
{kind:["if"]; test:Expression; tt:Statement; ff:Statement;} |
{kind:["seq"]; s1:Statement; s2:Statement;} |
{kind:["skip"];};

In languages influenced by HOPE, such as ML and Haskell,
we would use the built-in notion of algebraic type to represent
such statements. But like many data formats, including rela-
tional databases, S-expressions, and JavaScript Object Notation
(JSON) [18], the data structures of M and Dminor do not take as
primitive the idea of data tagged with data constructors. Instead, we
need to follow an idiom such as shown above, of taking the union
of entity types that include kind fields of distinct singleton types.

If y has type Statement, we may process such data as follows:

((y.kind == "assignment") ? y.var : "NotAssign") : Text

We write e : T to assert that the value of e must have type T .
One of the purposes of type-checking is to ensure the validity
of such assertions statically. Intuitively, the code above is type-
safe because it checks the kind field before accessing the var field,
which is only present for assignment statements. More precisely, to

1 2010/4/19

http://msdn.microsoft.com/en-us/data/default.aspx

type-check the then-branch y.var, we have y : Statement, know that
y.kind == "assignment", and need to decide [y]<: {var : Text;},
Subtyping should succeed, but clearly requires relatively sophisti-
cated symbolic computation, including case analysis and propaga-
tion of equations. This is a typical example where syntax-driven
rules for refinements and type-test are inadequate, and indeed this
simple example cannot be checked statically by the preliminary re-
lease of M. Our proposal is to delegate the hard work to an external
prover.

1.2 An Opportunity: SMT as a Platform
Over the past few years, there has been tremendous progress in the
field of Satisfiability Modulo Theories (SMT), that is, for (frag-
ments of) first-order logic plus various standard theories such as
equality, real and integer (linear) arithmetic, bit vectors, and (ex-
tensional) arrays. Some of the leading systems include CVC3 [8],
Yices [25], and Z3 [20]. There are standard input formats such
as Simplify’s [22] unsorted S-expression syntax and the SMT-LIB
standard [45] for sorted logic. Hence, first-order logic with standard
theories is emerging as a computing platform. Software written to
generate problems in a standard format can rely on a wide range of
back-end solvers, which get better over time due in part to healthy
competition,2 and which may even be run in parallel when suffi-
cient cores are available. There are limitations, of course, as first-
order validity is undecidable even without any theories, so solvers
may fail to terminate within a reasonable time, but recent progress
has been remarkable.

1.3 Semantic Subtyping with an SMT Solver
The central idea in this paper is a type-checking algorithm for Dmi-
nor that is based on deciding subtyping by invoking an external
SMT solver. To decide whether S is a subtype of T , we construct
first-order formulas F[[S]](x) and F[[T]](x), which hold when x be-
longs to the type S and the type T , respectively, and ask the solver
whether the formula F[[S]](x) =⇒ F[[T]](x) is valid, given any ad-
ditional constraints known from the typing environment. This tech-
nique is known as semantic subtyping [3, 30], as opposed to the
more common alternative, syntactic subtyping, which is to define
syntax-driven rules for checking subtyping [41].

The idea of using an external solver for type-checking with re-
finement types is not new. Several recent type-checkers for func-
tional languages, such as SAGE [28, 34], F7 [9], and Dsolve [47],
rely on various provers [20, 25] for problems encoded in first-order
logic with equality and linear arithmetic. However, these systems
all rely on syntactic subtyping, with the solver being used as a sub-
routine to check constraints during subtyping.

To the best of our knowledge, our proposal to implement se-
mantic subtyping by calling an external SMT solver is new. Se-
mantic subtyping nicely exploits the solver’s knowledge of first-
order logic and the theory of equality; for example, we represent
union and intersection types as logical disjunctions and conjunc-
tions, which are efficiently manipulated by the solver. Hence, we
avoid the implementation effort of explicit propagation of known
equality constraints, and of syntax-driven rules for union and inter-
section types [43, 24, 23].

1.4 Background: DSLs and Systems Modeling
The language M has many potential applications, but one specific
motivation is configuration management: the database repository
holds a model of a data center, that is, the configuration data for
each server, and M can be used to check existing configurations and
to compute new ones. Various bespoke systems [4, 15] have proven

2 Most important is the SMT-COMP[7] competition held each year in con-
junction with CAV and in which more than a dozen SMT solvers contend.

the worth of model-based systems configuration. Each of these sys-
tems has a domain-specific language (DSL) for describing intended
configurations. (The mechanisms of configuration management are
a motivation for M, but are not the topic of this paper; for a com-
prehensive, comparative discussion see [5].) A goal for M is to be a
general-purpose modeling language able to subsume DSLs such as
these. To this end, M comes with a flexible parser generator able to
process the syntax of existing DSLs. Moreover (and this is the fo-
cus of the paper), M is a small functional language, with a rich set
of types for describing data models in general, and systems config-
urations in particular. For example, the current and intended state
of the machines and software in a data center would be described
by M expressions. Intended properties of states can be described by
M types.

1.5 Contributions of the Paper
(1) Investigation of semantic subtyping for a core functional lan-

guage with both refinement types and type-test expressions (a
novel combination, as far as we know). We are surprised that so
many typing constructs are derivable from this combination.

(2) Development of the theory, including both a declarative type
assignment relation, and algorithmic rules in the bidirectional
style. Our correctness results cover the core type assignment
relation, the bidirectional rules, the algorithmic purity check,
and some logical optimizations.

(3) An implementation based on checking semantic subtyping by
constructing proof obligations for an external SMT solver. The
proof obligations are interpreted in a model that is formalized
in Coq and axiomatized using standard first-order theories.

(4) Devising a systematic way to use the models produced by the
SMT solver as evidence of satisfiability in order to provide pre-
cise counterexamples to typing, detect empty types and gener-
ate instances of types. The latter enables a new form of declar-
ative constraint programming, where constraints arise from the
interpretation of a type as a formula.

1.6 Structure of the Paper
§2 describes the formal syntax of Dminor together with a small-
step operational semantics, e→ e′, where e and e′ are expressions.
We encode a series of type idioms to illustrate the expressiveness
of the language and its type system.

§3 presents a logical semantics of pure expressions (those with-
out side-effects) and Dminor types; each pure expression e is inter-
preted as a term T[[e]] and each type T is interpreted as a first-order
logic formula F[[T]](t). The formulas are interpreted in a specific
model that we have formalized in Coq. Theorem 1 is a full abstrac-
tion result: two pure expressions have the same logical semantics
just when they are operationally equivalent.

§4 presents the declarative type system for Dminor. The type
assignment relation has the form E ` e : T , meaning that expres-
sion e has type T given typing environment E. Theorem 2 concerns
logical soundness of type assignment; if e is assigned type T then
formula F[[T]](T[[e]]) holds. Progress and preservation results (The-
orems 3 and 4) relate type assignment to the operational semantics,
entailing that well-typed expressions cannot go wrong.

§5 develops additional theory to justify our implementation
techniques. First, we present simpler variations of the translations
T[[e]] and F[[T]](t), optimized by the observation that during type-
checking we only interpret well-typed expressions, and so we need
not track error values. Theorem 5 shows soundness of this opti-
mization. Second, since the declarative rules of §4 are not directly
algorithmic, we propose type checking and synthesis algorithms,
presented as bidirectional rules. Theorem 6 shows these are sound
with respect to type assignment. Finally, we show how to check pu-

2 2010/4/19

rity of expressions using a syntactic termination restriction together
with a confluence check that relies on the logical semantics. Theo-
rem 7 shows that our algorithmic purity check is indeed a sufficient
condition for purity.

§6 shows how to use the models produced by the SMT solver
to provide very precise counterexamples when type-checking fails
and to find inhabitants of types statically or dynamically. §7 reports
some details of our implementation. Returning to the original moti-
vation for M, in §8 we describe how typing Dminor models may be
used to check for systems configuration errors. We survey related
work in §9, before concluding in §10.

The appendixes relate the operational and logical semantics us-
ing an intermediate big-step semantics (Appendix A); report our
intended logical model of Dminor and its formalization in Coq (Ap-
pendix B), as well as the axiomatization of this model that is passed
to the external solver during type-checking (Appendix C); and
prove the correctness of the algorithmic purity check (Appendix D).
Our implementation as well as a screencast comparing the effec-
tiveness of Dminor with the standard M type-checker, is available
at http://research.microsoft.com/~adg/dminor.html.

2. Syntax and Operational Semantics
Dminor is a first-order functional language whose data includes
scalars, entities, and collections; it has no mutable state, and its only
side-effects are non-termination and non-determinism. This section
describes: (1) the syntax of expressions, types, and global function
definitions; (2) the operational semantics; and (3) some encodings
to justify our expressiveness claims.

The following example introduces the basic syntax of Dminor.
An accumulate expression is a fold over an unordered collection;
to evaluate from x in e1 let y = e2 accumulate e3, we first evaluate
e1 to a collection v, evaluate e2 to an initial value u0, and then
compute a series of values ui for i ∈ 1..n, by setting ui to the value
of e3{vi/x}{ui−1/y}, and eventually return un, where v1, . . . , vn
are the items in the collection v, in some arbitrary order.
NullableInt

4
= Integer | [null]

removeNulls(xs : NullableInt∗) : Integer∗
{ from x in xs let a = ({}:Integer∗) accumulate (x!=null) ? (x :: a) : a }

The type NullableInt is defined as the union of Integer with the sin-
gleton type containing only the value null. We then define a function
removeNulls that iterates over its input collection and removes all
null elements. As expected, executing removeNulls({1, null, 42, null})
produces {1, 42} (which denotes the same collection as {42, 1}).

Given that xs : NullableInt∗, x : NullableInt, and the check that
x != null, our type-checking algorithm infers that x : Integer, and
therefore the result of the comprehension is Integer∗, as declared
by the function. If we remove the check that x != null, and copy all
elements with x :: a then type-checking fails, as expected.

2.1 Expressions and Types
We observe the following syntactic conventions. We identify all
phrases of syntax (such as types and expressions) up to consistent
renaming of bound variables. For any phrase of syntax φ we write
φ{e/x} for the outcome of a capture-avoiding substitution of e
for each free occurrence of x in φ . We write fv(φ) for the set of
variables occurring free in φ .

We assume some base types for integers, strings, and logical
values, together with constants for each of these types, as well as
a null value. We also assume an assortment of primitive operators;
they are all binary apart from negation !, which is unary.

Scalar Types, Constants, and Operators:
G ::= Integer | Text | Logical scalar type
K(Integer) = {i | integer i}

K(Text) = {s | string s}
K(Logical) = {true, false}
c ∈ K(Integer)∪K(Text)∪K(Logical)∪{null} scalar constants
⊕ ∈ {+,−,×,<,>,==, !,&&, ||} primitive operators

A value may be a simple value (an integer, string, boolean, or
null), a collection (a finite multiset of values), or an entity (a finite
set of fields, each consisting of a value with a distinct label). (We
follow M terminology, but entities would usually be called records.)

Syntax of Values:
v ::= value

c scalar (or simple value)
{v1, . . . ,vn} collection (multiset; unordered)
{`i⇒ vi

i∈1..n} entity (`i distinct)

We identify values u and v, and write u = v, when they are
identical up to reordering the items within collections or entities.
Although collections are unordered, ordered lists can be encoded
using nested entities (see §2.4).

Syntax of Types:
S,T,U ::= type

Any the top type
G scalar type
T∗ collection type
{` : T} (single) entity type
(x : T where e) refinement type (scope of x is e)

All values have type Any, the top type. The values of a scalar
type G are the scalars in the set K(G) defined above. The values
of type T∗ are collections of values of type T . The values of type
{` : T} are entities with (at least) a field ` holding values of type T .
(We show in §2.4 how to define multi-field entity types as a form
of intersection type.)

Finally, the values of a refinement type (x : T where e) are
the values v of type T such that the boolean expression e{v/x}
returns true. As a convenient shorthand, we write T where e for
the refinement type (value : T where e), where the omitted variable
defaults to value. For example, Integer where value > 0 is the type
of positive numbers.

Syntax of Expressions:
e ::= expression

x variable
c scalar constant
⊕(e1, . . . ,en) operator application
e1?e2 : e3 conditional
let x = e1 in e2 let-expression (scope of x is e2)
e in T type-test
e : T type-assertion

{`i⇒ ei
i∈1..n} entity (`i distinct, in fixed order)

e.` field selection

{v1, . . . ,vn} collection (multiset; unordered)
e1 :: e2 adding element e1 to collection e2
from x in e1

let y = e2 accumulate e3

iteration over collection

f (e1, . . . ,en) function application

Variables, constants, operators, conditionals, and let-expressions
are standard. When ⊕ is binary, we often write e1⊕ e2 instead of
⊕(e1,e2). A type-test, e in T , returns a boolean to indicate whether
or not the value of e inhabits the type T . A type-assertion, e : T ,
requires that the result of the expression e be a value of type T .
If this is not the case execution “goes wrong”. In this paper, type-
assertions are verified during type-checking, and hence ignored at

3 2010/4/19

http://research.microsoft.com/~adg/dminor.html

run-time. A future approach may be a hybrid system [28] where
the assertions that can not be verified at compile-time are left to be
checked at run-time.

The accumulate expression can encode all the usual operations
on collections: counting the number of elements or of occurrences
of a certain element, checking membership, removing duplicates
and elements, multiset union and difference, as well as comprehen-
sions in the style of the nested relational calculus [14].

Derived Collection Expressions:
{e1, . . . ,en}

4
= e1 :: . . . :: en :: {}

e.Count
4
= from x in e let y = 0 accumulate y+1

e.Count(e2)
4
=

let z = e2 in (from x in e let y = 0 accumulate (x == z)?y+1 : y)

e1 ∈ e2
4
= (e2.Count(e1)> 0)

e.Distinct
4
= from x in e let y = {} accumulate (x ∈ y)?y : (x :: y)

e.Remove(e2)
4
= let z = e2 in

(from x in e let y = {found = false, res = {}}
accumulate (x == z && !y.found)?{found = true, res = y.res}

: {found = y.found, res = x :: y.res}
).res

e1∪ e2
4
= from x in e1 let y = e2 accumulate x :: y

e1 \ e2
4
= from x in e2 let y = e1 accumulate y.Remove(x)

bind x← e1 in e2
4
= from x in e1 let y = {} accumulate e2∪ y

In example code, we often rely on the following derived syntax for
from-where-select expressions in the style of LINQ [37].
Derived LINQ Queries:
from x in e1 where e2 select e3

4
=

from x in e1 let y = {} accumulate e2?(e3 :: y) : y

To complete the syntax of Dminor, we interpret types and
expressions in the context of a fixed collection of first-order,
dependently-typed, potentially recursive function definitions. We
assume for each expression f (e1, . . . ,en) in a source program that
there is a corresponding function definition for f with arity n.

Function Definitions: f (x1 : T1, . . . ,xn : Tn) : U{e}
We assume a finite, global set of function definitions, each of
which associates a function name f with a dependent signature
x1 : T1, . . . ,xn : Tn → U , formal parameters x1, . . . ,xn, and a body
e, such that fv(e)⊆ {x1, . . . ,xn}.

2.2 Operational Semantics
We define a nondeterministic, potentially divergent, small-step re-
duction relation e→ e′, together with a standard notion of expres-
sions going wrong, to be prevented by typing.

Reduction Contexts:
R ::= reduction context
⊕(v1, . . . ,v j−1,•,ei+1, . . . ,en)
•?e2 : e3 | let x = • in e2 | • in T | • : T

{`i⇒ vi
i∈1.. j−1, ` j⇒•, `i⇒ ei

i∈ j+1..n}
•.` | • :: e | v :: • | f (v1, . . . ,v j−1,•,ei+1, . . . ,en)
from x in • let y = e2 accumulate e3
from x in v let y = • accumulate e3

Reduction Rules for Standard Constructs:
e→ e′ =⇒ R[e]→R[e′]
⊕(v1, . . . ,vn)→ v if ⊕(v1, . . . ,vn) 7→ v defined

true?e2 : e3→ e2
false?e2 : e3→ e3
let x = v in e2→ e2{v/x}
{`i⇒ vi

i∈1..n}.` j→ v j where j ∈ 1..n
v :: {v1, . . . ,vn}→ {v1, . . . ,vn,v}
from x in {} let y = v accumulate e→ v
from x in {v1, . . . ,vn} let y = v accumulate e
→ from x in {v1, . . . ,vi−1,vi+1, . . . ,vn}

let y = e{vi/x}{v/y} accumulate e for some i ∈ 1..n
f (v1, . . . ,vn)→ e{v1/x1} . . .{vn/xn}

given function definition f (x1 : T1, . . . ,xn : Tn) : U{e}

Reduction Rules for Type-Test and Type-Assertion:
v in Any→ true

v in G→
{

true if v ∈ K(G)
false otherwise

v in {` j : Tj}→
{

v j in Tj if v = {`i⇒ vi
i∈1..n}∧ j ∈ 1..n

false otherwise

v in T∗→
{

v1 in T && . . . && vn in T if v = {v1, . . . ,vn}
false otherwise

v in (x : T where e)→ v in T && e{v/x}
v : T → (v in T)?v : stuck where stuck

4
= {}.`

Each primitive operator is a partial function represented by a
set of equations ⊕(v1, . . . ,vn) 7→ v0 where each vi is a value. The
equations for == take the form (v == v′) 7→ true for all v and v′ so
that v= v′, and (v== v′) 7→ false for all v, v′ with v 6= v′. Apart from
==, the other operators only act on scalar values. For example, the
equations for + are (i+ j) 7→ i+ j. The other operators are defined
by similar equations, and we omit the details.

The reduction rules for type-test expressions, e in T , first reduce
e to a value v and then proceed by case analysis on the structure of
the type T . In case T is a refinement type (x : T ′ where e′) then v is a
value of T if and only if v is a value of type T ′ and e′{v/x} reduces
to the value true. Nondeterminism arises from the second reduction
rule for accumulate expressions, which binds x to any member of
the collection {v1, . . . ,vn}. For example, consider the expression
pick e1 e2

4
= from x in {e1,e2} let y = null accumulate x; we have

both pick true false→∗ true and pick true false→∗ false.
Next, we use reduction to define an evaluation relation, which

relates an expression to its return values, or to Error, in case reduc-
tion gets stuck before reaching a value.

Stuckness, Results, and Evaluation: e ⇓ v

Let e be stuck if and only if e is not a value and ¬∃e′.e→ e′.
r ::= Error | Return(v) results of evaluation
e ⇓ Return(v) if and only if e→∗ v
e ⇓ Error if and only if there is e′ such that e→∗ e′ and e′ is stuck.

For example, we have that stuck ⇓ Error, where stuck = {}.` is
for some label `. Let closed expression e go wrong if and only if
e ⇓ Error. For instance, a failed type-assertion e : T goes wrong if e
is not an element of T . In the presence of type-test and refinement
types, expressions can go wrong in unusual ways. For example,
given the refinement type T = (x : Any where stuck), any type-test
v in T goes wrong. The main goal of our type system is to ensure
that no closed well-typed expression goes wrong.

Calling a function with arguments that do not have their de-
clared types does not necessarily go wrong. One can, however,
explicitly enforce that the declared types are respected by rewrit-
ing any function definition f (x1 : T1, . . . ,xn : Tn) : U{e} into f (x1 :
T1, . . . ,xn : Tn) : U{(x1 : T1&& . . .&&xn : Tn)?e : stuck}. Our type
system enforces that declared types are respected.

4 2010/4/19

2.3 Pure Expressions and Refinement Types
A typical problem in languages with refinement types (x : T where e)
is that the refinement expression e, even though well-typed, may
make no sense as a boolean condition. This could be because e
diverges or is nondeterministic. In Dminor calls to recursive func-
tions can cause divergence, and since collections are unordered,
iterating over them with accumulate is nondeterministic, as above.

To address this problem, we define the set of pure expressions,
the ones that may be used as refinements. The details, below, are
a little technical, but the gist is that pure expressions must be
terminating, have a unique result (which may be Error), and must
only call functions whose bodies are pure. The typing rule (Type
Refine) in §4 requires that for (x : T where e) to be well-formed, the
expression e must be pure and of type Logical (which guarantees
that e yields true or false without getting stuck). Checking for purity
is undecidable, but we present sufficient conditions for checking
purity algorithmically, in §5.3.

We assume that a subset of the function definitions are labeled-
pure; we intend that only these functions may be called from pure
expressions. Let an expression e be terminating if and only if
there exists no unbounded sequence e → e1 → e2 → Let a
closed expression e be pure if and only if (1) e is terminating,
(2) there exists a unique result r such that e ⇓ r, and (3) for every
subexpression f (e1, . . . ,en) of e, the function f is labeled-pure. Let
an arbitrary expression e be pure if and only if eσ is pure for all
closing substitutions σ that assign a value to each free variable in
e. Finally, we assume that the body of every labeled-pure function
is a pure expression.

LEMMA 1 (Reduction Preserves Purity). If e is pure and e → e′
then e′ is pure.

2.4 Derived Types
We end this section by exploring the expressiveness of the primitive
types introduced above. We show that the range of derivable types
is rather wide. We begin with some basic examples.

Encoding of Empty, Singleton, and Ok Types:
Empty

4
= (x : Any where false)

[e : T] 4=
{

(x : T where x == e) (x /∈ fv(e)) if e pure
T otherwise

[e] 4= [e : Any]

Ok(e) 4=
{

(x : Any where e) (x /∈ fv(e)) if e pure
Any otherwise

The type Empty has no elements; it is a subtype of all other
types. The singleton type, [e], contains only the value of e. For
example, the type [null] consists just of the null value. The actual
value of an type Ok(e) is arbitrary, the point is simply to record
that condition e holds [31], provided it is pure. When e is not pure,
Ok(e) is equivalent to Any. (We make use of Ok-types in the rule
(Exp Cond) in §4.)

Our calculus includes the operators of propositional logic on
boolean values. We lift these operators to act on types as follows.
Encoding of Union, Intersection, and Negation Types:
T |U 4

= (x : Any where (x in T) || (x in U)) x /∈ fv(T,U)
T & U 4

= (x : T where x in U)
!T 4

= (x : Any where !(x in T))

A value of the union type, T | U , is a value of either T or U .
A value of the intersection type, T & U , is a value of both T and
U . A value of the negation type, !T , is a value that is not a value
of T . We omit the details, but we could go in the other direction
too: Boolean operators are derivable from union, intersection, and
complement types.

Next, we define the types of simple values, collections, and
entities. We rely on the primitive types Integer, Text, and Logical,
the primitive type constructor T∗ for collections, and the fact that
every proper value is either a scalar, a collection, or an entity: so
the type of entities is the complement of the union type General |
Collection.
Encoding of Supertypes:
General

4
= Integer | Text | Logical | [null]

Collection
4
= Any∗

Entity
4
= !(General | Collection)

As in Forsythe [46], multiple-field entity types are examples of
intersection types. The primitive type of entities is unary: the type
{` : T} is the set of entities with a field ` whose value belongs to
T (and possibly other fields). We derive the general form of entity
types as an intersection type. One advantage of this approach is that
it immediately entails subtyping in width for entities.
Encoding of Multiple-Field Entity Types:
{`i : Ti; i∈1..n} 4= {`1 : T1}& . . . & {`n : Tn} (`i distinct,n > 0)

We can also derive closed entity types, which only contain
entities with a fixed set of labels and therefore do not validate
subtyping in width. For this we constrain the multiple-field entity
types above to additionally satisfy the eta law for records.

Encoding of Closed Entity Types:
closed{`i : Ti; i∈1..n} 4=
(x : {`i : Ti; i∈1..n} where x == {`i⇒ x.`i,

i∈1..n})

Given refinement types, closed entity types and type-test, we
can encode dependent pair types Σx : T.U where x is bound in U .
Encoding of Dependent Pair Types:
(Σx : T.U)

4
=

(p : closed{fst : T ; snd : Any;} where let x = p.fst in (p.snd in U))

A conditional type, if e then T else U , is a type equal to T if the
boolean e holds, and otherwise equal to U . We can use conditional
and dependent pair types to encode sum types (tagged unions).
(Throughout, wewrite for a fresh variable that occurs nowhere
else.)

Encoding of Conditional and Sum Types:

if e then T else U 4
=

{
(: T where e) | (: U where !e) if e pure
T |U otherwise

T +U 4
= Σx : Logical. (if x then T else U))

Recursive types can be encoded as boolean recursive functions
that dynamically test whether a given value has the required type.
Using recursive, sum and pair types we can encode any algebraic
datatype. For instance the type of lists of elements of type T can be
encoded as follows.
Encoding Recursive Types
µX .T 4

= (x : Any where fµX .T (x)),where fv(T) =∅
and fµX .T (x) is a new labeled pure function defined by
fµX .T (x : Any) : Logical {x in T{(x : Any where fµX .T (x))/X}}

We only use this encoding when the body of fµX .T is pure. We
believe that the contractiveness of µX .T is a sufficient condition for
this, but have not worked out the full details. Instead we can check
the purity of the body of fµX .T directly, using the algorithmic purity
check from §5.3. In a first step we can transform the function body
into an equivalent form that makes the termination argument more
simple. Consider the case of the list type ListT

4
= µX .((Σ : T.X)+

[null]). The recursive function we generate for testing this type is

5 2010/4/19

fListT
(x : Any) : Logical {x in ((Σ : T. (x : Any where fListT

(x)))+
[null])}, for which it is not easy to tell whether the recursive call
is to a smaller argument or not. If we rewrite this to the equivalent
function f ′ListT

below, then showing termination becomes routine
(x.snd.snd is structurally smaller than x).

Encoding Lists (transformed)
f ′ListT

(x : Any) : Logical {
x in{fst : Any}&& x.fst in Logical && x in{snd : Any}
&& x == {fst⇒ x.fst, snd⇒ x.snd}
&& ((x.snd in{fst : Any}&& x.snd.fst in T
&& x.snd in{snd : Any}&& fListT

(x.snd.snd)
&& x.snd == {fst⇒ x.snd.fst, snd⇒ x.snd.snd}&& z == true)
|| (x.snd == null && z == false))

}

Lists can be used to encode XML and JSON. Hence, Dminor
can be also be seen as a richly typed functional notation for ma-
nipulating data in XML format. In fact, DTDs can be encoded as
Dminor types. XML data can be loaded into Dminor even if there
is no prior schema. We map an XML element to an entity, with a
field to represent the name of the element, additional fields for any
attributes on the element, and a last field holding a list of all the
items in the body of the element.

Next, we show how to derive entity types for the common
situation where the type of one field depends on the value of
another. A self type, Self(s : T)U , is essentially the intersection of T
and U , except that the variable s is bound to the underlying value,
with scope U . The type T cannot mention s, and we need to rely on
s : T when checking well-formedness of U .
Encoding of Self Types:
Self(s : T)U 4

= (s : T where s in U)

With these constructions, we can define the following type Ts
to be the type of entities where the Y field is either Text or Logical,
depending on whether the X field is true or false. Here is a collection
of sample data of type Ts∗.
Ts
4
= Self(s: {X:Logical;}){Y:if s.X then Text else Integer;}
{ {X⇒ true, Y⇒"Hello"}, {X⇒ false, Y⇒42} } : Ts∗

We say that a type like Ts is self-aware to mean that the type
of one field depends on the value of another. We define below
a generalized form Ent{`i : Ti; i∈1..n} of self-aware entity types
by dividing the fields into those whose type depends on the self
variable (the fields indexed by J), and those that do not.
Encoding of Self-Aware Entity Types:
Ent{`i : Ti; i∈1..n} 4=

Self(self : {`i : Ti; i∈(1..n)−J}){` j : Tj; j∈J}
where J = { j ∈ 1..n | self ∈ fv(TJ)}

In this notation, our example type Ts above can be written as:
Ent {X:Logical; Y:if self.X then Text else Integer}

Entity types in M [2] are self-aware by default, and as we have
shown, we can reduce this feature to the primitives of Dminor.

To further illustrate the power of collection types combined
with refinements, we give types below that express universal and
existential quantifications over the items in a collection. Collection
{v1, . . . ,vn} : T∗ has type all(x : T)e if e{vi/x} for all i ∈ 1..n, and,
dually, it has type exists(x : T)e if e{vi/x} for some i ∈ 1..n.
Quantifying Over Collections:
all(x : T)e 4

= (x : T where e)∗
exists(x : T)e 4

= T∗& !(all(x : T)!e)

Curiously, a boolean test for whether a value is a member of a
collection need not be primitive in the calculus; we can make use

of the type exists(x : Any)(x == ei) of collections that contain the
item ei, as follows.
Collection Membership as a Type-Test:
Mem(ei,ec)

4
= (ec in exists(x : Any)(x == ei))

The boolean expression Mem(ei,ec) holds just when the value
of ei is a member of the collection denoted by ec. (This example
is to illustrate the expressiveness of the type system; collection
membership is definable more directly by using an accumulate
expression, as shown in §2.1.)

The following example consists of a collection of song titles
Songs, together with a default. The type includes the constraint that
the default song is a member of Songs.

Ent {Songs: Text∗; Default: Text where Mem(value,self.Songs)}

3. Logical Semantics
In this section we give a set-theoretic semantics for types and
pure expressions. Pure expressions are interpreted as first-order
terms, while types are interpreted as many-sorted first-order logic
(FOL) formulas that are interpreted in a fixed model, which we
formalize in Coq. We represent a Dminor subtyping problem as a
logical implication, supply our SMT solver with a set of axioms
that are true in our intended model, and ask the solver to prove the
implication. We use Coq to state our model and to derive soundness
of the axioms given to the SMT solver, but semantic subtyping calls
only the SMT solver, not Coq.

To represent the intended logical model formally sets are en-
coded as Coq types, and functions are encoded as Coq functions.
We start with inductive types Value and Result given as grammars
in §2 (for brevity we omit the corresponding Coq definitions; they
are given in Appendix B). We define a predicate Proper that is true
for results that are not Error, and a function out V that returns the
value inside if the result passed as argument is proper and null oth-
erwise (the functions in the model are total, so in cases like this we
return an arbitrary value).

Model: Proper Results:

Definition Proper (res : Result) :=
match res with | Error⇒ false | Return v⇒ true end.

Program Definition out V (res : Result) : Value :=
match res with | Error⇒G G Null | Return v⇒v end.

Our semantics uses many-sorted first-order logic (each sort is
interpreted by a Coq type of the same name). We write predicates as
functions to sort bool, with truth values true and false. We assume
a collection of sorted function symbols whose interpretation in the
intended model is given below. Let t range over FOL terms; we
write t : σ to mean that term t has sort σ ; if we omit the sort of
a bound variable, it may be assumed to be Value. Similarly, free
variables have sort Value by default. If F is a formula, let |= F
mean that F is true in our intended model.

Our semantics consists of three translations:

• For any pure expression e, we have the FOL term T[[e]] : Result.
• For any Dminor type T and FOL term t : Value, we have the

formula F[[T]](t), which is valid in the intended model if and
only if the value denoted by t is a member of the type T .
• For any Dminor type T and FOL term t : Value, we have the

formula W[[T]](t), which holds if and only if a type-test that the
value denoted by t is a member of the type T goes wrong.

These (mutually recursive) translations are defined below. We
rely on notations for let-binding within terms (let x = t in t ′), and
terms conditional on formulas (if F then t else t ′). These notations

6 2010/4/19

are supported directly by most SMT solvers. They can be translated
to pure first-order logic by introducing auxiliary definitions, but we
omit the details. Given these we can define the monadic bind for
propagating errors as a simple notation. Notice that |= (Bind x⇐
Return(v) in t) = t{v/x} and |= (Bind x⇐ Error in t) = Error.

Notation: Monadic Bind for Propagating Errors:
Bind x⇐ t1 in t2

4
=

(if ¬Proper(t1) then Error else let x = out V(t1) in t2)

We begin by describing the semantics of some core types and
expressions. The semantics of refinement types F[[(x : T where e)]](t)
relies on the result of evaluating e with x bound to t. Remember
however that operationally the type test v in (x : T where e) evalu-
ates to Error if e{v/x} evaluates to Error or to a value that is not
true or false. We use W[[(x : T where e)]](t) to record this fact, and
we enforce that T[[e in T]] returns Error if W[[T]](t) holds. Tracking
type tests going wrong is crucial for our full-abstraction result.

Semantics: Core Types and Expressions:
F[[Any]](t) = true
W[[Any]](t) = false

F[[(x : T where e)]](t) = F[[T]](t)∧ let x = t in (T[[e]] = Return(true))
W[[(x : T where e)]](t) = W[[T]](t)∨

let x = t in (¬(T[[e]] = Return(false)∨T[[e]] = Return(true)))

T[[x]] = Return(x)
T[[e1?e2 : e3]] = Bind x⇐ T[[e1]] in
(if x = true then T[[e2]] else (if x = false then T[[e3]] else Error))

T[[let x = e1 in e2]] = Bind x⇐ T[[e1]] in T[[e2]]
T[[e in T]] = Bind x⇐ T[[e]] in (if W[[T]](x) then Error else

Return((if F[[T]](x) then true else false)))
T[[e : T]] = Bind x⇐ T[[e in T]] in (if x = true then T[[e]] else Error)

Next, we specify the semantics of scalar types and values.

Model: Testers for Simple Values:

Definition In Logical v := (is G v) && is G Logical (out G v).
Definition In Integer v := (is G v) && is G Integer (out G v).
Definition In Text v := (is G v) && is G Text (out G v).

Semantics: Scalar Types, Simple Values and Operators:
F[[Integer]](t) = In Integer(t)
F[[Text]](t) = In Text(t)
F[[Logical]](t) = In Logical(t)

T[[c]] = Return(c)
W[[G]](t) = false

T[[⊕(e1, . . . ,en)]] = Bind x1⇐ T[[e1]] in . . .Bind xn⇐ T[[en]] in
(if F[[T1]](x1)∧·· ·∧F[[Tn]](xn)
then Return(O⊕(x1, . . . ,xn)) else Error)

where ⊕ : T1, . . . ,Tn→ T

The semantics of primitive operators on simple values is defined
uniformly. We state below the signature⊕ : T1, . . . ,Tn→ T for each
operator⊕. We also name a Coq function O⊕ to define the meaning
of each operator. Then we define the semantics T[[⊕(e1, . . . ,en)]]
of operator expressions. Each of the functions O⊕ is defined in
Appendix B.

Model: Operator Signatures (⊕ : T1, . . . ,Tn→ T) and Semantics (O⊕):
+ : Integer, Integer→ Integer O+ = O Add
− : Integer, Integer→ Integer O− = O Minus
× : Integer, Integer→ Integer O× = O Mult
< : Integer, Integer→ Logical O< = O LT
> : Integer, Integer→ Logical O> = O GT
== : Any,Any→ Logical O== = O EQ
! : Logical→ Logical O! = O Not

&& : Logical,Logical→ Logical O&& = O And
|| : Logical,Logical→ Logical O|| = O Or

LEMMA 2. Suppose ⊕ : T1, . . . ,Tn→ T .

(1) If |= F[[Ti]](vi) for each i ∈ 1..n then there is v such that
⊕(v1, . . . ,vn) 7→ v.

(2) If ⊕(v1, . . . ,vn) 7→ v then |= F[[Ti]](vi) for each i ∈ 1..n, and
|= F[[T]](v) and |= O⊕(v1, . . . ,vn) = v.

The following applies to each operator apart from equality ==.
As mentioned previously, equality is defined on any pair of closed
values.

LEMMA 3. If ⊕ : G1, . . . ,Gn → G then dom(⊕) = K(G1)× ·· · ×
K(Gn).

The value denoted by term t has an entity type {` : T} if it is
an entity that has field ` (v has field(`, t)), and this field contains a
value of type T (F[[T]](v dot(t, `))).

Model: Functions and Predicates on Entities:

Program Definition v has field (s : string) (v : Value) : bool :=
match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒ true | None⇒ false end.

Program Definition v dot (s : string) (v : Value) : Value :=
match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒v | None⇒v null (* arbitrary *) end.

Semantics: Entity Types and Expressions:
F[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧F[[T]](v dot(t, `))
W[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧W[[T]](v dot(t, `))
T[[{`i⇒ ei

i∈1..n}]] = Bind x1⇐ T[[e1]] in . . .Bind xn⇐ T[[en]] in
Return({`i⇒ xi

i∈1..n})
T[[e.`]] = Bind x⇐ T[[e]] in
(if is E(x)∧ v has field(`,x) then Return(v dot(x, `)) else Error)

The semantics of from x in e1 let y = e2 accumulate e3 relies
on a function res accumulate that folds over a collection by apply-
ing a function of sort ClosureRes2, and if no error occurs at any
step it returns a value, otherwise it returns Error. The model of
the sort ClosureRes2 is the set of functions from Value to Value to
Result. We write the lambda-abstraction fun x y→ T[[e3]] for such
a function. There are several standard techniques for represent-
ing lambda-abstractions in first-order logic [38]. Our implemen-
tation generates a fresh function symbol to represent each lambda-
abstraction occurring in its input as a closure of sort ClosureRes2.
Since the accumulate expression is pure it produces the same result
no matter what order is used when folding.

Model: Functions and Predicates on Collections:

Program Definition v mem (v cv : Value) : bool :=
mem eq rval dec v (out C cv).

Program Definition v add (v cv : Value) : Value :=
(C (insert in sorted vb v (out C cv))).

Definition ClosureRes2 := Value→Value→Result.
Program Fixpoint res acc fold (f : ClosureRes2) (vb : VBag) (a :

Result) {measure List.length vb} : Result :=
match vb with
| nil⇒a
| v :: vb’⇒match a with Return va⇒ res acc fold vb’ (f va v) |

Error⇒Error end
end.

Definition res accumulate (f : ClosureRes2) (cv v : Value) : Result :=
if is C cv then res acc fold f (out C cv) (Return v) else Error.

7 2010/4/19

The semantics of the collection type T∗ is the set of all val-
ues (denoted by t) that are collections (is C(t)) containing only el-
ements of type T (∀x.v mem(x, t)⇒ F[[T]](x)).
Semantics: Collection Types and Expressions:
F[[T∗]](t) = is C(t)∧ (∀x.v mem(x, t)⇒ F[[T]](x)) x /∈ fv(T, t)
W[[T∗]](t) = is C(t)∧ (∃x.v mem(x, t)∧W[[T]](x)) x /∈ fv(T, t)

T[[{v1, . . . ,vn}]] = Return({v1, . . . ,vn})
T[[e1 :: e2]] =

Bind x1⇐ T[[e1]] in Bind x2⇐ T[[e2]] in
(if is C(x2) then Return(v add(x1,x2)) else Error)

T[[from x in e1 let y = e2 accumulate e3]] =
Bind x1⇐ T[[e1]] in Bind x2⇐ T[[e2]] in
res accumulate((fun x y→ T[[e3]]),x1,x2)

In order to give a semantics to function applications we recall
that pure expressions may only call labeled-pure functions, and
that the body of a labeled-pure function is itself a pure expres-
sion. For each labeled-pure function definition f (x1 : T1, . . . ,xn :
Tn) : U{e}, the model of the symbol f is the total function f ∈
Valuen → Result such that f (v1, . . . ,vn) is the result r such that
e{v1/x1} . . .{vn/x1} ⇓ r. (We know that there is a unique r such
that e{v1/x1} . . .{vn/x1} ⇓ r because e is pure.) Hence, the follow-
ing holds by definition:

LEMMA 4. If f (x1 : T1, . . . ,xn : Tn) : U{e} and e is pure and
e{v1/x1} . . .{vn/xn} ⇓ r then |= f (v1, . . . ,vn) = r.

Semantics: Function Application:
T[[f (e1, . . . ,en)]] =

Bind x1⇐ T[[e1]] in . . .Bind xn⇐ T[[en]] in f (x1, . . . ,xn)

Our semantics has the following substitution property.

LEMMA 5.

(1) For all v and pure e,

|= T[[e]]{v/x}= T[[e{v/x}]]
(2) For all T and v and pure e′ and term t:

|= F[[T]](t){v/x}⇔ F[[T{v/x}]](t{v/x})

Proof: By simultaneous induction on the structure of e and T .2

The operational semantics preserves logical meaning:

PROPOSITION 1. For all closed pure expressions e and e′, if e→ e′
then |= T[[e]] = T[[e′]].

Moreover, we have a full abstraction result for this first-order
language: the equalities induced by the operational and logical
semantics of pure expressions coincide.

THEOREM 1 (Full Abstraction). For all closed pure expressions e
and e′, |= T[[e]] = T[[e′]] if and only if, for all r, e ⇓ r⇔ e′ ⇓ r.

Proofs of Proposition 1 and Theorem 1 are in Appendix A.
We calculate the semantics of some example types from §2.4.

Semantics of Derived Forms:
|= T[[e1 == e2]] = Bind x1⇐ T[[e1]] in Bind x2⇐ T[[e2]] in

Return(v logical(T[[e1]] = T[[e2]]))
|= F[[Empty]](t)⇔ false

|= F[[[e : T]]](t)⇔
{

(T[[e]] = Return(t))∧F[[T]](t) if e pure
F[[T]](t) otherwise

|= F[[Ok(e)]](t)⇔
{

(T[[e]] = Return(true)) if e pure
true otherwise

|= ¬W[[T]](t)∧¬W[[U]](t) =⇒
(F[[T |U]](t)⇔ (F[[T]](t)∨F[[U]](t)))

|= ¬W[[U]](t) =⇒ (F[[T & U]](t)⇔ (F[[T]](t)∧F[[U]](t)))
|= ¬W[[T]](t) =⇒ (F[[!T]](t)⇔¬F[[T]](t))
|=
∧

i∈1..n¬W[[Ti]](v dot(t, `i)) =⇒ (F[[{`i : Ti; i∈1..n}]](t)⇔
is E(t)∧

∧
i∈1..n(v has field(`i, t)∧F[[Ti]](v dot(t, `i))))

|= Proper(T[[e]])∧ In Logical(out V(T[[e]]))∧
¬W[[(x : T where e)]](t)∧¬W[[(x : U where e)]](t) =⇒

F[[if e then T else U]](t)⇔ (F[[T]](t)∧ (T[[e]] = Return(true)))∨
(F[[U]](t)∧ (T[[e]] = Return(false)))

if e pure

F[[T]](t)∨F[[U]](t) otherwise
|= ¬W[[U]](t) =⇒

(F[[Self(s : T)U]](t)⇔ F[[T]](t)∧ let s = t in F[[U]](t))

4. Declarative Type System
In this section, we give a non-algorithmic type assignment relation,
and prove preservation and progress properties relating it to the
operational semantics. In the next section, we present algorithmic
rules—the basis of our type-checker—for proving type assignment.

Each judgment of the type system is with respect to a typing
environment E, of the form x1 : T1, . . . ,xn : Tn, which assigns a type
to each variable in scope. We write ∅ for the empty environment,
dom(E) to denote the set of variables defined by a typing environ-
ment E, and F[[E]] for the logical interpretation of E.

Environments and their Logical Semantics:
E ::= x1 : T1, . . . ,xn : Tn type environments
dom(x1 : T1, . . . ,xn : Tn) = {x1, . . . ,xn}
F[[x1 : T1, . . . ,xn : Tn]]

4
= F[[T1]](x1)∧·· ·∧F[[Tn]](xn)

Environments and Judgments of the Declarative Type System:
E ` � environment E is well-formed
E ` T in E, type T is well-formed
E ` T <: T ′ in E, type T is a subtype of T ′
E ` e : T in E, expression e has type T

Global Assumptions:
For each function definition f (x1 : T1, . . . ,xn : Tn) : U{e f }
we assume that x1 : T1, . . . ,xn : Tn ` e f : U .

Rules of Well-Formed Environments and Types: E ` �, E ` T

(Env Empty)

∅ ` �

(Env Var)
E ` T x /∈ dom(E)

E,x : T ` �

(Type Any)
E ` �

E ` Any

(Type Scalar)
E ` �
E ` G

(Type Collection)
E ` T

E ` T∗

(Type Entity)
E ` T

E ` {` : T}

(Type Refine)
E,x : T ` e : Logical e pure

E ` (x : T where e)

The subtype relation is defined as logical implication between
the logical semantics of well-formed types.
Rule of Semantic Subtyping:
(Subtype)
E ` T E ` T ′ x /∈ dom(E)
|= (F[[E]]∧F[[T]](x)) =⇒ F[[T ′]](x)

E ` T <: T ′

Rules of Type Assignment: E ` e : T

(Exp Singular Subsum)
E ` e : T E ` [e : T]<: T ′

E ` e : T ′

(Exp Var)
E ` � (x : T) ∈ E

E ` x : T

(Exp Const)
E ` �

E ` c : Any

8 2010/4/19

(Exp Operator)
⊕ : T1, . . . ,Tn→ T
E ` ei : Ti ∀i ∈ 1..n
E ` ⊕(e1, . . . ,en) : T

(Exp Cond)
E ` e1 : Logical
E, : Ok(e1) ` e2 : T
E, : Ok(!e1) ` e3 : T

E ` (e1?e2 : e3) : T

(Exp Let)
E ` e1 : T
E,x : T ` e2 : U x /∈ fv(U)

E ` let x = e1 in e2 : U

(Exp Test)
E ` e : Any
E ` T

E ` e in T : Logical

(Exp Assert)
E ` e : T

E ` (e : T) : T

(Exp Entity)
E ` ei : Ti ∀i ∈ 1..n

E ` {`i⇒ ei
i∈1..n} : {`i : Ti

i∈1..n}

(Exp Dot)
E ` e : {` : T}

E ` e.` : T

(Exp Coll)
E ` vi : T ∀i ∈ 1..n
E ` {v1, . . . ,vn} : T∗

(Exp Add)
E ` e1 : T E ` e2 : T∗

E ` (e1 :: e2) : T∗
(Exp Acc)
E ` e1 : T∗ E ` e2 : U
E,x : T,y : U ` e3 : U
x,y /∈ fv(U)

E ` from x in e1
let y = e2
accumulate e3

: U

(Exp App)
given f (x1 : T1, . . . ,xn : Tn) : U{e f }
{x1, . . . ,xn}∩ dom(E) =∅
σi = {e1/x1} . . .{ei/xi} ∀i ∈ 0..n
ei is pure E ` ei : Tiσi−1 ∀i ∈ 1..n

E ` f (e1, . . .en) : Uσn

In the rule (Exp App), we require that each ei in a dependent
function application f (e1, . . .en) is pure. This allows us to substi-
tute these expressions into U . To form, say, f (e) where e is impure,
we can avoid this restriction by writing let x = e in f (x) instead.

The rule (Exp Cond) records the appropriate test expression
in the environment, when typing the branches. Recall that the
judgment E, : Ok(e1)` e2 : T is shorthand for E,x : Ok(e1)` e2 : T
where x 6∈ fv(E,e1,e2,T), and the Ok-type Ok(e) is defined as
(Any where e) if e is pure, and as Any otherwise (see §2.4).

The following soundness property relates type assignment to
the logical semantics of types and expressions. Point (1) is that the
logical value of a well-typed expression satisfies the interpretation
of its type as a predicate. Point (2) is that evaluating a type-test for
a well-formed type cannot go wrong.

THEOREM 2 (Logical Soundness).

(1) If e is pure and E ` e : T then:
• |= F[[E]] =⇒ Proper(T[[e]])
• |= F[[E]] =⇒ F[[T]](out V(T[[e]]))

(2) If E `U then |= F[[E]] =⇒ ∀y.¬W[[U]](y), for y /∈ fv(U).

Proof: By mutual induction on the derivation of judgments. 2

We have the following basic properties.

LEMMA 6 (Implied Judgments).

(1) If E ` T then E ` � and fv(T)⊆ dom(E).
(2) If E ` T <: T ′ then E ` T and E ` T ′.
(3) If E ` e : T then E ` T and fv(e)⊆ dom(E).

Proof: By simultaneous induction on the derivations of each
judgment. 2

LEMMA 7 (All Values Typable). For any v we have E ` v : Any.

Proof: By induction on the structure of v.

LEMMA 8 (Weakening). Suppose E,x : T ′ ` � and x /∈ dom(E ′).

(1) If E,E ′ ` � then E,x : T ′,E ′ ` �.
(2) If E,E ′ ` T then E,x : T ′,E ′ ` T .

(3) If E,E ′ ` S <: T then E,x : T ′,E ′ ` S <: T .
(4) If E,E ′ ` e : T then E,x : T ′,E ′ ` e : T .

Proof: The proof is by simultaneous induction on the derivation
of the judgments E,E ′ ` T and E,E ′ ` S <: T and E,E ′ ` e : T . 2

LEMMA 9 (Bound Weakening). Suppose E ` T <: T ′.

(1) If E,x : T ′,E ′ ` � then E,x : T,E ′ ` �.
(2) If E,x : T ′,E ′ ` S then E,x : T,E ′ ` S.
(3) If E,x : T ′,E ′ ` S <: S′ then E,x : T,E ′ ` S <: S′.
(4) If E,x : T ′,E ′ ` e : S then E,x : T,E ′ ` e : S.

Proof: By induction on derivations. 2

LEMMA 10.

(1) For all e′, x, pure e so that E ` e : V we have that
|= F[[E]] =⇒ T[[e′{out V(T[[e]])/x}]] = T[[e′{e/x}]];

(2) For all T , t, pure e so that E ` e : V we have that
|= F[[E]] =⇒ F[[T{out V(T[[e]])/x}]](t)⇔ F[[T{e/x}]](t).

Proof By mutual induction on the structure of e′ and T .

LEMMA 11. For all E, E ′, pure e, and x, if E ` e : T then |=
F[[E]] =⇒ F[[E ′]]{out V(T[[e]])/x}⇔ F[[E ′{e/x}]].

Proof: By induction on the structure of E ′, with appeal to
Lemma 10. 2

LEMMA 12 (Lookup).
If E ` � and (x : T) ∈ E and (x : T ′) ∈ E then T = T ′.

Proof: If E ` � all the entries in E are for distinct variables. 2

LEMMA 13 (Substitution). Suppose E ` e′ : T ′ and e′ pure.

(1) If E,x : T ′,E ′ ` � then E,E ′{e′/x} ` �.
(2) If E,x : T ′,E ′ ` T then E,E ′{e′/x} ` T{e′/x}.
(3) If E,x : T ′,E ′ ` S <: T then E,E ′{e′/x} ` S{e′/x}<: T{e′/x}.
(4) If E,x : T ′,E ′ ` e : T then E,E ′{e′/x} ` e{e′/x} : T{e′/x}.

Proof: The proof is by simultaneous induction on the derivation
of the judgments.

(1) The case for (Env Empty) is immediate. The case for (Env Var)
relies on induction with point (2).

(2) The cases for well-formed types are similar induction steps.
(3) We have E,x : T ′,E ′ ` S <: T . By (Subtype), we have E,x :

T ′,E ′ ` S and E,x : T ′,E ′ ` T and

|= (F[[E,x : T ′,E ′]]∧F[[S]](y)) =⇒ F[[T]](y)

for some y /∈ dom(E,x : T ′,E ′).
Since y is fresh, we may assume y /∈ fv(e′).
By induction with point (2), we have E,E ′{e′/x} ` S{e′/x} and
E,E ′{e′/x} ` T{e′/x}.
Expanding definitions, we have:

|= (F[[E]]∧F[[T ′]](x)∧F[[E ′]]∧F[[S]](y)) =⇒ F[[T]](y)

Since x /∈ fv(E,T ′,y), by substituting out V(T[[e′]]) for x, we
obtain:

|= (F[[E]]∧F[[T ′]](out V(T[[e′]]))∧F[[E ′]]{out V(T[[e′]])/x}∧
F[[S]](y){out V(T[[e′]])/x}) =⇒ F[[T]](y){out V(T[[e′]])/x}

By Lemma 5, Lemma 10, and Lemma 11, we have:

|= (F[[E]]∧F[[T ′]](out V(T[[e′]]))∧F[[E ′{e′/x}]]∧
F[[S{e′/x}]](y)) =⇒ F[[T{e′/x}]](y)

By Theorem 2, E ` e′ : T ′ and e′ pure imply:

|= F[[E]]⇒ F[[T ′]](out V(T[[e′]]))

9 2010/4/19

Combining the previous two displayed formulas, we obtain:

|= (F[[E]]∧F[[E ′{e′/x}]]∧
F[[S{e′/x}]](y)) =⇒ F[[T{e′/x}]](y)

To summarize, for some y /∈ dom(E,E ′{e′/x}) we have judg-
ments E,E ′{e′/x} ` S{e′/x} and E,E ′{e′/x} ` T{e′/x} and

|= (F[[E,E ′{e′/x}]]∧F[[S{e′/x}]](y)) =⇒ F[[T{e′/x}]](y)
Hence, by (Subtype), we are done.

(4) In case (Exp Var), we have E,x : T ′,E ′ ` x : T derived from
E,x : T ′,E ′ ` � with (x : T) ∈ (E,x : T ′,E ′).
By induction with point (2), E,E ′{e′/x} ` �.
By Lemma 12, T = T ′.
By assumption, then, E ` e′ : T .
By Lemma 8, this and E,E ′{e′/x} ` � imply E,E ′{e′/x} ` e′ :
T , as required.
The other cases follow by similar induction steps. 2

The rule (Exp Singular Subsum), depends on the relation E `
[e : T] <: T ′, which we refer to as singular subtyping. We il-
lustrate (Exp Singular Subsum) and singular subtyping with re-
gard to (Exp Const). For simplicity, (Exp Const) assigns E ` c :
Any for any constant c when E ` �. If c ∈ K(G) for some G ∈
{Integer,Text,Logical}, we can derive that E ` c : G by observing
the singular subtyping E ` [c : Any]<: G, and hence applying (Exp
Singular Subsum). For example, to see that c ∈ K(Integer) implies
that E ` [c : Any] <: Integer note that |= F[[[c : Any]]](x)⇔ x = c
and hence that |= F[[[c : Any]]](x) =⇒ In Integer(c).

The following lemma characterizes singular subtyping in terms
of the logical semantics.

LEMMA 14 (Singular Subtyping).
Suppose E ` e : T and E ` T ′ and x /∈ dom(E).

(1) If e is pure then:
E ` [e : T]<: T ′ iff |= F[[E]]∧F[[T]](out V(T[[e]]))

=⇒ F[[T ′]](out V(T[[e]]))
(2) If e is not pure then:

E ` [e : T]<: T ′ iff |= F[[E]]∧F[[T]](x) =⇒ F[[T ′]](x)

Proof: By expanding definitions. 2

The rule (Exp Singular Subsum) can be seen as a combination
of the following conventional rules of subsumption and singleton
introduction.
(Exp Subsum)
E ` e : T E ` T <: T ′

E ` e : T ′

(Exp Singleton)
E ` e : T

E ` e : [e : T]

Both these rules are derivable from (Exp Singular Subsum). In
fact, we can go in the other direction too so that the type assignment
relation would be unchanged were we to replace (Exp Singular
Subsum) with (Exp Subsum) and (Exp Singleton).

Still, the given presentation is simpler to work with because
(Exp Singular Subsum) is the only rule not determined by the struc-
ture of the expression. By the following lemma, singular subtyping
is transitive, and hence we have that any derivation of a type as-
signment can be seen as one instance of a structural rule plus one
instance of (Exp Singular Subsum). This observation is useful, for
example, in proving type preservation, Theorem 3.

LEMMA 15 (Transitivity of Singular Subtyping).
If E ` [e : T]<: T ′ and E ` [e : T ′]<: T ′′ then E ` [e : T]<: T ′′.

Proof: Sketch: an easy application of Lemma 14. 2

Before we proceed to the preservation theorem, we first need to
prove some inversion lemmas for entities and collections.

LEMMA 16 (Entity inversion).

(1) If E ` {`i⇒ vi
i∈1..n} : {`i : Ti

i∈1..n} then E ` vi : Ti, for i∈ 1..n.
(2) If E ` {`i⇒ vi

i∈1..n} : Any then E ` vi : Any, for i ∈ 1..n.

LEMMA 17 (Collection inversion).

(1) If E ` {v1, . . . ,vn} : T∗ then E ` vi : T , for i ∈ 1..n.
(2) If E ` {v1, . . . ,vn} : Any then E ` vi : Any, for i ∈ 1..n.

We also need the following lemma, which captures the intuition
that if we know that a value inhabits a type, then assuming that it
does not leads to a degenerate subtype relation.

LEMMA 18. If E ` v : T then E, : Ok(!v in T) `U <: V , for any
types U,V such that E `U and E `V .

THEOREM 3 (Preservation).
If E ` e : T and e→ e′ then E ` e′ : T .

Proof: By induction on the derivation of E ` e : T .
2

THEOREM 4 (Progress).
If ∅ ` e : T and e is not a value then ∃e′.e→ e′.

Proof: By induction on the derivation of ∅ ` e : T . 2

By a standard argument, we show that no well-typed closed
expression e goes wrong. For a contradiction, suppose that ∅` e : T
for some T and that e goes wrong, that is, e ⇓ Error. We have that
e →∗ e′ and e′ is stuck. By Theorem 3, ∅ ` e : T and e →∗ e′
imply ∅ ` e′ : T . By Theorem 4, this implies e′ cannot be stuck,
a contradiction.

5. Algorithmic Aspects
5.1 Optimizing the Logical Semantics
Our logical semantics propagates error values so as to match the
stuck expressions of our operational semantics. Tracking errors
is important, but observe that when we use our logical semantics
during semantic subtyping, we only ever ask whether well-formed
types are related. Every expression occurring in a well-formed type
is itself well-typed, and so, by Theorem 2 , its logical semantics is
a proper value, not Error.

This suggests that during type-checking we can optimize the
logical semantics given the assumption that expressions are indeed
well-typed. In particular, we can apply the following lemma to
transform monadic error-checking lets into ordinary lets.

LEMMA 19. If e pure and E ` e : T then |= F[[E]] =⇒ (Bind x⇐
T[[e]] in t) = (let x = out V(T[[e]]) in t).

Proof: By definition of notation, Bind x⇐ T[[e]] in t is the term
(if ¬Proper(T[[e]]) then Error else let x = out V(T[[e]]) in t). By
Theorem 2, |= F[[E]] =⇒ Proper(T[[e]]). Hence the result. 2

The following tables present the optimized rules (as used in our
checker), and the following theorem states their correctness.

Optimized Semantics of Types: F′[[T]](t)
F′[[Any]](t) = true
F′[[Integer]](t) = In Integer(t)
F′[[Text]](t) = In Text(t)
F′[[Logical]](t) = In Logical(t)
F′[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧F′[[T]](v dot(t, `))
F′[[T∗]](t) = is C(t)∧ (∀x.v mem(x, t)⇒ F′[[T]](x)) x /∈ fv(T, t)

F′[[(x : T where e)]](t) =
F′[[T]](t)∧ let x = t in T′[[e]] = true x /∈ fv(T, t)

10 2010/4/19

Optimized Semantics of Pure Typed Expressions: T′[[e]]
T′[[x]] = x
T′[[c]] = c
T′[[⊕(e1, . . . ,en)]] = O⊕(T′[[e1]], . . . ,T′[[en]])
T′[[e1?e2 : e3]] = (if x = true then T′[[e2]] else T′[[e3]])
T′[[let x = e1 in e2]] = let x = T′[[e1]] in T′[[e2]]
T′[[e in T]] = (if F′[[T]](T′[[e]]) then true else false)
T′[[e : T]] = T′[[e]]
T′[[{`i⇒ ei

i∈1..n}]] = {`i⇒ T′[[ei]]
i∈1..n}

T′[[e.`]] = v dot(T′[[e]], `)
T′[[{v1, . . . ,vn}]] = {v1, . . . ,vn}
T′[[e1 :: e2]] = v add(T′[[e1]],T′[[e2]])
T′[[from x in e1 let y = e2 accumulate e3]] =

v accumulate((fun x y→ T′[[e3]]),T′[[e1]],T′[[e2]])

(In this version we omit the definition of the function v accumulate,
which is a variant of res accumulate that works with values rather
than results.)

THEOREM 5 (Soundness of Optimized Semantics).

(1) If E ` T and x /∈ dom(E) then:
|= (F[[E]] =⇒ (F[[T]](x)⇔ F′[[T]](x)).

(2) If E ` e : T then:
|= F[[E]] =⇒ (T[[e]] = Return(T′[[e]])).

Proof: The proof is by simultaneous induction on the derivations
of E ` T and E ` e : T , with appeal to Theorem 2 and Lemma 19.2

5.2 Bidirectional Typing Rules
The Dminor type system is implemented as a bidirectional type
system [42]. The key concept of bidirectional type systems is that
there are two typing relations, one for type checking, and one for
type synthesis. The chief characteristic of these relations is that
they are local in the sense that type information is passed between
adjacent nodes in the syntax tree without the use of long-distance
constraints such as unification variables (as used in, e.g., ML).

Judgments of the Algorithmic Type System:
E ` e→ T in E, expression e synthesizes type T
E ` e← T in E, expression e checks against type T

Bidirectional type systems are simple to implement, and ex-
pressive; for example, the type system for C] can be defined as a
bidirectional type system [13], and several dependently-typed lan-
guages have bidirectional type systems [36, 34].

The algorithmic nature of bidirectional type systems makes
them predictable to programmers. This is an important feature, not
least because it makes type error reporting easy—a disadvantage of
languages that use ML-style inference [35].

Rules of Type Synthesis: E ` e→ T

(Synth Var)
E ` � (x : T) ∈ E

E ` x→ [x : T]

(Synth Const)
E ` �

E ` c→ [c]

(Synth Operator)
E ` ei← Ti ∀i ∈ 1..n ⊕ : T1, . . . ,Tn→ T

E ` ⊕(e1, . . . ,en)→ [⊕(e1, . . . ,en) : T]

(Synth Cond)
E ` e1← Logical E, : Ok(e1) ` e2→ T2 E, : Ok(!e1) ` e3→ T3

E ` (e1?e2 : e3)→ (if e1 then T2 else T3)

(Synth Let)
E ` e1→ T1 E,x : T1 ` e2→ T2 E ` T2{e1/x}

E ` let x = e1 in e2→ T2{e1/x}

(Synth Test)
E ` e← Any E ` T

E ` e in T → Logical

(Synth Assert)
E ` e← T

E ` (e : T)→ T

(Synth Entity)
E ` e1→ T1 · · · E ` en→ Tn

E ` {`i⇒ ei
i∈1..n}→ {`1 : T1}& · · ·& {`n : Tn}

(Synth Dot)
E ` e→ T norm(T) = D D.`;U

E ` e.`→U

(Synth Zero)
E ` �

E ` {}→ [{} : Empty∗]

(Synth Coll)
E ` vi→ Ti ∀i ∈ 1..n n > 0

E ` {vi, . . . ,vn}→ (T1 | . . . | Tn)∗
(Synth Add)
E ` e1→ T1 E ` e2→ T2 norm(T2) = D2 D2.Items ;U2

E ` e1 :: e2→ ([e1 : T1] |U2)∗
(Synth Acc)
E ` e1→ T1 norm(T1) = D1 D1.Items ;U1
E ` e2→ T2 E,x : U1,y : T2 ` e3← T2

E ` from x in e1 let y = e2 accumulate e3→ T2

(Synth App)
given f (x1 : T1, . . . ,xn : Tn) : U{e f }
σi = {e1/x1} . . .{ei/xi} ∀i ∈ 0..n
ei is pure E ` ei← (Tiσi−1) ∀i ∈ 1..n

E ` f (e1, . . .en)→Uσn

The rules (Synth Var), and (Synth Const) yield singleton types
for all variables and constants. The (Synth Cond) rule synthesizes
a type for the conditional expression e1?e2 : e3. The overall syn-
thesized type is the union of the two types synthesized for the
branches, although we record the test expression in the type (if it
is pure). This allows for more precise typing. Rule (Synth Entity)
uses intersection types to encode record types.

In a number of the type synthesis rules we need to inspect
components of intermediate types. In simple type systems this is
straightforward as we can rely on the syntactic structure of types,
but for rich type systems this is not possible. In existing implemen-
tations of dependently-typed languages, either the programmer is
required to insert casts to force the type into the appropriate syn-
tactic shape [53], or types are inspected after being evaluated to
some form of (weak-head) normal form [6]. Unfortunately, nei-
ther approach is acceptable in Dminor: the former forces too many
casts on the programmer, and the latter is not feasible because re-
finements often refer to potentially very large data sets. One prag-
matic possibility is to attempt type normalization but place some
ad hoc bound on evaluation (e.g. SAGE takes this approach [34]).
As an alternative, we define a disjunctive normal form (DNF) for
types, along with a normalization function, norm, for translating
types into DNF, and procedures for extracting type information
from DNF types. In practice, this approach works well.

Normal Types (DNF) and Normalization:
D ::= R1 | . . . | Rn normal disjunction (Empty if n = 0)
R ::= x : C where e normal refined conjunction
C ::= f1A1 & . . . & fnAn normal conjunction (Any if n = 0)
f ::= ε | ! optional negation
A ::= G | T∗ | {` : T} atomic type

norm(Any)
4
= x : Any where true

norm(G)
4
= x : G where true

norm(T∗) 4= x : T∗ where true
norm({` : T}) 4= x : {` : T} where true

11 2010/4/19

norm(x : T where e) 4=
|ni=1 ConjDD(xi : Ci where ei,normr(x : Ci where e))

where |ni=1 (xi : Ci where ei) = norm(T)

normr(x : C where x in T) 4= norm(C & T) where x 6∈ fv(T)
normr(x : C where e1 || e2)

4
=

normr(x : C where e1) | normr(x : C where e2)
normr(x : C where e1 && e2)

4
=

ConjDD(normr(x : C where e1),normr(x : C where e2))
normr(x : C where !e) 4= NegD(normr(x : C where e))
normr(x : C where e) 4= (x : C where e) otherwise

ConjDD((R1 | . . . | Rn),D)
4
= ConjRD(R1,D) | . . . | ConjRD(Rn,D)

ConjRD(R,(R1 | . . . | Rn))
4
= ConjRR(R,R1) | . . . | ConjRR(R,Rn)

ConjRR(x1 : C1 where e1,x2 : C2 where e3)
4
=

y : C1 & C2 where e1{y/x1}&& e2{y/x2}
where y 6∈ fv(C1,C2,e1,e2)

NegD(R1 | . . . | Rn)
4
= ConjDD(NegR(R1), . . . ,NegR(Rn))

NegR(x : C where e) 4= NegC(C) | x : C where !(e)
NegC(f1C1 & . . . & fnCn)

4
= ¬(f1)C1 | . . . | ¬(fn)Cn

¬(ε) 4= ! ¬(!) 4= ε

Normalization is defined using two functions: norm which normal-
izes a type, and normr which normalizes a refinement type based
on the structure of the refinement expression. We make use of stan-
dard helper functions to build DNF types, principally the function,
ConjDD, that returns in DNF the conjunction of two disjunction
types.

We now define partial functions to extract field and item types
from normalized entity and collection types, respectively.

Extraction of Field Type: D.`;U

(Field Disj)
Ri.`;Ui ∀i ∈ 1..n

(R1 | . . . | Rn).`; (U1 | . . . |Un)

(Field Refine)
C.`;U

(x : C where e).`;U

(Field Conj)
S = {Ui | Ai.`;Ui∧ fi = ε ∧ i ∈ 1..n} 6=∅
S! = {Ui | Ai.`;Ui∧ fi = !∧ i ∈ 1..n}=∅

(f1A1 & . . . & fnAn).`; (& S)

(Field Atom)

{` : T}.`; T

Extraction of Item Type: D.Items;U

(Items Disj)
Ri.Items ;Ui ∀i ∈ 1..n

(R1 | . . . | Rn).Items ; (U1 | . . . |Un)

(Items Refine)
C.Items ;U

(x : C where e).Items ;U

(Items Conj)
S = {Ui | Ai.Items ;Ui∧ fi = ε ∧ i ∈ 1..n} 6=∅
S! = {Ui | Ai.Items ;Ui∧ fi = !∧ i ∈ 1..n}=∅

(f1A1 & . . . & fnAn).Items ; (& S)

(Items Atom)

(T∗).Items ; T

Type checking expressions: E ` e← T

(Swap)
E ` e→ T E ` [e : T]<: T ′

E ` e← T ′

(Check Cond)
E ` e1← Logical
E, : Ok(e1) ` e2← T
E, : Ok(!e1) ` e3← T

E ` e1?e2 : e3← T

(Check Let)
E ` e1→ T E,x : T ` e2←U x 6∈ fv(U)

E ` let x = e1 in e2←U

(Check Dot)
E ` e←{` : T}

E ` e.`← T

Typically (e.g. SAGE [34]), the type checking relation for a
bidirectional type system consists only of the following rule.

E ` e→ T E ` T <: T ′

E ` e← T ′

However, we have found in practice that this rule is too strict. In
particular, it entails a subtype test for every occurrence of type
checking. In the cases where the expression is a conditional or a
let-expression, it is more efficient to pass the type through to the
subexpressions, as shown in the (Check Cond) and (Check Let)
rules. Similarly, we can pass through an entity type in the (Check
Dot) rule.

We also observe that the rule given in the previous paragraph
is rather strong, as it requires an inclusion between the types T
and T ′. The (Swap) rule used in Dminor tests only for singular
subsumption.

LEMMA 20 (Synthesis Checkable). If E ` e→ T then E ` e← T .

Proof: By (Swap) and reflexivity of singular subtyping. 2

THEOREM 6 (Soundness of Bidirectional Typing Rules).

(1) If E ` e→ T then E ` e : T .
(2) If E ` e← T then E ` e : T .

Proof: By simultaneous induction over the derivations of E `
e→ T and E ` e← T .

2

5.3 Algorithmic Purity Check
In Dminor calls to recursive functions can cause divergence so we
use a syntactic termination condition on the functions that are used
inside refinements: the recursive calls can only be on syntactically
smaller arguments. Also, since collections are unordered, iterating
over them with accumulate is nondeterministic, and can in general
produce more than one result, therefore we need to impose condi-
tions on the accumulate expressions occurring inside refinements
which guarantee that the order in which the elements are processed
is irrelevant for the final result.

An expression e is algorithmically pure if and only if these
conditions hold:

(1) if e is a function application f (e1, . . . ,en) then f is labeled-
pure, and and only calls f (directly or indirectly) on structurally
smaller arguments;

(2) if e is of the form from x in e1 let y = e2 accumulate e3 then

(a) |= T[[e3{x1/x}{x2/y}]] = T[[e3{x2/x}{x1/y}]], and

(b) |= T[[let z = e3{x1/x}{x2/y} in e3{z/x}{x3/y}]]
= T[[let z = e3{x2/x}{x3/y} in e3{x1/x}{z/y}]]

(where the variables x1, x2, x3 and z do not appear free in e3);

(3) all the proper subexpressions of e are algorithmically pure.

Condition (1) enforces termination of recursive functions, while
condition (2) only allows accumulate expressions in a pure expres-
sion if their body is commutative (2a) and associative (2b), which is
a sufficient condition for uniqueness of evaluation results of syntac-
tically pure expressions. For simplicity we phrased commutativity
and associativity in terms of the error-tracking logical semantics
from §3. It is possible, albeit more complicated, to phrase them in
terms of the optimized semantics from §5.1 (we work this out in
detail in Appendix ??). Finally, we assume that the body of every
labeled-pure function is an algorithmically pure expression.

THEOREM 7. If e is algorithmically pure then e is pure.

Proof: Immediate from Lemmas 35 and 36.

12 2010/4/19

6. Exploiting SMT Models
SMT solvers such as Z3 can produce a potential model in case they
fail to prove the validity of a proof obligation (that is, when they
show the satisfiability of its negation, or when they give up). In
our case such models can be automatically converted into assign-
ments mapping program variables to Dminor values. Because of
the inherent incompleteness of the SMT solver3 and of the axiom-
atization we feed to it, the obtained assignment is not guaranteed
to be correct. However, given a way to validate assignments, one
can use the correct ones to provide very precise counterexamples
when type-checking fails, and to find inhabitants of types statically
or dynamically, in a way that amounts to a new style of constraint
logic programming.

6.1 Precise Counterexamples to Type-checking
The type-checking algorithm from §5.2 crucially relies on subtyp-
ing, as in the rule (Swap), and our semantic subtyping relation
E ` T <: T ′ produces proof obligations of the form

|= (F[[E]]∧F[[T]](x)) =⇒ F[[T ′]](x)

for some fresh variable x. If the SMT solver fails to prove such an
obligation, it produces a potential model from which we can extract
an assignment σ mapping x and all variables in E to Dminor values.
To verify that σ is a valid counterexample, we check the following
three conditions:

(1) Each of the expressions (yσ in Uσ), for all (y : U)∈ E, and also
the expression (xσ in (T &!T ′)σ) are pure;

(2) (yσ in Uσ)→∗ true, for all (y : U) ∈ E;

(3) (xσ in (T &!T ′)σ)→∗ true.

Condition (1) enforces that we only evaluate pure expressions
therefore ensuring termination and confluence of the reduction.
Condition (2) enforces that the values for all variables in E have
their corresponding (possibly dependent) types. Condition (3)
checks whether the value assigned to x by σ is an element of T
but not an element of T ′. If these three checks succeed, σ is a valid
counterexample to typing that we display to the user.

LEMMA 21. If the three checks above succeed then E 6` T <: T ′.

Proof: It suffices to show that 6|=(F[[E]]∧F[[T]](x)) =⇒ F[[T ′]](x).
Since our intended model is not inconsistent it suffices to show that:

|=∃x,y1, . . . ,yn,F[[U1]](y1)∧ . . .F[[Un]](yn)∧F[[T]](x)∧¬F[[T ′]](x).

From conditions (1) and (2) by Proposition 1 it follows that |=
T[[yiσ in Uiσ]] = true for all i ∈ 1..n. After unfolding the defini-
tions this implies that |= F[[Uiσ]](yiσ) for all i ∈ 1..n. In a sim-
ilar way, from conditions (1) and (3) by Proposition 1 we have
that |= F[[(T &!T ′)σ]](xσ), or equivalently that |= F[[T σ]](xσ)∧
¬F[[T ′σ]](xσ). Instantiating the existential variables with the val-
ues given by σ completes the proof.

Since the type-checker is itself over-approximating, there is no
guarantee that an expression e that fails to type-check is going to
get stuck when evaluated. The best we might do is to evaluate eσ

for a fixed number of steps, a fixed number of times (remember that
e can be non-deterministic), searching for a counterexample trace
we can additionally display to the user.

3 Other than background theories with a non-recursively enumerable set of
logical consequences such as integer arithmetic, other sources of incom-
pleteness in SMT solvers are quantifiers (which are usually heuristically
instantiated) and user-defined time-outs.

6.2 Finding Elements of Types Statically
Type emptiness can be phrased in terms of subtyping as E ` T <:
Empty, or equivalently |= ¬(F[[E]]∧ F[[T]](x)) for some fresh x.
We additionally check that F[[E]] is satisfiable (and the model the
SMT solver produces is a correct one) to exclude the case that the
environment is inconsistent and therefore any subtyping judgment
holds vacuously. Hence, we can detect empty types during type-
checking and issue a warning to the user if an empty type is found.
Moreover, if the SMT solver cannot prove that a type is empty we
again obtain an assignment σ , which we can validate as in §6.1. If
validation succeeds we know that xσ is an element of T σ , and we
can display this information if the user hovers over a type.

LEMMA 22. If the three checks in §6.1 succeed for T ′ = Empty
then ∅ ` xσ : T σ and ∅ ` yσ : Uσ for all (y : U) ∈ E.

Proof: Since xσ and yσ for all y ∈ dom(E) are values, by
Lemma 7 and (Exp Singular Subsum) it suffices to show that
∅ ` [xσ] <: T σ and ∅ ` [yσ] <: Uσ for all y : U ∈ E. By (Sub-
type) it suffices to show that |= F[[T σ]](xσ) and |= F[[Uσ]](yσ)
for all y : U ∈ E. These follow from the corresponding checks by
Proposition 1 and basic reasoning in first-order logic.

6.3 Finding Elements of Types Dynamically
We can use the same technique to find elements of types dynam-
ically. We augment the calculus with a new primitive expression
elementof T that tries to find an inhabitant of T (this primitive is
not present in the M language). If successful the expression returns
such a value, but otherwise it returns null. (We can always choose T
so that null is not a member, so that returning null unambiguously
signals that no member of T can be found.)

Operational Semantics for Finding Elements of Types:
elementof T → v where v in T →∗ true
elementof T → null

Finding elements of types is actually simpler to do dynamically
than statically: at run-time all variables inside types have already
been substituted by values, so there are fewer checks to perform.

The outcome of elementof T is in general non-deterministic,
and depends in practice on the computational power and load of
the system as well as on the timeout used when calling the SMT
solver. Because of this elementof T expressions are considered
algorithmically impure, and therefore cannot appear inside types.

Typing rules for elementof:
(Exp elementof)

E ` T

E ` elementof T : (T | [null])

(Synth elementof)
E ` T

E ` elementof T → (T | [null])

LEMMA 23. If E ` T then the expression v in T is pure.

COROLLARY 1. If elementof T → v and ∅ ` T then we have that
∅ ` v : T | [null].

Proof: By Lemma 23 we have that v in T is pure. By the oper-
ational semantics we have that, either v = null in which case the
conclusion is immediate, or we know that v in T →∗ true, which
allows us to apply Lemma 22 for E =∅ and obtain that ∅ ` v : T .

The new elementof T construct enables a form of constraint
programming in Dminor, in which we iteratively change the con-
straints inside types in order to explore a large state space. For in-
stance the following recursive function computes all correct config-
urations of a complex system when called with the empty collection
as argument. Correctness is specified by some type GoodConfig.

13 2010/4/19

allGoodConfigs(avoid : GoodConfig∗) : GoodConfig∗ {
let m = elementof (GoodConfig where !(value in avoid)) in
(m == null) ? {} : (m :: (allGoodConfigs(m :: avoid)))

}

Programming in this purely declarative style can be very appeal-
ing for rapid prototyping or other tasks where efficiency is not the
main concern. One only needs to specify what has to be computed
in the form of a type. It is up to the SMT solver to use the right
(semi-)decision procedures and heuristics to perform the computa-
tion. If this fails or is too slow one can just implement the required
functionality manually. There is only very little productivity loss
in this case since the types one has already written will serve as
specification for the code that needs to be written manually.

7. Implementation
Our Dminor implementation is approximately 2700 lines of F]

code, excluding the lexer and parser. Our type-checker implements
the optimized logical semantics from §5.1, the bidirectional typ-
ing rules from §5.2, and the algorithmic purity check from §5.3.
We use Z3 [20] to discharge the proof obligations generated by se-
mantic subtyping. Together with the proof obligations we feed to
Z3 a 500 line axiomatization of our intended model in SMT-LIB
format [45], which uses the theories of integers, datatypes and ex-
tensional arrays (see Appendix C). The definition of our intended
model of Dminor values, results and operations adds an additional
2000 lines of Coq (see Appendix B).

We have tested our type-checker on a test suite consisting of
about 130 files, some hand-crafted by us and some transliterated
from the M preliminary release. Even without any aggressive op-
timization the type-checker is fast. Checking each of the 130 files
in our test suite on a normal laptop takes from under 1 second (for
just startup and parsing) to around 20 seconds (for type-checking
an interpreter for while-programs—see §1.1—that discharges more
than 300 proof obligations). Also, our experience with Z3 has been
very positive so far—whilst it is possible to craft subtyping tests
that cannot be efficiently checked,4 Z3 has performed very well on
the idioms in our test suite. Still, we cannot draw firm conclusions
until we have studied bigger examples.

We have also implemented the techniques for exploiting SMT
solver models described in §6. We built a plugin for the Microsoft
Intellipad text editor that displays precise counterexamples to typ-
ing, flags empty types and otherwise displays one element of each
type defined in the code (see the screencast mentioned in §1.6).
Moreover, our interpreter for Dminor supports elementof for dy-
namically generating instances of types (§6.3). This works well for
simple constraints involving equalities, datatypes and simple arith-
metic, and types that are not too deeply nested. However, scaling
this up to arbitrary Dminor types is a challenge that will require
additional work, as well as further progress in SMT solvers.

8. Safe Systems Configurations by Typing
To conclude our development, we argue that type-based modeling
in M may be of practical benefit in an intended application area
such as systems administration.

Note first that many systems errors arise from misconfiguration.
Administrators make mistakes, in part because configuration for-
mats are often too flexible and allow inconsistent settings. To ad-
dress this problem, numerous ad hoc tools advise on configuration
safety, by finding misconfigurations in firewalls, protocol stacks,
etc. Such tools package specialist expertise, are more accessible
than best practice papers, and are easy to update as new issues arise.

4 Z3 gets at most 1 second for each proof obligation by default.

Consider a concrete example, the WSE Policy Advisor [12, 11].
(There are many such advisors; we select WSE Policy Advisor
because it is familiar to us.) WSE Policy Advisor is an XSLT
stylesheet that generates a report from the configuration data for
Web Services Enhancements (WSE), an implementation of some
standard web services security protocols. The advisor has dozens
of rules advising on various potential vulnerabilities.

Advisors like this are valuable, but XSLT is not a good platform
for building such tools. Instead, the M repository should be an
effective platform, since it can hold the configuration data for an
entire data center. Moreover, the point of this section is that the
work of tools such as the policy advisor can be expressed within
the rich type system of Dminor (and hence M).

8.1 Representing XML Data
First, we show how to represent configuration data within Dminor.

Here is a snippet of configuration data for WSE. This policy
selects version 1.0 of a protocol known as “mutual certificate se-
curity”, switches off the establishment of a security context, and
selects a particular order of encryption and digital signature.

<policies>
<policy name="policy-CAM-42">
<mutualCertificate10Security

establishSecurityContext="false"
messageProtectionOrder="EncryptBeforeSign">

</mutualCertificate10Security>
</policy>

</policies>

We can import this XML into Dminor as the following value:

{tag⇒"policies",
body⇒{{tag⇒"policy",

name⇒"policy-CAM-42",
body⇒{{tag⇒"mutualCertificate10Security",

establishSecurityContext⇒"false",
messageProtectionOrder⇒"EncryptBeforeSign"

}}}}}

Second, we show how to express the equivalent of an XML
schema within Dminor. The following type definitions capture the
schema for a mutualCertificate10Security element.

type bool : Text where value == "true" || value == "false";
type messageProtectionOrder :

Text where value == "EncryptBeforeSign" ||
value == "SignBeforeEncrypt";

type mutualCertificate10Security :
{tag : Text where value == "mutualCertificate10Security";
establishSecurityContext:bool;
messageProtectionOrder:messageProtectionOrder;};

Hence, we can define the overall schema for a WSE configura-
tion as follows. We omit the details of other kinds of policies. Our
example value has type Config; it is schema-correct.

type Policy : mutualCertificate10Security | ... ;
type Config :
{tag: Text where value == "policies";
body: {tag : Text where value == "policy";

body : Policy∗;}∗;};

8.2 Types for Safe Configurations
Third, we go beyond schema-correctness, and define a type for safe
configurations, configurations that trigger no advisories.

One of the advisor’s rules detects a potential “credit-taking
attack” on WSE; the details need not concern us, but it turns out that
there is a defect in mutual certificate security such that encrypting
before signing is vulnerable to this attack. We can write a type
of vulnerable policies as follows, and indeed define a union type

14 2010/4/19

Advisory of policies that trigger any rule. (Most of the other rules
are more complex than this simple example.)

type q credit taking attack 10 :
mutualCertificate10Security

where value.messageProtectionOrder == "
EncryptBeforeSign";

type Advisory : q credit taking attack 10 | ... ;

Now, we can define a safe policy as one that is schema-correct
but that triggers no advisory, and then a safe configuration is one
containing only safe policies.

type SafePolicy :
Any where ((value in Policy) && !(value in Advisory));

type SafeConfig :
{tag: Text where value == "policies";
body: {tag : Text where value == "policy";

body : SafePolicy∗;}∗; };

Although our example value has type Config, it does not have
type SafeConfig since it is vulnerable to a credit-taking attack.

We have sketched how the type system of Dminor can ex-
press rules for detecting security vulnerabilities in real configura-
tion data. We can check such types at run-time, and hence mimic
the use of tools like the WSE Policy Advisor. More significantly,
we can use such types to check code that generates new configu-
rations, to obtain a static guarantee that no configuration produced
dynamically would trigger an advisory. Hence, static type-checking
of systems models can go beyond the current generation of advi-
sors.

9. Related Work
Whilst Dminor’s combination of refinement types and type-tests is
new and highly expressive, it builds upon a large body of related
work on advanced type systems. Refinement types have their ori-
gins in early work in theorem proving systems and specification
languages, such as subset types in constructive type theory [40], set
comprehensions in VDM [33], and predicate subtypes in PVS [48].
In PVS, constraints found when checking predicate subtypes be-
come proof obligations to be proved interactively. In future work,
it may be useful to allow the Dminor user to supply proof scripts in
the event that the automatic solver fails to prove implications gen-
erated by semantic subtyping. More recently, Sozeau [51] extends
Coq with subset types; his system implements syntactic subtyping
and lacks type-test; on the other hand, Dminor is based on classical
logic, and does not support proof objects for certification.

Pratt [44] argued for a semantic notion of “predicate types,”
where objects intrinsically belong to many types. His proposed
language Viron has an early notion of refinement type. Freeman
and Pfenning [29] extended ML with a form of refinement type, and
Xi and Pfenning [53] considered applications of dependent types
in an extension of ML. In both of these systems, decidability of
type checking is maintained by restricting which expressions can
appear in types. Lovas and Pfenning [36] presented a bidirectional
refinement type system for LF, where a restriction on expressions
leads to an expressive yet decidable type system.

Other work has combined refinement types with syntactic sub-
typing [9, 47] but none includes type-test in the refinement lan-
guage. Closest to our type system is the work of Flanagan et al.
on hybrid types and SAGE [34]. SAGE also uses an SMT solver to
check the validity of refinements but not for subtyping (checked by
traditional syntactic techniques), and does not allow type-test ex-
pressions in refinements. However, SAGE supports a dynamic type
and employs a particular form of hybrid type checking [28] that
allows particular expressions to have their type-check deferred un-
til run-time. The idea of hybrid types is to strike a balance between
runtime checking of contracts, as in Eiffel [39] and DrScheme [26],

and static typing. Compared to purely static typing this can reduce
the number of false alarms generated by type-checking.

X10 [49] is an object-oriented language that supports refine-
ment types. A class C can be refined with a constraint c on the
immutable state of C, resulting in a type written C(:c). The base
language supports only simple equality constraints but further con-
straints can be added and multiple constraint solvers can be inte-
grated into the compiler. However, in comparison with Dminor,
X10 combines semantic and syntactic subtyping and the constraint
language [49, §2.11] does not support type-test expressions.

In spite of early work on semantic subtyping by Aiken and
Wimmers [3] and Damm [19], most programming and query lan-
guages instead use a syntactic notion of subtyping. This syntactic
approach is typically formalized by an inductively or co-inductively
defined set of rules [41]. Unfortunately, deriving an algorithm from
such a set of rules can be difficult, especially for advanced features
such as intersection and union types [23, 24].

The introduction of XML and XML query languages lead to
renewed (practical) interest in semantic subtyping. In the context of
XML documents, there is a natural generalization of DTDs where
the structures in XML documents can be described using regular
expression operations (such as *, ?, and |) and subtyping between
two types becomes inclusion between the set of sequences that
are denoted by the regular expression types. Hosoya and Pierce
first defined such a type system for XML [32] and their language,
XDuce. Frisch, Castagna, and Benzaken [30] extended semantic
subtyping to function types and propositional types, with type-test,
but not refinement types, resulting in the language CDuce [10]. (An
excellent overview of the use of semantic subtyping in the context
of querying XML documents was given by Castagna [17].) In the
end, the XQuery working group resorted to a more conventional
(but less precise) nominal, structural type system [50]. Neither
XDuce nor CDuce provides general refinement types, and their
subtype algorithm is purpose-built. As far as we are aware, our use
of a general-purpose theorem prover to determine Dminor’s very
general notion of semantic subtyping is novel.

CDuce allows expressions to be pattern-matched against types
and statically detects if a pattern-matching expression is non-
exhaustive or if a branch is unreachable. If this is the case a coun-
terexample XML document is generated that exhibits the problem.
CDuce also issues warnings if empty types are detected. These
tasks are much simpler in CDuce then they are in our setting, since
we additionally have to deal with general refinement types.

Typed Scheme [52] makes use of type-test expressions, union
types and notions of visible and latent predicates to type-check
Scheme programs. It would be interesting to see if these idioms
can be internalized in the Dminor type system using refinements.

PADS [27] develops a type theory for ad hoc data formats such
as system traces, together with a rich range of tools for learn-
ing such formats and integrating into existing programming lan-
guages. The PADS type theory has refinement types, dependent
pairs, and intersection types, but not type-test. There is a syntactic
notion of type equivalence, but not subtyping. Dminor would be a
useful language for programming transformations on data parsed
using PADS, as our type system would enforce the constraints
in PADS specifications, and hence guarantee statically that trans-
formed data remains well-formed. Existing interfaces of PADS to
C or to OCaml do not offer this guarantee.

10. Conclusions
We have described Dminor, a simple, yet flexible, functional lan-
guage for defining data models and queries over these data models.

The main novelty of Dminor is its especially rich type sys-
tem. The combination of refinement types and type-test appears to
be new. On top of familiar arithmetic constraints on types (analo-

15 2010/4/19

gous to the sort checked dynamically by other data modeling lan-
guages) we have given examples of how this type system can, in
addition, encode singleton, nullable, union, intersection, negation,
and algebraic types, although without first-class functions. We have
sketched how such a rich type system is useful for scripting systems
configuration, a key application area M [2].

The other main contribution of this paper is a technique to type-
check Dminor programs statically: we combine the use of a bidi-
rectional type system with the use of a theorem prover to perform
semantic subtyping. (Other systems have either devised special pur-
pose algorithms for semantic subtyping, or used theorem provers
only for refinement types.) The design of our bidirectional type sys-
tem to enable precise typing of programs appears novel. We have
implemented our type system in F] using the Z3 SMT solver. SMT
solvers are now of sufficient maturity that they can realistically be
thought of as a platform upon which many applications, including
type systems, may be built.

In the future we intend to extend our implementation to cover
more of the features proposed for the M Modeling Language,
including database update. This will also enable us to test our
implementation on more of the samples that are already available
in the M CTP. In particular, we plan a more systematic study
of extending Dminor to represent graphs by adding labels and
pointers to labels. We intend to add support for first-class functions
by generalizing the mixture of syntactic and semantic subtyping
introduced by Calcagno, Cardelli, and Gordon [16]. We also intend
to implement a form of hybrid type checking, as supported by
SAGE, to allow particular programs that can not be type-checked
at compile-time, to be checked at run-time instead.

Our type-checker, like all static analyzers, has the potential to
generate false negatives, that is, rejecting programs as type incor-
rect that are, in fact, type correct. As any SMT solver is incomplete
for the first-order theories that we are interested in, it is possible
that the solver is unable to determine an answer to a logical state-
ment. SAGE [28] avoids these problems by catching these cases and
inserting a cast so that the test is performed again at run-time. This
has the pleasant effect of not penalizing the developer for any pos-
sible incompletenesses of the SMT solver. The techniques used in
SAGE can be applied to Dminor without any great difficulty.

Finally, the implications of this work go beyond the core cal-
culus Dminor. PADS, JSON, and M, for example, show the sig-
nificance of programming languages for first-order data. Our work
establishes the usefulness of combining refinement types and type-
test expressions when programming with first-order data, and the
viability of type-checking such programs with an SMT solver.

Acknowledgments We thank Nikolaj Bjørner for his invaluable
help in using Z3. Paul Anderson, Ioannis Baltopoulos, Johannes
Borgström, and Tim Harris commented on a draft. Discussions with
Martı́n Abadi, Cliff Jones, and Benjamin Pierce were useful.

A. Relating Operational and Logical Semantics
We develop proofs for Proposition 1 and Theorem 1.

We begin by considering the following direct inductive defini-
tion of the relation e ⇓ r.

Evaluation Semantics: e ⇓ r

(Eval Const)

c ⇓ Return(c)

(Eval Operator 1)
ei ⇓ Return(vi) ∀i ∈ 1.. j−1 e j ⇓ Error j ∈ 1..n

⊕ (e1, . . . ,en) ⇓ Error

(Eval Operator 2)
ei ⇓ Return(vi) i ∈ 1..n ¬∃v.(⊕(v1, . . . ,vn) 7→ v)

⊕ (e1, . . . ,en) ⇓ Error

(Eval Operator 3)
ei ⇓ Return(vi) ∀i ∈ 1..n ⊕ (v1, . . . ,vn) 7→ v

⊕ (e1, . . . ,en) ⇓ Return(v)

(Eval Cond 1)
e1 ⇓ r r /∈ {Return(true),Return(false)}

e1?etrue : efalse ⇓ Error

(Eval Cond 2)
e1 ⇓ Return(b) b ∈ {true, false} eb ⇓ r

e1?etrue : efalse ⇓ r

(Eval Let 1)
e1 ⇓ Error

let x = e1 in e2 ⇓ Error

(Eval Let 2)
e1 ⇓ Return(v) e2{v/x} ⇓ r

let x = e1 in e2 ⇓ r

(Eval Entity 1)
e j ⇓ Error j ∈ 1..n
{`i⇒ ei

i∈1..n} ⇓ Error

(Eval Entity 2)
ei ⇓ Return(vi) ∀i ∈ 1..n

{`i⇒ ei
i∈1..n} ⇓ Return({`i⇒ vi

i∈1..n})
(Eval Dot 1)
e ⇓ r ¬∃v1, . . . ,vn.(r = Return({`i⇒ vi

i∈1..n})∧ j ∈ 1..n)
e.` j ⇓ Error

(Eval Dot 2)
e ⇓ Return({`i⇒ vi

i∈1..n}) j ∈ 1..n
e.` j ⇓ Return(v j)

(Eval Collection)

{v1, . . . ,vn} ⇓ Return({v1, . . . ,vn})

(Eval Add 1)
e1 ⇓ Error

e1 :: e2 ⇓ Error

(Eval Add 2)
e1 ⇓ Return(v) e2 ⇓ r ¬∃v1, . . . ,vn.(r = Return({v1, . . . ,vn}))

e1 :: e2 ⇓ Error

(Eval Add 3)
e1 ⇓ Return(v) e2 ⇓ Return({v1, . . . ,vn})

e1 :: e2 ⇓ Return({v,v1, . . . ,vn})
(Eval Appl 1)
ei ⇓ Return(vi) ∀i ∈ 1.. j−1 e j ⇓ Error j ∈ 1..n

f (e1, . . . ,en) ⇓ Error

(Eval Appl 2)
ei ⇓ Return(vi) ∀i ∈ 1..n e{v1/x1} . . .{vn/xn} ⇓ r
given function definition f (x1 : T1, . . . ,xn : Tn) : U{e}

f (e1, . . . ,en) ⇓ r

(Eval Accum 1)
e1 ⇓ r ¬∃v1, . . . ,vn.(r = Return({v1, . . . ,vn}))

from x in e1 let y = e2 accumulate e3 ⇓ Error

(Eval Accum 2)
e2 ⇓ Error

from x in e1 let y = e2 accumulate e3 ⇓ Error

(Eval Accum 3)
e1 ⇓ Return({v1, . . . ,vn}) e2 ⇓ Return(v)
e3{vi/x}{v/y} ⇓ Error i ∈ 1..n

from x in e1 let y = e2 accumulate e3 ⇓ Error

16 2010/4/19

(Eval Accum 4)
e1 ⇓ Return({v1, . . . ,vn}) e2 ⇓ Return(v)
e3{v j/x}{v/y} ⇓ Return(v′) j ∈ 1..n
from x in {vi

i∈(1..n)−{ j}} let y = v′ accumulate e3 ⇓ r

from x in e1 let y = e2 accumulate e3 ⇓ r

(Eval Accum 5)
e1 ⇓ Return({}) e2 ⇓ Return(v)

from x in e1 let y = e2 accumulate e3 ⇓ Return(v)

(Test Wrong)
e ⇓ Error

e in T ⇓ Error

(Test Any)
e ⇓ Return(v)

e in Any ⇓ Return(true)

(Test G 1)
e ⇓ Return(v) v ∈ K(G)

e in G ⇓ Return(true)

(Test G 2)
e ⇓ Return(v) v /∈ K(G)

e in G ⇓ Return(false)

(Test Entity 1)
e ⇓ Return(v) v = {`i⇒ vi

i∈1..n}∧ j ∈ 1..n v j in Tj ⇓ r

e in {` j : Tj} ⇓ r

(Test Entity 2)
e ⇓ r ¬∃v1, . . . ,vn.(r = Return({`i⇒ vi

i∈1..n})∧ j ∈ 1..n)
e in {` j : Tj} ⇓ Return(false)

(Test Collection 1)
e ⇓ Return(v) ¬∃v1, . . . ,vn.(v = {v1, . . . ,vn})

e in T∗ ⇓ Return(false)

(Test Collection 2)
e ⇓ Return({v1, . . . ,vn}) v j in T ⇓ Error j ∈ 1..n

e in T∗ ⇓ Error

(Test Collection 3)
e ⇓ Return({v1, . . . ,vn}) v j in T ⇓ Return(ui) ∀i ∈ 1..n

e in T∗ ⇓ (Return(true) if each ui = true, otherwise Return(false))

(Test Refine 1)
e1 in T ⇓ Error

e1 in (x : T where e2) ⇓ Error

(Test Refine 2)
e1 ⇓ Return(v) v in T ⇓ Return(v1)
e2{v/x} ⇓ r r 6∈ {Return(true),Return(false)}

e1 in (x : T where e2) ⇓ Error

(Test Refine 3)
e1 ⇓ Return(v) v in T ⇓ Return(u1) e2{v/x} ⇓ Return(u2)

e1 in (x : T where e2) ⇓ (Return(true) if each ui = true,
otherwise Return(false))

(Eval Assert 1)
e ⇓ Error

e : T ⇓ Error

(Eval Assert 2)
e ⇓ v (v in T)?v : stuck ⇓ r

e : T ⇓ r

LEMMA 24. If v is a value then v ⇓ Return(v).

Proof: By induction on the structure of v. 2

LEMMA 25. Suppose e is closed. If e→ e′ and e′ ⇓ r then e ⇓ r.

Proof: By induction on the derivation of e′ ⇓ r, with a case
analysis of the reduction e→ e′. We omit the details. 2

LEMMA 26. If e is closed and stuck then e ⇓ Error.

Proof: By induction on the structure of e. We omit the details.2

By the following proposition, we obtain an independent defi-
nition of the relation e ⇓ r in terms of the reduction relation and
stuckness. This is the definition used in §2. The equivalent induc-
tive definition given in this section is convenient for proofs.

PROPOSITION 2. Suppose that e is closed.

(1) e ⇓ Return(v) if and only if e→∗ v.

(2) e ⇓ Error if and only if there is e′ with e→∗ e′ and e′ is stuck.

Proof: The forwards direction follow by straightforward induc-
tions on the derivations of e ⇓ Return(v) and e ⇓ Error.

For the reverse direction of (1), we have e = e1→ ···→ en→ v.
By Lemma 24, we have v ⇓ Return(v). By repeated applications of
Lemma 25, we have ei ⇓Return(v) for each i from n down to 1, and
indeed ei ⇓ Return(v).

For the reverse direction of (2), suppose there is e′ such that
e = e1→ ···→ en = e′ and e′ is stuck. By Lemma 26, we have en ⇓
Error. By repeated applications of Lemma 25, we have ei ⇓ Error
for each i from n down to 1, and indeed e ⇓ Error. 2

The following asserts that if a closed pure expression evaluates
to a result, then that is the result of the expression according to the
logical semantics.

LEMMA 27. For closed and pure e and r, if e ⇓ r then |= T[[e]] = r.

Proof: The proof is by induction on the derivation of e ⇓ r.
(Notice that the purity assumption arises explicitly in the case (Eval
Appl 2) for function calls, which needs Lemma 4.) 2

Restatement of Proposition 1 For all closed and pure e and e′,
if e→ e′ then |= T[[e]] = T[[e′]].

Proof: Suppose e→ e′. By Lemma 1, since e is pure, so is e′.
By point (2) of the definition of purity, there exists a unique result
r such that e′ ⇓ r. By Lemma 25, e→ e′ and e′ ⇓ r imply e ⇓ r.
By Lemma 27, we have both |= T[[e′]] = r and |= T[[e]] = r. By
transitivity, |= T[[e]] = T[[e′]]. 2

Restatement of Theorem 1 For all closed pure expressions e
and e′, we have |= T[[e]] = T[[e′]] if and only if, for all r, e ⇓ r⇔
e′ ⇓ r.

Proof: Since e and e′ are closed and pure, by point (2) of the
definition of purity, there exist unique results r and r′ such that e ⇓ r
and e′ ⇓ r′. By Lemma 27, we have |= T[[e]] = r and |= T[[e′]] = r′.
Given these facts, we have: |= T[[e]] = T[[e′]] if and only if r = r′ if
and only if for all r′′, e ⇓ r′′⇔ e′ ⇓ r′′. 2

B. Mechanized Definition of the Intended
Dminor Model

We have formalized the definition of the intended Dminor Model
in Coq [1].

B.1 Values
We first define scalars and “raw” values as inductive types. Entities
are represented as lists of string-raw-value pairs, while collections
are represented as lists of raw values. This representation is not
canonical, i.e. multiple representations for the same value exists,
which means we cannot use syntactic equality to compare raw
value.

Model: Raw Values

Inductive General : Type :=
| G Integer : Z→General
| G Text : string→General
| G Logical : bool→General
| G Null : General.

17 2010/4/19

Inductive RawValue : Type :=
| G : General→RawValue
| E : list (string ∗ RawValue)→RawValue
| C : list RawValue→RawValue.

Instead of working directly with raw values, we only consider
raw values that are in a normal form. Entities in normal form
are sorted by their field (a string), and do not contain duplicate
fields. Collections in normal form are sorted with respect to a total
order on raw values (this order is arbitrary but fixed; note that this
order is irrelevant for the semantics of pure expressions). The main
advantage of using values in normal form is that FOL equality can
be interpreted as syntactic equality, as it is usual for FOL models.5

Model: Sorted String-value Maps and Value Bags

Definition leAll (x : A) (ys : list A) := forall y, In y ys→ le x y.
Inductive Sorted: list A→Prop :=
| Sorted nil: Sorted nil
| Sorted cons: forall hd tl, leAll hd tl→Sorted tl→Sorted (hd :: tl).

Definition le sv (sv1 sv2 : (string ∗ RawValue)) : Prop :=
match sv1, sv2 with
(s1,), (s2,)⇒cmp str s1 s2 = Lt ∨cmp str s1 s2 = Eq
end.

Definition Sorted svm (svm : list (string ∗ RawValue)) : Prop :=
Sorted le sv svm.

Definition le rval (v1 v2 : RawValue) : Prop :=
cmp rval v1 v2 = Lt ∨cmp rval v1 v2 = Eq.

Definition Sorted vb (vb : list RawValue) : Prop := Sorted le rval vb.

Model: Normal Values

Inductive Normal : RawValue→Prop :=
| normal G : forall g, Normal (G g)
| normal E : forall svm,

NoDup (fst (split svm))→
Sorted svm svm→
IndAll Normal (snd (split svm))→

Normal (E svm)
| normal C : forall vb,

Sorted vb vb→ IndAll Normal vb→Normal (C vb).

We define the Coq type Value (the interpretation of the FOL
sort Value) as the subset [51] of RawValue for which the Normal
predicate holds. The sorts SVMap, VBag, and ValueOption are in-
terpreted by similar Coq subset types.

Model: Coq Types Interpreting FOL Sorts

Definition Value := {x : RawValue | Normal x}.

Definition SVMap :=
{svm : list (string ∗ RawValue) | NoDup (fst (split svm))
∧Sorted svm svm ∧ IndAll Normal (snd (split svm)) }.

Definition VBag :=
{vb : list RawValue | Sorted vb vb ∧ IndAll Normal vb}.

Definition lift option (X : Type) (P : X→Prop) : option X→Prop :=
fun ox⇒match ox with None⇒True | Some x⇒P x end.

Implicit Arguments lift option [X].
Definition ValueOption :=
{vo : option RawValue | lift option Normal vo}.

Model: All Values “Good”

5 If we had gone with a more complicated interpretation of equality, we
would have needed to restrict the interpretation of function symbols to
equality-respecting functions since the interpretation of equality needs to
be a congruence.

Definition Good (v : Value) := true.
Definition Good C := is C.
Definition Good E := is E.

B.2 Operations on Simple Values
Model: Testers for Simple Values

Definition In Logical v := (is G v) && is G Logical (out G v).
Definition In Integer v := (is G v) && is G Integer (out G v).
Definition In Text v := (is G v) && is G Text (out G v).

Model: Constructors for Simple Values

Program Definition v tt : Value := G (G Logical true).
Program Definition v ff : Value := G (G Logical false).
Program Definition v logical (b : bool) : Value := G (G Logical b).
Program Definition v int i : Value := G (G Integer i).
Program Definition v text s : Value := G (G Text s).
Program Definition v null : Value := G (G Null).

Model: Operators on Simple Values

Definition O Sum v1 v2 :=
v int (Zplus (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O Minus v1 v2 :=
v int (Zminus (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O Mult v1 v2 :=
v int (Zmult (of G Integer(out G v1)) (of G Integer(out G v2))).

Definition O GT v1 v2 :=
match Zcompare (of G Integer(out G v1)) (of G Integer(out G v2))
with Gt⇒v tt | ⇒v ff end.

Definition O LT v1 v2 :=
match Zcompare (of G Integer(out G v1)) (of G Integer(out G v2))
with Lt⇒v tt | ⇒v ff end.

Definition O EQ v1 v2 := v logical (syn beq val v1 v2).
Definition O Not v := v logical (negb (of G Logical (out G v))).
Definition O And v1 v2 := v logical (andb (of G Logical (out G v1))

(of G Logical (out G v2))).
Definition O Or v1 v2 := v logical (orb (of G Logical (out G v1))

(of G Logical (out G v2))).

B.3 Operations on Entities
Model: Entities Represented as Extensional Arrays

Definition SVMapArray := Array string ValueOption.
Definition FiniteE (svm : SVMapArray) : bool :=

match default svm with exist None ⇒ true | ⇒ false end.

Model: Functions and Predicates on Entities

Program Definition v eempty : Value := E nil.
Program Definition v eupdate s (nv ne : Value) : Value :=

E (remove dup eq str dec (insert in sorted svm (s, nv) (out E ne))).
Program Definition v has field (s : string) (v : Value) : bool :=

match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒ true | None⇒ false end.

Program Definition v dot (s : string) (v : Value) : Value :=
match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒v | None⇒v null (* arbitrary *) end.

B.4 Operations on Collections
Model: Entities Represented as Extensional Arrays

Definition VBagArray := Array Value Z.

18 2010/4/19

Definition Finite (vb : VBagArray) : bool := beq int (default vb) 0%Z.
Program Definition cmp val (v1 v2 : Value) := cmp rval v1 v2.
Program Definition Positive (vb : VBagArray) : bool :=

allb R cmp val vb (fun (z : Z)⇒
(match Zcompare z 0 with Lt⇒ false | ⇒ true end)).

Model: Functions and Predicates on Collections

Program Definition v zero : Value := C nil.
Program Definition v mem (v cv : Value) : bool :=

mem eq rval dec v (out C cv).
Program Definition v add (v cv : Value) : Value :=

(C (insert in sorted vb v (out C cv))).
Fixpoint v add many’ (v : Value) (n : nat) (cv : Value) : Value :=

match n with 0⇒cv | S n’⇒v add many’ v n’ (v add v cv) end.
Definition v add many (v : Value) (i : Z) (cv : Value) : Value :=

v add many’ v (Zabs nat i) cv.
Definition Closure2 := Value→Value→Value.
Definition v apply2 (c : Closure2) v1 v2 := c v1 v2.
Program Fixpoint v acc fold (f : Closure2) (vb : VBag) (a : Value)
{measure List.length vb} : Value :=
match vb with nil⇒a | v :: vb’⇒v acc fold vb’ (f a v) end.

Definition v accumulate (clos:Closure2) c := v acc fold clos (out C c).

C. Axiomatization of the Dminor Model
We axiomatize the model of Dminor in sorted first-order logic ex-
tended with the background theories of integer arithmetic, algebraic
datatypes, and arrays. We only axiomatize the parts of the model
that are relevant for the optimized logical semantics is §5.1.

In the following we report all the relevant parts of this ax-
iomatization, directly imported from our implementation. We use
the standard SMT-LIB format [45] supported by all recent SMT
solvers, together with Z3-specific [20] extensions for algebraic
datatypes and arrays [21].

C.1 Values
We begin by defining simple values. For strings and the labels of
entities we define a new sort named String. The semantics of sorted
first-order logic ensures that this sort is non-empty and disjoint
from all other sorts. Since strings and labels are constants and we
have no operation on them we do not further constrain this sort.

The sort General is defined as an algebraic datatype with four
constructors: G Integer taking a (built-in) integer as argument,
G Text taking a String, G Logical taking a (built-in) boolean, and
the constant G Null.

Simple Values:

:extrasorts (String)
:datatypes ((General

(G Integer (of G Integer Int))
(G Text (of G Text String))
(G Logical (of G Logical bool))
G Null))

Values are also defined as a datatype. We use arrays to represent
entities and collections, however, since Z3 syntactically restricts ar-
rays from appearing inside datatypes, we use two new sorts SVMap
and VBag instead. The sort SVMap is then constrained to be isomor-
phic to the arrays from Strings to Values, while VBag is required to
be isomorphic to the arrays from Values to Int.

Values:

:extrasorts (SVMap VBag)
:datatypes ((Value

(G (out G General)) ;; simple value (scalar)
(E (out E SVMap)) ;; entity: finite map from String to Value
(C (out C VBag)))) ;; collection: finite multiset of Value

Since arrays can in general be infinite we further restrict the set
of values to contain only finite collections and entities using the
predicates Good C and Good E (defined later on).

Good Values:

:assumption (forall (v Value)
(implies (Good v)

(and (implies (is C v) (Good C v))
(implies (is E v) (Good E v))))

:pat{ (Good v) })

C.2 Operations on Simple Values
We define several functions that test whether a value is a boolean
(In Logical), an integer (In Integer), or a string (In Text). These
functions are trivial to implement because Z3 already provides
testers for datatypes.

Testers for Simple Values:

:assumption (forall (v Value)
(iff (In Logical v) (and (is G v) (is G Logical (out G v))))
:pat { (In Logical v) })

:assumption (forall (v Value)
(iff (In Integer v) (and (is G v) (is G Integer (out G v))))
:pat { (In Integer v) })

:assumption (forall (v Value)
(iff (In Text v) (and (is G v) (is G Text (out G v))))
:pat { (In Text v) })

We also define more convenient constructors for simple values.

Constructors for Simple Values:

:assumption (= v tt (G(G Logical true)))
:assumption (= v ff (G(G Logical false)))
:assumption (= v null (G(G Null)))
:assumption (forall (n Int) (= (v int n) (G(G Integer n)))

:pat { (v int n) } :pat { (G(G Integer n)) })
:assumption (forall (s String) (= (v text s) (G(G Text s)))

:pat { (v text s) } :pat { (G(G Text s)) })

The operators on integers and booleans are easy to define using
the built-in SMT-LIB functions.

Operators on Simple Values:

:assumption (forall (i1 Int) (i2 Int)
(= (O Sum (v int i1) (v int i2)) (v int (+ i1 i2)))
:pat { (O Sum (v int i1) (v int i2)) })

:assumption (forall (v1 Value) (v2 Value)
(= (O EQ v1 v2) (ite (= v1 v2) v tt v ff))
:pat { (O EQ v1 v2) })

:assumption (forall (v Value)
(= (O Not v) (ite (not (= v v tt)) v tt v ff))
:pat { (O Not v) })

:assumption (forall (v1 Value) (v2 Value)
(= (O And v1 v2) (ite (and (= v1 v tt) (= v2 v tt)) v tt v ff))
:pat{ (O And v1 v2) })

:assumption (forall (v1 Value) (v2 Value)
(= (O Or v1 v2) (ite (or (= v1 v tt) (= v2 v tt)) v tt v ff))
:pat{ (O Or v1 v2) })

We omit the definitions for O NE, O Minus, O Mult, O GT, and
O LT, which follow the same pattern.

19 2010/4/19

C.3 Operations on Entities
Entities:

:datatypes ((ValueOption
NoValue
(SomeValue (of SomeValue Value))))

:define sorts ((SVMapArray (array String ValueOption)))
:extrafuns ((alpham SVMap SVMapArray)

(betam SVMapArray SVMap))

The operations v eempty and v eupdate do not correspond to
any Dminor construct, but they allow us to construct entity values
in an abstract way (without caring how they are implemented – for
example, lists vs. arrays)

Operations on Entities:

;; SVMap and the finite arrays in SVMapArray are isomorphic
:assumption (forall (am SVMapArray)

(implies (FiniteE am) (= (alpham (betam am)) am)))
:assumption (forall (svm SVMap)

(and (FiniteE (alpham svm)) (= (betam (alpham svm)) svm)))

:assumption (forall (svm SVMapArray) (iff (FiniteE svm)
(= (default svm) NoValue)) :pat{ (FiniteE svm) })

:assumption (forall (v Value)
(iff (Good E v) (and (is E v) (FiniteE (alpham (out E v)))))
:pat{ (Good E v) })

:assumption (= v eempty (E (betam (const[SVMapArray] NoValue))))

:assumption (forall (l String) (v Value) (svm SVMap)
(= (v eupdate l v (E svm))

(E (betam (store (alpham svm) l (SomeValue v)))))
:pat{ (v eupdate l v (E svm)) })

:assumption (forall (l String) (svm SVMap)
(iff (v has field l (E svm)) (not(= (select (alpham svm) l) NoValue)))
:pat { (v has field l (E svm)) }) ;;:pat (select (alpham svm) l)

:assumption (forall (l String) (svm SVMap)
(= (v dot l (E svm)) (of SomeValue (select (alpham svm) l)))
:pat { (v dot l (E svm)) }) ;; :pat (select (alpham svm) l)

C.4 Operations on Collections
Collections:

:define sorts ((VBagArray (array Value Int)))
:extrafuns ((alphab VBag VBagArray)

(betab VBagArray VBag))

Constraints on Bags:

;; VBag and the finite and positive arrays in VBagArray are isomorphic
:assumption (forall (ab VBagArray)

(implies (and (Finite ab) (Positive ab)) (= (alphab (betab ab)) ab))
:pat{ (alphab (betab ab)) })

:assumption (forall (vb VBag)
(and (Finite (alphab vb)) (Positive (alphab vb)) (= (betab (alphab vb

)) vb))
:pat{ (betab (alphab vb)) })

;; Good collections are finite and positive
:assumption (forall (v Value)

(iff (Good C v)
(and (is C v)

(Finite (alphab (out C v)))
(Positive (alphab (out C v)))))

:pat{ (Good C v) })

;; Finiteness of bags
:assumption (forall (a VBagArray)

(iff (Finite a) (= (default a) 0))
:pat{ (Finite a) })

;; Only positive indices in bags
:assumption (forall (a VBagArray)

(iff (Positive a) (forall (v Value) (>= (select a v) 0)
:pat{ (select a v) })) :pat{ (Positive a) })

Closures:

20 2010/4/19

:extrasorts (Closure Closure2)
:extrafuns ((v apply Closure Value Value)

(v apply2 Closure2 Value Value Value))

:extrafuns ((closure tag Closure Value))

Operations on Collections:

:assumption (= v zero (C (betab (const[VBagArray] 0))))

:assumption (forall (v Value) (i Int) (vb VBag)
(= (v add many v i (C vb))

(C (betab (store (alphab vb) v (+ i (select (alphab vb) v))))))
:pat{ (v add many v i (C vb)) })

:assumption (forall (v Value) (vs Value)
(= (v add v vs) (v add v vs)) :pat{ (v add v vs) })

; v accumulate iterates over a collection using an AC operator
:assumption (forall (clos Closure2) (initial Value)

(= (v accumulate clos v zero initial) initial)
:pat{ (v accumulate clos v zero initial) })

:assumption (forall (clos Closure2) (initial Value) (v Value) (vs Value)
(= (v accumulate clos (v add many v 1 vs) initial)

(v accumulate clos vs (v apply2 clos v initial)))
:pat { (v accumulate clos (v add many v 1 vs) initial) })

D. Algorithmic Purity Check
D.1 Proofs
Operational purity is defined in the same way as algorithmic purity,
just that we replace condition (2) with a condition we call opera-
tional commutativity and associativity:

(2∗) if e is of the form from x in e1 let y = e2 accumulate e3 then

(a) e3{x1/x}{x2/y} ≈ e3{x2/x}{x1/y}, and

(b) let z = e3{x1/x}{x2/y} in e3{z/x}{x3/y}
≈ let z = e3{x2/x}{x3/y} in e3{x1/x}{z/y}

(where the variables x1, x2, x3 and z do not appear free in e3).

The≈ symbol denotes observational equivalence, which is defined
as follows. Two expressions e1 and e2 are observationally equiva-
lent if for all closing substitutions σ we have that e1σ ⇓ r if and
only if e2σ ⇓ r.

THEOREM 8 (Full Abstraction for Open Expressions).
For all pure expressions e1 and e2 we have that e1 ≈ e2 if and only
if |= T[[e1]] = T[[e2]].

Proof: Immediate from Theorem 1 and Lemma 5.

LEMMA 28. If e is algorithmically pure and e→ e′ then e′ is also
algorithmically pure.

LEMMA 29. The reduction relation is terminating on algorithmi-
cally pure expressions. (i.e. all reduction sequences starting from
algorithmically pure expressions are finite).

Proof Sketch Recursive functions have to decrease the size of
their arguments on each recursive call which guarantees their ter-
mination. The only other source of repetitive computation are ac-
cumulate expressions. But each proper accumulate step decreases
the size of the collection by one, so since collections are finite this
will again always terminate.

LEMMA 30. If from x in {v1, . . . ,vn,v′1, . . . ,v
′
m} let y= u accumulate e3 ⇓

v then there exists a value w so that from x in {v1, . . . ,vn} let y =

u accumulate e3 ⇓w and from x in {v′1, . . . ,v′m} let y=w accumulate e3 ⇓
v.

LEMMA 31. If from x in {v1, . . . ,vn} let y = u accumulate e3 ⇓
w and from x in {v′1, . . . ,v′m} let y = w accumulate e3 ⇓ v then
from x in {v1, . . . ,vn,v′1, . . . ,v

′
m} let y = u accumulate e3 ⇓ v.

LEMMA 32. If from x in e1 let y = e2 accumulate e3 ⇓ un then e1 ⇓
{v1, . . . ,vn} and e2 ⇓ u0 and there exists i1, . . . , in a permutation of
1, . . . ,n and there exist intermediate values u1, . . . ,un−1 so that for
all k ∈ 1, . . . ,n we have that e3{vik/x}{uik−1/y} ⇓ uk

LEMMA 33. If from x in e1 let y = e2 accumulate e3 ⇓ wrong then at
least one of the following conditions holds:

(1) e1 ⇓ wrong

(2) e1 ⇓ v but ¬∃v1, . . . ,vn.(o = {v1, . . . ,vn})
(3) e2 ⇓ wrong

(4) e1 ⇓ {v1, . . . ,vn} and e2 ⇓ u0 and there exists i1, . . . , in a per-
mutation of 1, . . . ,n and there exists a number of good steps
j ∈ 0, . . . ,n− 1, and there exist intermediate values u1, . . . ,u j
so that for all k ∈ 1, . . . , j we have that e3{vik/x}{uik−1/y} ⇓ uk
and additionally e3{vi j+1/x}{u j/y} ⇓ wrong.

LEMMA 34. If e is operationally pure, e ⇓ r1 and e ⇓ r2 then
r1 = r2.

Proof Sketch By induction on the sum of the sizes of the deriva-
tions of e ⇓ r1 and e ⇓ r2. The only interesting case is when e is an
accumulate expression, in which case we use Lemmas 32 and 33 to
break the evaluation into two sequences of intermediate results cor-
responding to two permutations of 1, . . . ,n. We bubble-sort one of
the permutations to reach the other, while preserving the same re-
sult as the original sequence. The only operation used when bubble-
sorting is swapping two adjacent elements, which preserves the re-
sult since the body of the accumulate is operationally commutative
and associative.

LEMMA 35. If e is operationally pure then e is pure.

Proof Sketch Follows from Lemma 34 and Lemma 29.

LEMMA 36. If e is algorithmically pure then e is operationally
pure.

Proof Sketch By induction on the structure of e, using Theo-
rem 8 and Lemma 35.

References
[1] The Coq proof assistant, 2009. Version 8.2.

[2] The Microsoft code name “M” Modeling Language Specification.
Microsoft Corporation, Nov. 2009.

[3] A. Aiken and E. Wimmers. Type inclusion constraints and type
inference. In Proceedings of ICFP, 1993.

[4] P. Anderson. Towards a high-level machine configuration system. In
Proceedings of LISA, 1994.

[5] P. Anderson. System Configuration, volume 14 of Short Topics in
System Administration. USENIX Association/SAGE, 2006.

[6] D. Aspinall and M. Hofmann. Dependent types. In Advanced Topics
in Types and Programming Languages, chapter 2. MIT Press, 2005.

[7] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results
of the 3rd Annual SMT Competition. International Journal on
Artificial Intelligence Tools, 17(4):569–606, 2008.

[8] C. Barrett and C. Tinelli. CVC3. In Proceedings of CAV, 2007.

[9] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. In Proceedings of CSF,
2008.

21 2010/4/19

[10] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-friendly
general purpose language. In Proceedings of ICFP, 2003.

[11] K. Bhargavan, C. Fournet, and A. D. Gordon. Policy advisor for WSE
3.0. In Web Service Security, pages 324–330. Microsoft Press, 2006.

[12] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea. An advisor
for web services security policies. In Proceedings of Workshop on
Secure Web Services, 2005.

[13] G. Bierman, E. Meijer, and M. Torgersen. Lost in translation:
Formalizing proposed extensions to C]. In Proceedings of OOPSLA,
2007.

[14] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of
programming with complex objects and collection types. Theoretical
Computer Science, 149(1):3–48, 1995.

[15] M. Burgess and Æ. Frisch. A System Engineer’s Guide to Host
Configuration and Maintenance using Cfengine, volume 16 of Short
Topics in System Administration. USENIX Association/SAGE, 2007.

[16] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a
spatial logic for trees. Journal of Functional Programming, 15:543–
572, 2005.

[17] G. Castagna. Patterns and types for querying XML documents. In
Proceedings of DBPL, 2005.

[18] D. Crockford. The application/json media type for JavaScript Object
Notation (JSON), July 2006. RFC 4627.

[19] F. Damm. Subtyping with union types, intersection types and
recursive types. In Proceedings of TACS, 1994.

[20] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of TACAS, 2008.

[21] L. M. de Moura and N. Bjørner. Generalized, efficient array decision
procedures. In FMCAD, 2009.

[22] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[23] J. Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, Aug. 2007. CMU-CS-07-129.

[24] J. Dunfield and F. Pfenning. Tridirectional typechecking. In
Proceedings of POPL, pages 281–292, 2004.

[25] B. Dutertre and L. de Moura. The YICES SMT solver. Available at
http://yices.csl.sri.com/tool-paper.pdf, 2006.

[26] R. Findler and M. Felleisen. Contracts for higher-order functions. In
ICFP, 2002.

[27] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. In Proceedings of POPL, 2006.

[28] C. Flanagan. Hybrid type checking. In Proceedings of POPL, 2006.

[29] T. Freeman and F. Pfenning. Refinement types for ML. In
Proceedings of PLDI, 1991.

[30] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and
negation types. J. ACM, 55(4), 2008.

[31] A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many
correspondences in security protocols. In Proceedings of ISSS, 2002.

[32] H. Hosoya, J. Vouillon, and B. Pierce. Regular expression types for
XML. In Proceedings of ICFP, 2000.

[33] C. Jones. Systematic software development using VDM. Prentice-Hall
Englewood Cliffs, NJ, 1986.

[34] K. Knowles, A. Tomb, J. Gronski, S. Freund, and C. Flanagan. SAGE:
Unified hybrid checking for first-class types, general refinement types
and Dynamic. Technical report, UCSC, 2007.

[35] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for
type-error messages. In Proceedings of PLDI, 2007.

[36] W. Lovas and F. Pfenning. A bidirectional refinement type system for
LF. In Proceedings of LFMTP, 2007.

[37] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling objects,
relations and XML in the .NET framework. In Proceedings of
SIGMOD, 2007.

[38] J. Meng and L. C. Paulson. Translating higher-order problems to
first-order clauses. Journal of Automated Reasoning, 40(1):35–60,
2008.

[39] B. Meyer. Eiffel: the language. Prentice Hall, 1992.

[40] B. Nordström and K. Petersson. Types and specifications. In IFIP’83,
1983.

[41] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[42] B. Pierce and D. Turner. Local type inference. In Proceedings of
POPL, 1998.

[43] B. C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon
University, 1991.

[44] V. Pratt. Five paradigm shifts in programming language design and
their realization in Viron, a dataflow programming environment. In
Proceedings of POPL, 1983.

[45] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2, 2006.

[46] J. C. Reynolds. Design of the programming language Forsythe. In
Algol-Like Languages, chapter 8. Birkhäser, 1996.

[47] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Proceedings
of PLDI, 2008.

[48] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications:
Predicate subtyping in PVS. IEEE Transactions on Software
Engineering, 24(9):709–720, 1998.

[49] V. Saraswat, N. Nystrom, J. Palsberg, and C. Grothoff. Constrained
types for object-oriented languages. In Proceedings of OOPSLA,
2008.

[50] J. Siméon and P. Wadler. The essence of XML. In Proceedings of
POPL, 2003.

[51] M. Sozeau. Subset coercions in Coq. In Proceedings of TYPES, 2006.

[52] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In Proceedings of POPL, 2008.

[53] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proceedings of POPL, 1999.

22 2010/4/19

http://yices.csl.sri.com/tool-paper.pdf

	Introduction
	Programming with Type-Test and Refinement
	An Opportunity: SMT as a Platform
	Semantic Subtyping with an SMT Solver
	Background: DSLs and Systems Modeling
	Contributions of the Paper
	Structure of the Paper

	Syntax and Operational Semantics
	Expressions and Types
	Operational Semantics
	Pure Expressions and Refinement Types
	Derived Types

	Logical Semantics
	Declarative Type System
	Algorithmic Aspects
	Optimizing the Logical Semantics
	Bidirectional Typing Rules
	Algorithmic Purity Check

	Exploiting SMT Models
	Precise Counterexamples to Type-checking
	Finding Elements of Types Statically
	Finding Elements of Types Dynamically

	Implementation
	Safe Systems Configurations by Typing
	Representing XML Data
	Types for Safe Configurations

	Related Work
	Conclusions
	Relating Operational and Logical Semantics
	Mechanized Definition of the Intended Dminor Model
	Values
	Operations on Simple Values
	Operations on Entities
	Operations on Collections

	Axiomatization of the Dminor Model
	Values
	Operations on Simple Values
	Operations on Entities
	Operations on Collections

	Algorithmic Purity Check
	Proofs

