
APRIL 2011 | vOL. 54 | nO. 4 | CommuniCations oF the aCm 49

fuELEd BY Th EIR promise to solve the problem of
distilling valuable information and business insight
from big data in a scalable and programmer-friendly
way, noSQL databases have been one of the hottest
topics in our field recently. With a plethora of
open source and commercial offerings (Membase,

CouchDB, Cassandra, MongoDB,
Riak, Redis, Dynamo, BigTable, Ha-
doop, Hive, Pig, among others) and a
surrounding cacophony of technical
terms (Paxos, CAP, Merkle trees, gos-
sip, vector clocks, sloppy quorums,
MapReduce, and so on), however, it is
hard for businesses and practitioners
to see the forest for the trees. The cur-
rent noSQL market satisfies the three
characteristics of a monopolistically
competitive market: the barriers to
entry and exit are low; there are many
small suppliers; and these suppliers
produce technically heterogeneous,
highly differentiated products.12 Mo-

nopolistically competitive markets
are inconsistent with the conditions
for perfect competition. Hence in the
long run monopolistically competitive
firms will make zero economic profit.

In the early 1970s, the database
world was in a similar sorry state.14 An
overabundance of database products
exposed many low-level implementa-
tion details and, as database people
like to say, forced programmers to
work at the physical level instead of the
logical level. The landscape changed
radically when Ted Codd proposed a
new data model and a structured query
language (SQL) based on the math-

a Co-Relational
model of Data
for Large
shared
Data Banks

Doi:10.1145/1924421.1924436

 Article development led by
 queue.acm.org

Contrary to popular belief, SQL and noSQL
are really just two sides of the same coin.

By eRiK meiJeR anD GaVin BieRman

50 communications of the acm | april 2011 | vol. 54 | no. 4

practice

ematical concept of relations and for-
eign-/primary-key relationships.4 In
the relational model, data is stored in
conceptually simple containers (tables
of rows), and queries over this data are
expressed declaratively without knowl-
edge of the underlying physical storage
organization.

Codd’s relational model and SQL al-
lowed implementations from different
vendors to be (near) perfect substitutes,
and hence provided the conditions for
perfect competition. Standardizing on

the relational model and SQL created
a secondary network effect around
complementary producers such as
educators, tool vendors, consultants,
etc., all targeting the same underlying
mathematical principles. Differences
between actual relational database
implementations and SQL dialects be-
came to a large extent irrelevant.7

Today, the relational database mar-
ket is a classic example of an oligopoly.
The market has a few large players (Or-
acle, IBM, Microsoft, MySQL), the bar-

riers to entry are high, and all existing
SQL-based relational database prod-
ucts are largely indistinguishable. Oli-
gopolies can retain high profits in the
long run; today the database industry
is worth an estimated $32 billion and
still growing in the double digits.

In this article we present a mathe-
matical data model for the most com-
mon noSQL databases—namely, key/
value relationships—and demonstrate
that this data model is the mathemati-
cal dual of SQL’s relational data model
of foreign-/primary-key relationships.
Following established mathematical
nomenclature, we refer to the dual
of SQL as coSQL. We also show how a
single generalization of the relational
algebra over sets—namely, monads
and monad comprehensions—forms
the basis of a common query language
for both SQL and noSQL. Despite
common wisdom, SQL and coSQL are
not diabolically opposed, but instead
deeply connected via beautiful math-
ematical theory.

Just as Codd’s discovery of rela-
tional algebra as a formal basis for SQL
shifted the database industry from a
monopolistically competitive market
to an oligopoly and thus propelled a
billion-dollar industry around SQL and
foreign-/primary-key stores, we believe
that our categorical data-model formal-
ization and monadic query language
will allow the same economic growth
to occur for coSQL key-value stores.

objects Versus tables
To set the scene let’s look at a simple
example of products with authors and
recommendations as found in the Am-
azon SimpleDB samples, and imple-
ment it using both object graphs and
relational tables.

While we don’t often think of it this
way, the RAM for storing object graphs
is actually a key-value store where keys
are addresses (l-values) and values are
the data stored at some address in
memory (r-values). Languages such as
C# and Java make no distinction be-
tween r-values and l-values, unlike C or
C++, where the distinction is explicit.
In C, the pointer dereference opera-
tor *p retrieves the value stored at ad-
dress p in the implicit global store. In
the rest of this article we conveniently
confuse the words object (graph) and
key-value store.

figure 1. object graph for Products collection.

Title

0

0

0

1

1

2Chars

The right Stuff

Chars

Book

Chars

Hardcover

Chars

american

Chars

4 stars

Chars

* * * *

Chars

Tom Wolfe

author Year

1979

pages

320

Keywords ratings

1

figure 2. object graph result for books with four star rating.

Title

0

0 1 2Chars

The right Stuff

Chars

Book

Chars

Hardcover

Chars

american

Keywords

Title

0

0

Chars

4 stars

Chars

* * * *

Chars

Tom Wolfe

author Year

1979

pages

320

Keywords ratings

practice

APRIL 2011 | vOL. 54 | nO. 4 | CommuniCations oF the aCm 51

and Ratings. Later we will decorate
these class declarations with additional
metadata to reflect the underlying data-
base tables.

In most commercial relational data-
base systems, tables are defined by exe-
cuting imperative CREATE TABLE DDL
(data definition language) statements.

As usual in the relational world,
we do not model the individual col-
lections of keywords and ratings for
each product as separate entities, but
instead we directly associate multiple
keywords and ratings to a particular
product. This shortcut works only for
one-to-many relationships. The stan-
dard practice for many-to-many rela-
tionships (multivalued functions) re-
quires intersection tables containing
nothing but pairs of foreign keys to
link the related rows.

Perhaps surprisingly for a “declara-
tive” language, SQL does not have ex-
pressions that denote tables or rows
directly. Instead we must fill the three
tables in an imperative style using
loosely typed DML statements, which
we express in C# as shown in Figure 4.

These DML statements create three
tables filled with the rows as shown in
Figure 5.

An important consequence of nor-
malizing a single type into separate
tables is that the database must main-

In C# (or any other modern ob-
ject-oriented language) we can model
products using the following class dec-
laration, which for each product has
scalar properties for title, author, pub-
lication date, and number of pages,
and which contains two nested collec-
tions—one for keywords and another
for ratings:

class Product

{

 string Title;

 string Author;

 int Year;

 int Pages;

 IEnumerable<string> Keywords;

 IEnumerable<string> Ratings;

}

Given this class declaration, we can
use object initializers to create a prod-
uct and insert it into a collection using
collection initializers:

var _ 1579124585 = new Product

{

 Title = “The Right Stuff”,

 Author = “Tom Wolfe”,

 Year = 1979,

 Pages = 320,

 Keywords = new[]{ “Book”, “Hardcover”,

“American” },

 Ratings = new[]{ “****”, “4 stars” },

}

var Products = new[]{ _ 1579124585 };

The program produces in memory
the object graph shown in Figure 1.

Note that the two nested collections
for the Keywords and Ratings prop-
erties are both represented by actual
objects with their own identity.

Using the LINQ (Language Inte-
grated Query) comprehension syntax
introduced in C# 3.0,11 we can find the
titles and keywords of all products that
have four-star ratings using the follow-
ing query:

var q = from product in Products

 where product.Ratings.Any(rating

 rating == “****”)

 select new{ product.Title, prod

 uct.Keywords };

 The LINQ comprehension syntax is
just syntactic sugar for a set of standard
query operators that can be defined in
any modern programming language
with closures, lambda expressions

(written here as rating==>rating ==
“****”), or inner-classes such as Objec-
tive-C, Ruby, Python, JavaScript, Java,
or C++. The C# compiler translates the
previous query to the following de-sug-
ared target expression:

var q = Products.Where(product==>

 product.Ratings.

Any(rating rat-

ing == “****”)).

Select(product==>

 new{ product.Title, product.

Keywords });

The various values in the query re-
sult, in particular the Keywords col-
lection, are fully shared with the origi-
nal object graph, and the result is a
perfectly valid object graph, shown in
Figure 2.

Now let’s redo this example using
the relational model. First of all, we
must normalize our nested Product
class into three flat tables, for Prod-
ucts, Keywords, and Ratings respec-
tively, as shown in Figure 3. Each value
in the relational world requires a new
primary key property (here all called
ID). Furthermore, the Keywords and
Ratings tables require an additional
foreign-key property ProductID that
encodes the one-to-many association
between Products and Keywords

Figure 3. Data declaration for Product database.

class Products
{
 int ID;
 string Title;
 string Author;
 int Year;
 int Pages;
}

class Keywords
{
 int ID;
 string Keyword;
 int ProductID;
}

class Ratings
{
 int ID;
 string Rating;
 int ProductID;
}

Figure 4. inserting values into Product database.

Products.Insert
 (1579124585
 , “The Right Stuff”
 , “Tom Wolfe”
 , 1979
 , 320
);

Keywords.Insert
 (4711, “Book”
 , 1579124585
);
Keywords.Insert
 (1843, “Hardcover”
 , 1579124585
);
Keywords.Insert
 (2012, “American”
 , 1579124585
);

Ratings.Insert
 (787, “****”
 , 1579124585
);
Ratings.Insert
 (747, “4 stars”
 , 1579124585
);

52 CommuniCations oF the aCm | APRIL 2011 | vOL. 54 | nO. 4

practice

tain referential integrity to ensure that:
the foreign-/primary-key relationships
across related tables remain synchro-
nized across mutations to the tables
and rows; the primary key of every row
remains unique within its table; and
foreign keys always point to a valid pri-
mary key. For example, we cannot de-
lete a row in the Products table with-
out also deleting the related rows in the
Keywords and Ratings tables.

Referential integrity implies a
closed-world assumption where transac-
tions on the database are serialized by
(conceptually) suspending the world
synchronously, applying the required
changes, and resuming the world again
when referential integrity has been re-
stored successfully, rolling back any
chances otherwise. Assuming a closed
world is, as we claim, both a strength
and a weakness of the relational mod-
el. On the one hand, it simplifies the
life of developers via ACID (atomic-
ity, consistency, isolation, durability)
transactions (although in practice, for
efficiency, one must often deal with
much weaker isolation levels) and al-
lows for impressive (statistics-based)
query optimization. The closed-world
assumption, however, is in direct con-

tradiction with distribution and scale-
out. The bigger the world, the harder it
is to keep closed.

Returning to our example, we pres-
ent the naïve query to find the titles
and keywords of all products that have
four stars, expressed directly in terms
of the relational model. It creates the
cross-product of all possible combina-
tions of Products, Keywords, and
Ratings, and selects only the title and
keyword where the keyword and rating
are related to the product and the rat-
ing has four stars:

var q = from product in Products

 from rating in Ratings

 from keyword in Keywords

 where product.ID == rating.

ProductId

 && product.ID == keyword.

ProductID

 && rating == “****”

 select new{ product.Title,

keyword.Keyword };

The result of this query is the row
set shown in Figure 6. Disappointingly,
this row set is not itself normalized.

In fact, to return the normalized
representation of our object-graph
query, we need to perform two queries
(within a single transaction) against
the database: one to return the title
and its primary key, and a second query
that selects the related keywords.

What we observe here is SQL’s lack
of compositionality—the ability arbi-
trarily to combine complex values from
simpler values without falling outside
the system. By looking at the grammar
definition for table rows, we can imme-

diately see that SQL lacks composition-
ality; since there is no recursion, rows
can contain only scalar values:

row ::= new { …, name = scalar, … }

Compare this with the definition
for anonymous types, where a row can
contain arbitrary values, including oth-
er rows (or nested collections):

value ::= new { …, name = value, … }

| scalar

SQL is rife with noncompositional
features. For example, the semantics
of NULL is a big mess: why does add-
ing the number 13 to a NULL value,
13+NULL, return NULL, but summing
the same two values, SUM(13, NULL),
returns 13?

Also, even though query optimiz-
ers in modern SQL implementations
are remarkably powerful, the original
query will probably run in cubic time
when implemented via three nested
loops that iterate over every value in
the three tables. A seasoned SQL pro-
grammer would instead use explicit
join syntax to ensure that the query is
as efficient as our object-based query:

var q = from product in Products

 join rating in Ratings on

product.ID equals rating.

ProductId

 where rating == “****”

 select product into FourStar-

Products

 from fourstarproduct in

FourStarProducts

 join keyword in Keywords on

product.ID equals keyword.

ProductID

 select new{ product.Title,

keyword.Keyword };

Depending on the encoding of the
nesting of the result of a join using flat
result sets, the SQL programmer must
choose among various flavors of IN-
NER, OUTER, LEFT, and RIGHT joins.

impedance mismatch
In 1984 George Copeland and David
Maier recognized the impedance mis-
match between the relational and the
object-graph model just described,5
and in the quarter century since, we
have seen an explosion of O/R (object-

Figure 6. tabular result for books with
four-star ratings.

American

Keyword

Book

hardcover

Title

The Right Stuff

The Right Stuff

The Right Stuff

K
ey

w
or

d
s

Figure 5. Relational tables for Product database.

Id

787

747

Id

4711

1843

2012

Rating

* * * *

4 stars

American

Keyword

Book

hardcover

Title

The Right Stuff

Author

Tom Wolfe

Year

1979

Pages

304

ProductId

1579124585

1579124585

ProductId

1579124585

1579124585

1579124585

Id

1579124585

R
at

in
g

s
K

ey
w

or
d

s

P
ro

d
u

ct
s

practice

APRIL 2011 | vOL. 54 | nO. 4 | CommuniCations oF the aCm 53

to the relationship between Prod-
ucts and Ratings and Products
and Keywords, respectively. For each
product in the Products table, the rat-
ings index contains the collection of all
related ratings:

from rating in Ratings where rating.

ProductID == product.ID

select rating;

Similarly, for each product in the
Product table, the keywords index
contains the collection of all key-
words related to that product:

from keyword in Keywords where key-

word.ProductID == product.ID

select keyword;

If we visualize the indexes as addi-
tional columns on the Products table,
the reversal of the original relation-
ships between the tables becomes ap-
parent. Each row in the Products table
now has a collection of foreign keys
pointing to the Keywords and Ratings
tables much as the original object
graph, as shown in Figure 7.

One of the advantages touted for
normalization over hierarchical data is
the ability to perform ad-hoc queries—
that is, to join tables on conditions not
envisioned in the original data model.
For example, we could try to find all
pairs of products where the length of
the title of one product is the same as
the length of the author’s name in the
other using the following query:

from p1 in Products

from p2 in Products

where p1.Title.Length == p2.Author.

Length

select new{ p1, p2 };

relational) mappers that attempt to
bridge the gap between the two worlds.

A more skeptical view of O/R map-
pers is that they are undoing the dam-
age caused by normalizing the original
object model into multiple tables. For
our running example this means that
we have to add back information to
the various tables to recover the rela-
tionships that existed in the original
model. In this particular case we use
the LINQ-to-SQL custom metadata
annotations; other O/R mappers use
similar annotations, which often can
be inferred from naming conventions
of types and properties.

[Table(name=“Products”)]

class Product

{

 [Column(PrimaryKey=true)]int ID;

 [Column]string Title;

 [Column]string Author;

 [Column]int Year;

 [Column]int Pages;

 private EntitySet<Rating> _ Rat-

ings;

 [Association(Storage=“ _ Ratings”,

ThisKey=“ID”,OtherKey=“ProductID“

 ,DeleteRule=“ONDELETECASCADE”)]

 ICollection<Rating> Ratings{ … }

 private EntitySet<Keyword> _ Key-

words;

 [Association(Storage=“ _ Keywords”,

ThisKey=“ID”

 ,OtherKey=“ProductID”,

DeleteRule=“ONDELETECASCADE”)]

 ICollection<Keyword> Keywords{ … }

}

[Table(name=“Keywords”)]

class Keyword

{

 [Column(PrimaryKey=true)]int ID;

 [Column]string Keyword;

 [Column(IsForeignKey=true)]int Pro-

ductID;

}

[Table(name=“Ratings”)]

class Rating

{

 [Column(PrimaryKey=true)]int ID;

 [Column]string Rating;

 [Column(IsForeignKey=true)]int Pro-

ductID;

}

Note that the resulting object model

is necessarily more complex than we
started with since we are forced to in-
troduce explicit representations for
Rating and Keyword collections that
did not exist in our original object
model. The existence of the various
foreign- and primary-key properties is
further evidence that the O/R mapping
abstraction is leaky.

Aside from those small differences,
the net result of all this work is that
we can now write the query to find all
products nearly as concisely as we did
before normalization:

var q = from product in Products

 where product.Ratings.Any(rating

rating.Rating == “****”)

 select new{ product.Title, prod-

uct.Keywords };

Since the results must be rendered
as object graphs, the O/R mapper will
make sure that the proper nested re-
sult structures are created. Unfortu-
nately, not every O/R mapper does this
efficiently.9

It is not only the programmer who
needs to recover the original structure
of the code. The database implement-
er must also jump through hoops to
make queries execute efficiently by
building indexes that avoid the poten-
tial cubic effect that we observed ear-
lier. For one-to-many relationships,
indexes are nothing more than nested
collections resulting from precom-
puting joins between tables to quickly
find all the rows whose foreign keys
point to a row with a particular pri-
mary key. Since the relational model
is not closed under composition, how-
ever, the notion of index has to be de-
fined outside the model.

Two natural indexes correspond

Figure 7. Keyword and Ratings index on Products table.

Id

4711

1843

2012

Keywords

4711 1843 2012

Ratings

787 747

American

Keyword

Book

hardcover

Title

The Right Stuff

Author

Tom Wolfe

Year

1979

Pages

304

Id

1579124585

ProductId

1579124585

1579124585

1579124585

Id

787

747

Rating

* * * *

4 stars

ProductId

1579124585

1579124585

54 CommuniCations oF the aCm | APRIL 2011 | vOL. 54 | nO. 4

practice

Without an index, however, this
query requires a full table scan and
hence takes quadratic time in the
length of the Products table.

The ability to create indexes makes
a closed-world assumption. For exam-
ple, if we modify the previous ad-hoc
query to find all pairs of Web pages
where one page has a URL referencing
the other, it should be obvious that
building an index for this join is quite
a hard task when you do not have the
whole Web available inside a single
database:

from p1 in WWW

from p2 in WWW

where p2.Contains(p1.URL)

select new{ p1, p2 };

Summarizing what we have
learned so far, we see that in order
to use a relational database, start-
ing with a natural hierarchical object
model, the designer needs to normal-
ize the data model into multiple types
that no longer reflect the original in-
tent; the application developer must
reencode the original hierarchical
structure by decorating the normal-
ized data with extra metadata; and, fi-
nally, the database implementer has
to speed up queries over the normal-
ized data by building indexes that es-
sentially re-create the original nested
structure of the data as well.

identity of objects is intensional—that
is, object identity is not part of the
values themselves but determined
by their keys in the store. In the rela-
tional model, object identity is exten-
sional—that is, object identity is part
of the value itself, in the form of a pri-
mary key.

˲˲ Modulo the notion of object iden-
tity, the two representations are ex-
tremely similar; the only difference is
that the arrows are reversed!

At this point, it appears there is a
strong correspondence between these
two representations: they both con-
sist of a collection of elements (ob-
jects or rows) and a collection of ar-
rows between the elements, the only
difference being the direction of the
arrows. Is there some precise way of
describing such a situation? Fortu-
nately, there is an entire area of math-
ematics designed exactly for this: cat-
egory theory.1

Obviously, the precise formaliza-
tion of SQL and noSQL as categories is
outside the scope of this article, but it
is illustrative to learn a little bit of cate-
gory theory nonetheless. Category the-
ory arose from studies of mathemati-
cal structures and an attempt to relate
classes of structures by considering
the relations between them. Thus, cat-
egory theory expresses mathematical
concepts in terms of objects, arrows be-
tween objects, and the composition of

nosQL is cosQL
At this point it feels like the conceptual
dissonance between the key-value and
foreign-/primary-key data models is
insurmountable. That would be a pity
since clearly each has its strengths and
weaknesses. Wouldn’t it be great if we
could give a more mathematical expla-
nation of where the relational model
shines and where the object-graph
model works best? As it turns out, we
can find the answer to this question by
taking a closer look at the (in-memory)
structures created for our running ex-
ample in both models.

Let’s start by slightly simplifying the
object-graph example. We do so by re-
moving the object identity of the Rat-
ings and Authors collections to reflect
more directly how they are modeled in
the relational world. We inline the Key-
words and Ratings items directly into
the parent Product, as if we had value-
based collections. Pictorially, we move
from the diagram on the left to the one
on the right in Figure 8:

For the tabular representation, we
show explicit arrows for the relation-
ship from foreign keys to primary keys.
Again, pictorially, we move from the
diagram on the left to the one on the
right in Figure 9:

When we do a side-by-side compari-
son of the two rightmost diagrams, we
notice two interesting facts:

˲˲ In the object-graph model, the

Figure 8. object graph for Products collection with keywords and ratings inlined.

Title

The Right Stuff

Author

Tom Wolfe

Year

1979

Pages

320

Keywords Ratings

Title

0

0

0

1 2Chars

The Right Stuff

Chars

Book

Chars

Book
Chars

hardcover

Chars

hardcover

Chars

American

Chars

4 stars

Chars

4 stars

Chars

* * * *

Chars

* * * *
Chars

Tom Wolfe

Author Year

1979

Pages

320

Keywords Ratings

Chars

American

practice

APRIL 2011 | vOL. 54 | nO. 4 | CommuniCations oF the aCm 55

involve a computation, which in a truly
open world has potential latency and
may fail. For example, in the C# lan-
guage getters and setters, known as
properties, can invoke arbitrary code.
Perhaps an even better example of a
computation-driven key-value store
with long latency and high probabil-
ity of failure (always able to handle a
404) is the Web, with URI (Uniform
Resource Identifier) as keys, “resourc-
es” as values, and the HTTP verbs as
a primitive query and data-manipula-
tion language. On the other hand, in
a C-like key-value memory model, we
usually make the simplifying assump-
tion that a key lookup in memory takes
constant time and does not fail.

Traversing a relationship in the
closed world of the relational model in-
volves comparing two values for equal-
ity, which is guaranteed to succeed be-
cause of referential integrity; and vice
versa, referential consistency dictates
that relationships are value-based.
Otherwise, we could never be sure that
referential consistency actually holds.

Note that comparing keys by val-
ue requires that objects in the SQL
category are strongly typed, at least
enough to identify primary and for-
eign keys; and dually, since we do not
need to know anything about the value
of a coSQL object to find it using its
key, objects in the coSQL world can be
loosely typed.

Relationship to the Real World
Our abstract model of the SQL category
did not impose any restrictions on the

arrows, along with some axioms that
the composition of arrows should sat-
isfy. A computational view of category
theory is that it is a highly stylized,
compact functional language. Small
as it is, it’s enough to represent all of
mathematics. For computer scientists,
category theory has proved to be a rich
source of techniques that are readily
applicable to many real-world prob-
lems. For example, Haskell’s approach
to modeling imperative programming
is lifted straight from a categorical
model of the problem.

The first powerful concept from cat-
egory theory that we will use is duality.
Examples of duality abound in com-
puter science. Every programmer is
familiar with the two dual forms of De
Morgan’s law:

 !(a && b) == (!a)||(!b)

 !(a||b) == (!a)&&(!b)

Other examples of dualities in com-
puter science are between reference
counting and tracing garbage collec-
tion, between call-by-value and call-by-
name, between push- and pull-based
collections, and between transaction-
al memory and garbage collection,
among many others.

Formally, given a category C of ob-
jects and arrows, we obtain the dual
category co(C) by reversing all the ar-
rows in C. If a statement T is true in C,
then its dual statement co(T) is true
in the dual category co(C). In the con-
text of this article, we can read “oppo-
site statement” for “dual statement”.

In the SQL category, child nodes
point to parent nodes when the for-
eign key of a child node equals the
primary key of the parent node (Fig-
ure 10). In the noSQL category, the ar-
rows are reversed. Parent nodes point
to child nodes when the child pointer
in the parent equals the address of the
child node in the store (see Figure 11).

In other words, the noSQL category
is the dual of the SQL category—noSQL
is really coSQL. The implication of this
duality is that coSQL and SQL are not
in conflict, like good and evil. Instead
they are two opposites that coexist in
harmony and can transmute into each
other like yin and yang. Interestingly,
in Chinese philosophy yin symbolizes
open and hence corresponds to the
open world of coSQL, and yang sym-
bolizes closed and hence corresponds
to the closed world of SQL.

Because SQL and coSQL are math-
ematically dual, we can reason pre-
cisely about the tradeoffs between the
two instead of relying on rhetoric and
anecdotal evidence. The accompany-
ing table gives a number of statements
and their duals as they hold for SQL and
coSQL, respectively.

If we really take the duality to heart,
we may also choose to (but don’t have
to) fine-tune our model for key-value
stores to reflect the duality between
values and computations, and that
between synchronous ACID and asyn-
chronous BASE (basically available,
soft state, eventually consistent).13

Looking up a value given its ad-
dress or key in a key-value story can

Figure 9. Relational tables for Products database with explicit relationships.

Id

4711

1843

2012

Id

4711

1843

2012American

Keyword

Book

hardcover

American

Keyword

Book

hardcover

Title

The Right Stuff

Title

The Right Stuff

Author

Tom Wolfe

Author

Tom Wolfe

Year

1979

Year

1979

Pages

304

Pages

304

ProductId

1579124585

1579124585

1579124585

ProductId

1579124585

1579124585

1579124585

Id

1579124585

Id

1579124585

Id

787

747

Id

787

747

Rating

* * * *

4 stars

Rating

* * * *

4 stars

ProductId

1579124585

1579124585

ProductId

1579124585

1579124585

56 CommuniCations oF the aCm | APRIL 2011 | vOL. 54 | nO. 4

practice

structure of rows; we assumed only
that we could determine a primary or
foreign key to relate two rows.

In the typical relational model we
would further impose the constraint
that rows consist of flat sequences of
scalar values (the so-called First Nor-
mal Form, or 1-NF). If we dualize rela-
tions in 1-NF, then we get a key-value
model where values consist of either
scalars or keys or collections of scalars
or keys. Surprisingly, this is precisely
the Amazon SimpleDB data model (see
Figure 12).

If we assume that rows in the for-

eign-/primary-key model are simply
blobs and keys are strings, then the
dual key-value model is exactly the
HTML5 key-value storage model:

interface Storage {

 readonly attribute unsigned long

length;

 getter DOMString key(in unsigned

long index);

 getter any getItem(in DOMString

key);

 setter creator void setItem(in DOM-

String key, in any data);

 deleter void removeItem(in DOM-

String key);

 void clear();

}

a Little more Category theory
So far we have discussed the basic data
models for SQL and coSQL, but we
have not yet touched upon queries. By
applying a little more category theory
we can show how a single abstraction,
monads and monad comprehensions,
can be used as a unified query language
for both SQL and coSQL.

To talk about queries, we need to
be more precise about what we mean

by collections of values. Pure relation-
al algebra is based on sets of rows,
but actual relational databases use
multisets (bags) or ordered multisets
(permutations). To model collections
abstractly, we look at sets/bags/per-
mutations of rows and apply the cat-
egory theory dictum: “What is the in-
terface that these various collections
of rows implement?” and “How do we
generalize queries based on such an
interface?”

First, let us stick with simple set col-
lections. When we write a SQL query
such as

SELECT F(a,b)

FROM as AS a, bs AS b

WHERE P(a,b)

the SQL compiler translates that pretty
syntax into a relational-algebra expres-
sion in terms of selection, projection,
joins, and Cartesian product. As is the
custom in the relational world, the
various operations are denoted using
Greek symbols:

πF(σP(as×bs))

There is no reason to restrict the re-
lational algebra operators to work over
just sets (or bags, or permutations) of
rows. Instead, we can define similar
operators on any collection M<T> of
values of arbitrary type T.

The interface for such abstract col-
lections M<T> is a straightforward gen-
eralization of that of sets. It allows us
to create an empty collection using the
constant ∅; create a singleton collec-
tion of type M<T> given some value of
type T using the function {_} T→M<T>
(the notation T→M<T> denotes a func-
tion/closure/lambda expression that
maps an argument value of type T to
a result collection of type M<T>); and
combine two collections into a larger
collection using the binary operator ∪
(depending on the commutativity and
idempotence of ∪, we obtain the vari-
ous sorts of collections such as lists,
permutations, bags, and sets):

∅ Î M<T>
{_} Î T → M<T>
∪ Î M<T>×M<T> → M<T>

Using these constructors, we can
generalize the traditional relational

Figure 10. sQL arrow from child to parent.

C P

Figure 11. cosQL arrow from parent to
child.

C P

Consequences of the duality between sQL and cosQL.

sQL cosQL

Children point to parents Parents point to children

Closed world Open world

Entities have identity (extensional) Environment determines identity (intensional)

necessarily strongly typed Potentially dynamically typed

Synchronous (ACId) updates
across multiple rows

Asynchronous (BASE) updates within
single values

Environment coordinates changes
(transactions)

Entities responsible to react to changes
(eventually consistent)

value-based, strong reference
(referentially consistent)

Computation-based, weak reference
(expect 404)

not compositional Compositional

Query optimizer developer/pattern

Figure 12. amazon simpleDB representation of Products collection.

Book

Keyword

hardcover

American

Title

The Right Stuff

Author

Tom Wolfe

Year

1979

Pages

304

Rating

* * * *

4 stars

practice

APRIL 2011 | vOL. 54 | nO. 4 | CommuniCations oF the aCm 57

The openness of the coSQL model
eases scalable implementations across
large numbers of physically distribut-
ed machines.

When using LINQ to query SQL
databases, typically similar rows
are stored in tables of some con-
crete type that implements the
IQueryable<T> interface. Relation-
ships between rows are lifted to bulk
operations over collections that per-
form joins across these tables; hence,
queries take any number of related
tables and from those produce a new
one. Pictorially for three tables, this is
shown in Figure 13.

Because relationships in SQL cross
different tables, it is nontrivial to parti-
tion the single closed world into inde-
pendent worlds of “strongly connect-
ed” components that can be treated
independently. In a closed world, how-
ever, query optimizers can leverage all
the information and statistics that are
available about the various tables. This
allows users to write declarative que-
ries focusing on the “what” and letting
the system take care of the “how.”

In the coSQL case, a typical scenar-
io is to have a single collection of type
IQueryable<S> of (pointers to) self-
contained denormalized “documents”
of type S. In that case, queries have type
IQueryable<S> → R (see Figure 14).

When there are no cross-table rela-
tionships, collections {x0,x1,…,xn–1}
M<S> that are the source of coSQL que-
ries can be naturally horizontally par-
titioned, or sharded, into individual
subcollections {x0}∪{x1}∪…∪{xn–1},
and each such subcollection {xi}
can be distributed across various ma-
chines on a cluster.

For a large subset of coSQL que-
ries, the shape of the query closely
follows the shape of the data. Such ho-
momorphic queries map a collection
xs={x0}∪{x1}∪…∪{xn–1} to the value
f(x0)⊕f(x1)⊕…⊕f(xn-1)—that is, they
are of the form xs.Select(f).Ag-
gregate(⊕) for some function f Î

algebra operators (selection σP, pro-
jection πF, and Cartesian product ×) to
operate over generalized collections
using the following signatures:

σP Î M<T>×(T→bool) → M<T>
πF Î M<T>×(T→S) → M<S>
× Î M<T>×M<S> → M<T×S>

In fact, if we assume a single opera-
tor for correlated subqueries, which we
call SelectMany, but is often called
CROSS APPLY in SQL

SelectMany Î M<T>×(T→M<S>) → M<S>

then we can define the other operators
in terms of this single one, as follows:

σP(as) = SelectMany(as, a⇒P(a)?{a}:∅)

πF(as) = SelectMany(as, a⇒{F(a)})

as×bs = SelectMany(as,
a⇒π(b⇒(a,b),bs))

Rather incredibly, an interface of
this shape is well known in category
theory. It is called a monad, where the
type constructor M< _ > is a functor of
the monad; the constructor {_} is the
unit of the monad; SelectMany is
the bind of the monad; and ∅ and ∪
are the neutral element and addition,
respectively. For the rest of us, they
are just the signatures for methods
defined on an abstract interface for
collections.

This is no theoretical curiosity. We
can play the same syntactic tricks that
SQL does with relational algebra, but
using monads instead. Such monad
comprehensions have been recognized
as a versatile query language by both
functional programmers and database
researchers.8

LINQ queries are just a more famil-
iar SQL-like syntax for monad compre-
hensions. Instead of Greek symbols,
LINQ uses human-readable identifiers
such as xs.Where(P) for σP(xs) and
xs.Select(F) for πF(xs). To accom-
modate a wide range of queries, the
actual LINQ standard query operators
contain additional operators for aggre-
gation and grouping such as

Aggregate M<T>´(T´T→T) → T

GroupBy M<T>´(T→K) → M<K´M<T>>

Any data source that implements
the standard LINQ query operators

can be queried using comprehension
syntax, including both SQL and coSQL
data sources, as we show in the next
section.

The .NET framework defines a pair of
standard interfaces IEnumerable<T>
and IQueryable<T> that are often
implemented by data sources to sup-
port querying, but it is by no means
necessary to use these particular in-
terfaces. Other standard interfaces
that support LINQ query operators
include the IObservable<T> and
IQbservable<T> interfaces that
make it possible to use LINQ for com-
plex event processing.10

scalability and Distribution
In contrast to most treatments of
noSQL, we did not mention scalability
as a defining characteristic of coSQL.

Figure 13. Foreign key relationships
between three relational tables.

uTS

Figure 14. Collection of cosQL documents.

S

Figure 15. signature for mapReduce in DryadLinQ.

MapReduce Î IQueryable<S> // source
 x(S→IEnumerable<M>) // mapper
 x(M→K) // key selector
 x(KxIEnumerable<M>→R) // reducer
 →IQueryable<R>

58 CommuniCations oF the aCm | APRIL 2011 | vOL. 54 | nO. 4

practice

S→R and binary operator ⊕ Î R´R→R.
In fact, Richard Bird’s first homomor-
phism lemma3 says that any function
h Î M<S>→R is a homomorphism
with respect to ∪ if and only if it can
be factored into a map followed by a
reduce: h(xs) = xs.Select(f).Ag-
gregate(⊕). Mathematics dictates
that coSQL queries are performed us-
ing MapReduce.6

Practical implementations of Ma-
pReduce usually slightly generalize
Bird’s lemma to use SelectMany
instead of Select so that the map
phase can return a collection instead
of a single value, and insert an inter-
mediate GroupBy as a way to “write”
equivalence classes of values from the
map phase into the key-value store for
subsequent processing in the reduce
phase, and then aggregate over each
subcollection:

xs.SelectMany(f).GroupBy(s).Select((k,g)

⇒g.Aggregate(⊕k))

For example, DryadLINQ15 uses the
type PartitionedTable<S>:IQuer
yable<S> to represent the partitioned
input collection for LINQ queries and
then implements MapReduce over the
partitioned collection using the func-
tion illustrated in Figure 15.

In an open world where collections
are distributed across the network, it is
much harder for a query optimizer to
perform a global optimization taking
into account latency, errors, etc. Hence,
most coSQL databases rely on explicit
programmatic queries of a certain pat-
tern such as MapReduce that can be
executed reliably on the target physical
machine configuration or cluster.

Conclusion
The nascent noSQL market is ex-
tremely fragmented, with many com-
peting vendors and technologies. Pro-
gramming, deploying, and managing
noSQL solutions requires specialized
and low-level knowledge that does not
easily carry over from one vendor’s
product to another.

A necessary condition for the net-
work effect to take off in the noSQL
database market is the availability of a
common abstract mathematical data
model and an associated query lan-
guage for noSQL that removes product
differentiation at the logical level and

instead shifts competition to the phys-
ical and operational level. The avail-
ability of such a common mathemati-
cal underpinning of all major noSQL
databases can provide enough critical
mass to convince businesses, develop-
ers, educational institutions, etc. to
invest in noSQL.

In this article we developed a math-
ematical data model for the most
common form of noSQL—namely,
key-value stores as the mathematical
dual of SQL’s foreign-/primary-key
stores. Because of this deep and beau-
tiful connection, we propose chang-
ing the name of noSQL to coSQL.
Moreover, we show that monads and
monad comprehensions (i.e., LINQ)
provide a common query mechanism
for both SQL and coSQL and that
many of the strengths and weakness-
es of SQL and coSQL naturally follow
from the mathematics.

In contrast to common belief, the
question of big versus small data is
orthogonal to the question of SQL ver-
sus coSQL. While the coSQL model
naturally supports extreme sharding,
the fact that it does not require strong
typing and normalization makes it at-
tractive for “small” data as well. On the
other hand, it is possible to scale SQL
databases by careful partitioning.2

What this all means is that coSQL
and SQL are not in conflict, like good
and evil. Instead they are two opposites
that coexist in harmony and can trans-
mute into each other like yin and yang.
Because of the common query language
based on monads, both can be imple-
mented using the same principles.

acknowledgments
Many thanks to Brian Beckman, Jim-
my “the aggregator” Nilsson, Bedarra-
Dave Thomas, Ralf Lämmel, Torsten
Grust, Maarten Fokkinga, Rene Bouw,
Alexander Stojanovic, and the anony-
mous referee for their comments that
drastically improved the presentation
of this paper, and of course to Dave
Campbell for supporting work on all
cool things LINQ.

 Related articles
 on queue.acm.org

A Conversation with
Erik Meijer and Jose Blakeley
http://queue.acm.org/detail.cfm?id=1394137

BASE: An Acid Alternative
Dan Pritchett
http://queue.acm.org/detail.cfm?id=1394128

Bridging the Object-Relational Divide
Craig Russell
http://queue.acm.org/detail.cfm?id=1394139

References
1. awodey, s. Category Theory (2nd edition). oxford

university Press, 2010.
2. baker, J., bond, c. et al. Megastore: providing scalable,

highly available storage for interactive services.
Conference on Innovative Data Systems Research.
(2011).

3. bird, r. an introduction to the theory of lists. In Logic
Programming and Calculi of Discrete Design. M. broy,
ed. springer-Verlag (1987), 3–42.

4. codd, t. a relational model of data for large shared
data banks. Commun. ACM 13 (June 1970).

5. copeland, G.and Maier, d. Making smalltalk a
database system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.
1984.

6. Fokkinga, M. Mapreduce—a two-page explanation
for laymen; http://www.cs.utwente.nl/~fokkinga/
mmf2008j.pdf.

7. Ghosh, r.a. an economic basis for open standards
(2005); flosspols.org.

8. Grust, t. 2003. Monad comprehensions: a versatile
representation for queries. In The Functional
Approach to Data Management. P. Gray, l. kerschberg,
P. king, and a. Poulovassilis, eds. springer Verlag,
2003, 288–311.

9. Grust, t., rittinger, J., schreiber, t. avalanche-
safe lInQ compilation. Proceedings of the VLDB
Endowment 3 (1–2), 2010.

10. Meijer, e. subject/observer is dual to iterator.
Presented at FIt: Fun Ideas and thoughts at the
conference on Programming language design and
Implementation (2010); http://www.cs.stanford.edu/
pldi10/fit.html.

11. Meijer, e., beckman, b., bierman, G. lInQ: reconciling
objects, relations, and XMl in the .net framework.
Proceedings of the ACM SIGMOD International
Conference on Management of Data. acM, new york,
2006.

12. Pirayoff, r. Economics Micro & Macro. cliffs notes,
2004.

13. Pritchett, d. base: an acid alternative. ACM Queue
(July 2008).

14. stonebraker, M., hellerstein, J.M. what goes around
comes around. In Readings in Database Systems
(Fourth edition). M. stonebraker, and J.M. hellerstein,
eds. MIt Press, cambridge, Ma, 2005, 2–41.

15. yuan yu, M.I. dryadlInQ: a system for general-
purpose distributed data-parallel computing using a
high-level language. Operating Systems Design and
Implementation. 2008.

Erik Meijer (emeijer@microsoft.com) has been working
on “democratizing the cloud” for the past 15 years.
he is perhaps best known for his work on the haskell
language and his contributions to lInQ and the reactive
Framework (rx).

Gavin Bierman (gmb@microsoft.com) is a senior
researcher at Microsoft research cambridge focusing
on database query languages, type systems, semantics,
programming language design and implementation, data
model integration, separation logic, and dynamic software
updating.

© 2011 acM 0001-0782/11/04 $10.00

