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fuELEd BY  Th EIR  promise to solve the problem of 
distilling valuable information and business insight 
from big data in a scalable and programmer-friendly 
way, noSQL databases have been one of the hottest 
topics in our field recently. With a plethora of  
open source and commercial offerings (Membase, 

CouchDB, Cassandra, MongoDB, 
Riak, Redis, Dynamo, BigTable, Ha-
doop, Hive, Pig, among others) and a 
surrounding cacophony of technical 
terms (Paxos, CAP, Merkle trees, gos-
sip, vector clocks, sloppy quorums, 
MapReduce, and so on), however, it is 
hard for businesses and practitioners 
to see the forest for the trees. The cur-
rent noSQL market satisfies the three 
characteristics of a monopolistically 
competitive market: the barriers to 
entry and exit are low; there are many 
small suppliers; and these suppliers 
produce technically heterogeneous, 
highly differentiated products.12 Mo-

nopolistically competitive markets 
are inconsistent with the conditions 
for perfect competition. Hence in the 
long run monopolistically competitive 
firms will make zero economic profit.  

In the early 1970s, the database 
world was in a similar sorry state.14 An 
overabundance of database products 
exposed many low-level implementa-
tion details and, as database people 
like to say, forced programmers to 
work at the physical level instead of the 
logical level. The landscape changed 
radically when Ted Codd proposed a 
new data model and a structured query 
language (SQL) based on the math-
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ematical concept of relations and for-
eign-/primary-key relationships.4 In 
the relational model, data is stored in 
conceptually simple containers (tables 
of rows), and queries over this data are 
expressed declaratively without knowl-
edge of the underlying physical storage 
organization.

Codd’s relational model and SQL al-
lowed implementations from different 
vendors to be (near) perfect substitutes, 
and hence provided the conditions for 
perfect competition. Standardizing on 

the relational model and SQL created 
a secondary network effect around 
complementary producers such as 
educators, tool vendors, consultants, 
etc., all targeting the same underlying 
mathematical principles. Differences 
between actual relational database 
implementations and SQL dialects be-
came to a large extent irrelevant.7

Today, the relational database mar-
ket is a classic example of an oligopoly. 
The market has a few large players (Or-
acle, IBM, Microsoft, MySQL), the bar-

riers to entry are high, and all existing 
SQL-based relational database prod-
ucts are largely indistinguishable. Oli-
gopolies can retain high profits in the 
long run; today the database industry 
is worth an estimated $32 billion and 
still growing in the double digits. 

In this article we present a mathe-
matical data model for the most com-
mon noSQL databases—namely, key/
value relationships—and demonstrate 
that this data model is the mathemati-
cal dual of SQL’s relational data model 
of foreign-/primary-key relationships. 
Following established mathematical 
nomenclature, we refer to the dual 
of SQL as coSQL. We also show how a 
single generalization of the relational 
algebra over sets—namely, monads 
and monad comprehensions—forms 
the basis of a common query language 
for both SQL and noSQL. Despite 
common wisdom, SQL and coSQL are 
not diabolically opposed, but instead 
deeply connected via beautiful math-
ematical theory.  

Just as Codd’s discovery of rela-
tional algebra as a formal basis for SQL 
shifted the database industry from a 
monopolistically competitive market 
to an oligopoly and thus propelled a 
billion-dollar industry around SQL and 
foreign-/primary-key stores, we believe 
that our categorical data-model formal-
ization and monadic query language 
will allow the same economic growth 
to occur for coSQL key-value stores.

objects Versus tables
To set the scene let’s look at a simple 
example of products with authors and 
recommendations as found in the Am-
azon SimpleDB samples, and imple-
ment it using both object graphs and 
relational tables.

While we don’t often think of it this 
way, the RAM for storing object graphs 
is actually a key-value store where keys 
are addresses (l-values) and values are 
the data stored at some address in 
memory (r-values). Languages such as 
C# and Java make no distinction be-
tween r-values and l-values, unlike C or 
C++, where the distinction is explicit. 
In C, the pointer dereference opera-
tor *p retrieves the value stored at ad-
dress p in the implicit global store. In 
the rest of this article we conveniently 
confuse the words object (graph) and 
key-value store. 

figure 1. object graph for Products collection.

Title

0

0

0

1

1

2Chars

The right Stuff

Chars

Book

Chars

Hardcover

Chars

american

Chars

4 stars

Chars

* * * *

Chars

Tom Wolfe

author Year

1979

pages

320

Keywords ratings

1

figure 2. object graph result for books with four star rating. 
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and Ratings. Later we will decorate 
these class declarations with additional 
metadata to reflect the underlying data-
base tables.

In most commercial relational data-
base systems, tables are defined by exe-
cuting imperative CREATE TABLE DDL 
(data definition language) statements. 

As usual in the relational world, 
we do not model the individual col-
lections of keywords and ratings for 
each product as separate entities, but 
instead we directly associate multiple 
keywords and ratings to a particular 
product. This shortcut works only for 
one-to-many relationships. The stan-
dard practice for many-to-many rela-
tionships (multivalued functions) re-
quires intersection tables containing 
nothing but pairs of foreign keys to 
link the related rows.

Perhaps surprisingly for a “declara-
tive” language, SQL does not have ex-
pressions that denote tables or rows 
directly. Instead we must fill the three 
tables in an imperative style using 
loosely typed DML statements, which 
we express in C# as shown in Figure 4.

These DML statements create three 
tables filled with the rows as shown in 
Figure 5. 

An important consequence of nor-
malizing a single type into separate 
tables is that the database must main-

In C# (or any other modern ob-
ject-oriented language) we can model 
products using the following class dec-
laration, which for each product has 
scalar properties for title, author, pub-
lication date, and number of pages, 
and which contains two nested collec-
tions—one for keywords and another 
for ratings:

class Product

{    

 string Title;

 string Author;

 int Year;

 int Pages;

 IEnumerable<string> Keywords;

 IEnumerable<string> Ratings;

}

Given this class declaration, we can 
use object initializers to create a prod-
uct and insert it into a collection using 
collection initializers:

var _ 1579124585 = new Product

{

 Title = “The Right Stuff”,

 Author = “Tom Wolfe”,

 Year = 1979,

 Pages = 320,

  Keywords = new[]{ “Book”, “Hardcover”, 

“American” },

 Ratings = new[]{ “****”, “4 stars” },

}

var Products = new[]{ _ 1579124585 };

The program produces in memory 
the object graph shown in Figure 1.

Note that the two nested collections 
for the Keywords and Ratings prop-
erties are both represented by actual 
objects with their own identity. 

Using the LINQ (Language Inte-
grated Query) comprehension syntax 
introduced in C# 3.0,11 we can find the 
titles and keywords of all products that 
have four-star ratings using the follow-
ing query:

var q = from product in Products

     where product.Ratings.Any(rating  

      rating == “****”)

     select new{ product.Title, prod 

      uct.Keywords };

 The LINQ comprehension syntax is 
just syntactic sugar for a set of standard 
query operators that can be defined in 
any modern programming language 
with closures, lambda expressions 

(written here as rating==>rating == 
“****”), or inner-classes such as Objec-
tive-C, Ruby, Python, JavaScript, Java, 
or C++. The C# compiler translates the 
previous query to the following de-sug-
ared target expression:

var q = Products.Where(product==>

               product.Ratings.

Any(rating rat-

ing == “****”)).

Select(product==>

       new{ product.Title, product.

Keywords });

The various values in the query re-
sult, in particular the Keywords col-
lection, are fully shared with the origi-
nal object graph, and the result is a 
perfectly valid object graph, shown in 
Figure 2.

Now let’s redo this example using 
the relational model. First of all, we 
must normalize our nested Product 
class into three flat tables, for Prod-
ucts, Keywords, and Ratings respec-
tively, as shown in Figure 3. Each value 
in the relational world requires a new 
primary key property (here all called 
ID). Furthermore, the Keywords and 
Ratings tables require an additional 
foreign-key property ProductID that 
encodes the one-to-many association 
between Products and Keywords 

Figure 3. Data declaration for Product database.

class Products
{  
  int ID;
  string Title;
  string Author;
  int Year;
  int Pages;
}

class Keywords
{    
  int ID;
  string Keyword;
  int ProductID;
}

class Ratings
{    
  int ID;
  string Rating;
  int ProductID;
}

Figure 4. inserting values into Product database.

Products.Insert
  ( 1579124585
  , “The Right Stuff”
  , “Tom Wolfe”
  ,  1979
  ,  320
  );

Keywords.Insert
  ( 4711,  “Book”
  ,  1579124585
  );
Keywords.Insert
  ( 1843,  “Hardcover”
  ,  1579124585
  );
Keywords.Insert
  ( 2012,  “American”
  ,  1579124585
  ); 

Ratings.Insert
  ( 787,  “****”
  ,  1579124585
  );
Ratings.Insert
  ( 747,  “4 stars”
  ,  1579124585
  );
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tain referential integrity to ensure that: 
the foreign-/primary-key relationships 
across related tables remain synchro-
nized across mutations to the tables 
and rows; the primary key of every row 
remains unique within its table; and 
foreign keys always point to a valid pri-
mary key. For example, we cannot de-
lete a row in the Products table with-
out also deleting the related rows in the 
Keywords and Ratings tables.

Referential integrity implies a 
closed-world assumption where transac-
tions on the database are serialized by 
(conceptually) suspending the world 
synchronously, applying the required 
changes, and resuming the world again 
when referential integrity has been re-
stored successfully, rolling back any 
chances otherwise. Assuming a closed 
world is, as we claim, both a strength 
and a weakness of the relational mod-
el. On the one hand, it simplifies the 
life of developers via ACID (atomic-
ity, consistency, isolation, durability) 
transactions (although in practice, for 
efficiency, one must often deal with 
much weaker isolation levels) and al-
lows for impressive (statistics-based) 
query optimization. The closed-world 
assumption, however, is in direct con-

tradiction with distribution and scale-
out. The bigger the world, the harder it 
is to keep closed.

Returning to our example, we pres-
ent the naïve query to find the titles 
and keywords of all products that have 
four stars, expressed directly in terms 
of the relational model. It creates the 
cross-product of all possible combina-
tions of Products, Keywords, and 
Ratings, and selects only the title and 
keyword where the keyword and rating 
are related to the product and the rat-
ing has four stars:

var q =  from product in Products

         from rating in Ratings

   from keyword in Keywords 

    where product.ID == rating.

ProductId 

             && product.ID == keyword.

ProductID

            && rating == “****”

   select new{ product.Title, 

keyword.Keyword };

The result of this query is the row 
set shown in Figure 6. Disappointingly, 
this row set is not itself normalized.

In fact, to return the normalized 
representation of our object-graph 
query, we need to perform two queries 
(within a single transaction) against 
the database: one to return the title 
and its primary key, and a second query 
that selects the related keywords. 

What we observe here is SQL’s lack 
of compositionality—the ability arbi-
trarily to combine complex values from 
simpler values without falling outside 
the system. By looking at the grammar 
definition for table rows, we can imme-

diately see that SQL lacks composition-
ality; since there is no recursion, rows 
can contain only scalar values:

row ::= new { …, name = scalar, … }

Compare this with the definition 
for anonymous types, where a row can 
contain arbitrary values, including oth-
er rows (or nested collections):

value ::= new { …, name = value, … } 

| scalar

SQL is rife with noncompositional 
features. For example, the semantics 
of NULL is a big mess: why does add-
ing the number 13 to a NULL value, 
13+NULL, return NULL, but summing 
the same two values, SUM(13, NULL), 
returns 13?

Also, even though query optimiz-
ers in modern SQL implementations 
are remarkably powerful, the original 
query will probably run in cubic time 
when implemented via three nested 
loops that iterate over every value in 
the three tables. A seasoned SQL pro-
grammer would instead use explicit 
join syntax to ensure that the query is 
as efficient as our object-based query:

var q = from product in Products

         join rating in Ratings on 

product.ID equals rating.

ProductId 

         where rating == “****” 

         select product into FourStar-

Products

         from fourstarproduct in 

FourStarProducts

         join keyword in Keywords on 

product.ID equals keyword.

ProductID

         select new{ product.Title, 

keyword.Keyword };

Depending on the encoding of the 
nesting of the result of a join using flat 
result sets, the SQL programmer must 
choose among various flavors of IN-
NER, OUTER, LEFT, and RIGHT joins.

impedance mismatch
In 1984 George Copeland and David 
Maier recognized the impedance mis-
match between the relational and the 
object-graph model just described,5 
and in the quarter century since, we 
have seen an explosion of O/R (object-

Figure 6. tabular result for books with  
four-star ratings. 
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to the relationship between Prod-
ucts and Ratings and Products 
and Keywords, respectively. For each 
product in the Products table, the rat-
ings index contains the collection of all 
related ratings:

from rating in Ratings where rating.

ProductID == product.ID

select rating;

Similarly, for each product in the 
Product table, the keywords index 
contains the collection of all key-
words related to that product:

from keyword in Keywords where key-

word.ProductID == product.ID

select keyword;

If we visualize the indexes as addi-
tional columns on the Products table, 
the reversal of the original relation-
ships between the tables becomes ap-
parent. Each row in the Products table 
now has a collection of foreign keys 
pointing to the Keywords and Ratings 
tables much as the original object 
graph, as shown in Figure 7.

One of the advantages touted for 
normalization over hierarchical data is 
the ability to perform ad-hoc queries—
that is, to join tables on conditions not 
envisioned in the original data model. 
For example, we could try to find all 
pairs of products where the length of 
the title of one product is the same as 
the length of the author’s name in the 
other using the following query:

from p1 in Products

from p2 in Products

where p1.Title.Length == p2.Author.

Length

select new{ p1, p2 };

relational) mappers that attempt to 
bridge the gap between the two worlds. 

A more skeptical view of O/R map-
pers is that they are undoing the dam-
age caused by normalizing the original 
object model into multiple tables. For 
our running example this means that 
we have to add back information to 
the various tables to recover the rela-
tionships that existed in the original 
model. In this particular case we use 
the LINQ-to-SQL custom metadata 
annotations; other O/R mappers use 
similar annotations, which often can 
be inferred from naming conventions 
of types and properties.

[Table(name=“Products”)]

class Product

{    

 [Column(PrimaryKey=true)]int ID; 

 [Column]string Title;

 [Column]string Author;

 [Column]int Year;

 [Column]int Pages;

  private EntitySet<Rating> _ Rat-

ings;

  [Association( Storage=“ _ Ratings”, 

ThisKey=“ID”,OtherKey=“ProductID“

  ,DeleteRule=“ONDELETECASCADE”)]

  ICollection<Rating> Ratings{ … }

  private EntitySet<Keyword> _ Key-

words;

  [Association( Storage=“ _ Keywords”, 

ThisKey=“ID”

  ,OtherKey=“ProductID”, 

DeleteRule=“ONDELETECASCADE”)]

  ICollection<Keyword> Keywords{ … }

} 

[Table(name=“Keywords”)]

class Keyword

{    

 [Column(PrimaryKey=true)]int ID;

 [Column]string Keyword;

  [Column(IsForeignKey=true)]int Pro-

ductID;

}

[Table(name=“Ratings”)]

class Rating

{    

 [Column(PrimaryKey=true)]int ID;

 [Column]string Rating;

  [Column(IsForeignKey=true)]int Pro-

ductID;

}

Note that the resulting object model 

is necessarily more complex than we 
started with since we are forced to in-
troduce explicit representations for 
Rating and Keyword collections that 
did not exist in our original object 
model. The existence of the various 
foreign- and primary-key properties is 
further evidence that the O/R mapping 
abstraction is leaky.

Aside from those small differences, 
the net result of all this work is that 
we can now write the query to find all 
products nearly as concisely as we did 
before normalization:

var q = from product in Products 

      where product.Ratings.Any(rating 

rating.Rating == “****”)

      select new{ product.Title, prod-

uct.Keywords };

Since the results must be rendered 
as object graphs, the O/R mapper will 
make sure that the proper nested re-
sult structures are created. Unfortu-
nately, not every O/R mapper does this 
efficiently.9

It is not only the programmer who 
needs to recover the original structure 
of the code. The database implement-
er must also jump through hoops to 
make queries execute efficiently by 
building indexes that avoid the poten-
tial cubic effect that we observed ear-
lier.  For one-to-many relationships, 
indexes are nothing more than nested 
collections resulting from precom-
puting joins between tables to quickly 
find all the rows whose foreign keys 
point to a row with a particular pri-
mary key. Since the relational model 
is not closed under composition, how-
ever, the notion of index has to be de-
fined outside the model.

Two natural indexes correspond 

Figure 7. Keyword and Ratings index on Products table.
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Without an index, however, this 
query requires a full table scan and 
hence takes quadratic time in the 
length of the Products table. 

The ability to create indexes makes 
a closed-world assumption. For exam-
ple, if we modify the previous ad-hoc 
query to find all pairs of Web pages 
where one page has a URL referencing 
the other, it should be obvious that 
building an index for this join is quite 
a hard task when you do not have the 
whole Web available inside a single 
database:

from p1 in WWW

from p2 in WWW

where p2.Contains(p1.URL)

select new{ p1, p2 };

Summarizing what we have 
learned so far, we see that in order 
to use a relational database, start-
ing with a natural hierarchical object 
model, the designer needs to normal-
ize the data model into multiple types 
that no longer reflect the original in-
tent; the application developer must 
reencode the original hierarchical 
structure by decorating the normal-
ized data with extra metadata; and, fi-
nally, the database implementer has 
to speed up queries over the normal-
ized data by building indexes that es-
sentially re-create the original nested 
structure of the data as well.

identity of objects is intensional—that 
is, object identity is not part of the 
values themselves but determined 
by their keys in the store. In the rela-
tional model, object identity is exten-
sional—that is, object identity is part 
of the value itself, in the form of a pri-
mary key.

˲˲ Modulo the notion of object iden-
tity, the two representations are ex-
tremely similar; the only difference is 
that the arrows are reversed!

At this point, it appears there is a 
strong correspondence between these 
two representations: they both con-
sist of a collection of elements (ob-
jects or rows) and a collection of ar-
rows between the elements, the only 
difference being the direction of the 
arrows. Is there some precise way of 
describing such a situation? Fortu-
nately, there is an entire area of math-
ematics designed exactly for this: cat-
egory theory.1

Obviously, the precise formaliza-
tion of SQL and noSQL as categories is 
outside the scope of this article, but it 
is illustrative to learn a little bit of cate-
gory theory nonetheless. Category the-
ory arose from studies of mathemati-
cal structures and an attempt to relate 
classes of structures by considering 
the relations between them. Thus, cat-
egory theory expresses mathematical 
concepts in terms of objects, arrows be-
tween objects, and the composition of 

nosQL is cosQL
At this point it feels like the conceptual 
dissonance between the key-value and 
foreign-/primary-key data models is 
insurmountable. That would be a pity 
since clearly each has its strengths and 
weaknesses. Wouldn’t it be great if we 
could give a more mathematical expla-
nation of where the relational model 
shines and where the object-graph 
model works best? As it turns out, we 
can find the answer to this question by 
taking a closer look at the (in-memory) 
structures created for our running ex-
ample in both models.

Let’s start by slightly simplifying the 
object-graph example. We do so by re-
moving the object identity of the Rat-
ings and Authors collections to reflect 
more directly how they are modeled in 
the relational world. We inline the Key-
words and Ratings items directly into 
the parent Product, as if we had value-
based collections. Pictorially, we move 
from the diagram on the left to the one 
on the right in Figure 8:

For the tabular representation, we 
show explicit arrows for the relation-
ship from foreign keys to primary keys. 
Again, pictorially, we move from the 
diagram on the left to the one on the 
right in Figure 9:

When we do a side-by-side compari-
son of the two rightmost diagrams, we 
notice two interesting facts:

˲˲ In the object-graph model, the 

Figure 8. object graph for Products collection with keywords and ratings inlined.
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involve a computation, which in a truly 
open world has potential latency and 
may fail. For example, in the C# lan-
guage getters and setters, known as 
properties, can invoke arbitrary code. 
Perhaps an even better example of a 
computation-driven key-value store 
with long latency and high probabil-
ity of failure (always able to handle a 
404) is the Web, with URI (Uniform 
Resource Identifier) as keys, “resourc-
es” as values, and the HTTP verbs as 
a primitive query and data-manipula-
tion language. On the other hand, in 
a C-like key-value memory model, we 
usually make the simplifying assump-
tion that a key lookup in memory takes 
constant time and does not fail.

Traversing a relationship in the 
closed world of the relational model in-
volves comparing two values for equal-
ity, which is guaranteed to succeed be-
cause of referential integrity; and vice 
versa, referential consistency dictates 
that relationships are value-based. 
Otherwise, we could never be sure that 
referential consistency actually holds. 

Note that comparing keys by val-
ue requires that objects in the SQL 
category are strongly typed, at least 
enough to identify primary and for-
eign keys; and dually, since we do not 
need to know anything about the value 
of a coSQL object to find it using its 
key, objects in the coSQL world can be 
loosely typed. 

Relationship to the Real  World
Our abstract model of the SQL category 
did not impose any restrictions on the 

arrows, along with some axioms that 
the composition of arrows should sat-
isfy. A computational view of category 
theory is that it is a highly stylized, 
compact functional language. Small 
as it is, it’s enough to represent all of 
mathematics. For computer scientists, 
category theory has proved to be a rich 
source of techniques that are readily 
applicable to many real-world prob-
lems. For example, Haskell’s approach 
to modeling imperative programming 
is lifted straight from a categorical 
model of the problem.

The first powerful concept from cat-
egory theory that we will use is duality. 
Examples of duality abound in com-
puter science. Every programmer is 
familiar with the two dual forms of De 
Morgan’s law:

 !(a && b) == (!a)||(!b)

  !(a||b) == (!a)&&(!b)

Other examples of dualities in com-
puter science are between reference 
counting and tracing garbage collec-
tion, between call-by-value and call-by-
name, between push- and pull-based 
collections, and between transaction-
al memory and garbage collection, 
among many others. 

Formally, given a category C of ob-
jects and arrows, we obtain the dual 
category co(C) by reversing all the ar-
rows in C. If a statement T is true in C, 
then its dual statement co(T) is true 
in the dual category co(C). In the con-
text of this article, we can read “oppo-
site statement” for “dual statement”.

In the SQL category, child nodes 
point to parent nodes when the for-
eign key of a child node equals the 
primary key of the parent node (Fig-
ure 10). In the noSQL category, the ar-
rows are reversed. Parent nodes point 
to child nodes when the child pointer 
in the parent equals the address of the 
child node in the store (see Figure 11).

In other words, the noSQL category 
is the dual of the SQL category—noSQL 
is really coSQL. The implication of this 
duality is that coSQL and SQL are not 
in conflict, like good and evil. Instead 
they are two opposites that coexist in 
harmony and can transmute into each 
other like yin and yang. Interestingly, 
in Chinese philosophy yin symbolizes 
open and hence corresponds to the 
open world of coSQL, and yang sym-
bolizes closed and hence corresponds 
to the closed world of SQL. 

Because SQL and coSQL are math-
ematically dual, we can reason pre-
cisely about the tradeoffs between the 
two instead of relying on rhetoric and 
anecdotal evidence. The accompany-
ing table gives a number of statements 
and their duals as they hold for SQL and 
coSQL, respectively.

If we really take the duality to heart, 
we may also choose to (but don’t have 
to) fine-tune our model for key-value 
stores to reflect the duality between 
values and computations, and that 
between synchronous ACID and asyn-
chronous BASE (basically available, 
soft state, eventually consistent).13 

Looking up a value given its ad-
dress or key in a key-value story can 

Figure 9. Relational tables for Products database with explicit relationships.
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structure of rows; we assumed only 
that we could determine a primary or 
foreign key to relate two rows. 

In the typical relational model we 
would further impose the constraint 
that rows consist of flat sequences of 
scalar values (the so-called First Nor-
mal Form, or 1-NF). If we dualize rela-
tions in 1-NF, then we get a key-value 
model where values consist of either 
scalars or keys or collections of scalars 
or keys. Surprisingly, this is precisely 
the Amazon SimpleDB data model (see 
Figure 12).

If we assume that rows in the for-

eign-/primary-key model are simply 
blobs and keys are strings, then the 
dual key-value model is exactly the 
HTML5 key-value storage model:

interface Storage {

   readonly attribute unsigned long 

length;

   getter DOMString key(in unsigned 

long index);

   getter any getItem(in DOMString 

key);

   setter creator void setItem(in DOM-

String key, in any data);

   deleter void removeItem(in DOM-

String key);

  void clear();

}

a Little more Category theory
So far we have discussed the basic data 
models for SQL and coSQL, but we 
have not yet touched upon queries. By 
applying a little more category theory 
we can show how a single abstraction, 
monads and monad comprehensions, 
can be used as a unified query language 
for both SQL and coSQL.

To talk about queries, we need to 
be more precise about what we mean 

by collections of values. Pure relation-
al algebra is based on sets of rows, 
but actual relational databases use 
multisets (bags) or ordered multisets 
(permutations). To model collections 
abstractly, we look at sets/bags/per-
mutations of rows and apply the cat-
egory theory dictum: “What is the in-
terface that these various collections 
of rows implement?” and “How do we 
generalize queries based on such an 
interface?”

First, let us stick with simple set col-
lections. When we write a SQL query 
such as 

SELECT F(a,b)

FROM as AS a, bs AS b

WHERE P(a,b)

the SQL compiler translates that pretty 
syntax into a relational-algebra expres-
sion in terms of selection, projection, 
joins, and Cartesian product. As is the 
custom in the relational world, the 
various operations are denoted using 
Greek symbols:

πF(σP(as×bs))

There is no reason to restrict the re-
lational algebra operators to work over 
just sets (or bags, or permutations) of 
rows. Instead, we can define similar 
operators on any collection M<T> of 
values of arbitrary type T. 

The interface for such abstract col-
lections M<T> is a straightforward gen-
eralization of that of sets. It allows us 
to create an empty collection using the 
constant ∅; create a singleton collec-
tion of type M<T> given some value of 
type T using the function {_} T→M<T> 
(the notation T→M<T> denotes a func-
tion/closure/lambda expression that 
maps an argument value of type T to 
a result collection of type M<T>); and 
combine two collections into a larger 
collection using the binary operator ∪ 
(depending on the commutativity and 
idempotence of ∪, we obtain the vari-
ous sorts of collections such as lists, 
permutations, bags, and sets):

∅ Î M<T> 
{_} Î T → M<T>
∪ Î M<T>×M<T> → M<T>

Using these constructors, we can 
generalize the traditional relational 

Figure 10. sQL arrow from child to parent.

C P

Figure 11. cosQL arrow from parent to 
child.

C P

Consequences of the duality between sQL and cosQL.

sQL cosQL

Children point to parents Parents point to children

Closed world Open world

Entities have identity (extensional) Environment determines identity (intensional)

necessarily strongly typed Potentially dynamically typed

Synchronous (ACId) updates  
across multiple rows

Asynchronous (BASE) updates within  
single values

Environment coordinates changes  
(transactions)

Entities responsible to react to changes 
(eventually consistent)

value-based, strong reference  
(referentially consistent)

Computation-based, weak reference  
(expect 404)

not compositional Compositional

Query optimizer developer/pattern

Figure 12. amazon simpleDB representation of Products collection.
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The openness of the coSQL model 
eases scalable implementations across 
large numbers of physically distribut-
ed machines.

When using LINQ to query SQL 
databases, typically similar rows 
are stored in tables of some con-
crete type that implements the 
IQueryable<T> interface. Relation-
ships between rows are lifted to bulk 
operations over collections that per-
form joins across these tables; hence, 
queries take any number of related 
tables and from those produce a new 
one. Pictorially for three tables, this is 
shown in Figure 13.

Because relationships in SQL cross 
different tables, it is nontrivial to parti-
tion the single closed world into inde-
pendent worlds of “strongly connect-
ed” components that can be treated 
independently. In a closed world, how-
ever, query optimizers can leverage all 
the information and statistics that are 
available about the various tables. This 
allows users to write declarative que-
ries focusing on the “what” and letting 
the system take care of the “how.”

In the coSQL case, a typical scenar-
io is to have a single collection of type 
IQueryable<S> of (pointers to) self-
contained denormalized “documents” 
of type S. In that case, queries have type 
IQueryable<S> → R (see Figure 14).

When there are no cross-table rela-
tionships, collections {x0,x1,…,xn–1}  
M<S> that are the source of coSQL que-
ries can be naturally horizontally par-
titioned, or sharded, into individual 
subcollections {x0}∪{x1}∪…∪{xn–1}, 
and each such subcollection {xi} 
can be distributed across various ma-
chines on a cluster. 

For a large subset of coSQL que-
ries, the shape of the query closely 
follows the shape of the data. Such ho-
momorphic queries map a collection 
xs={x0}∪{x1}∪…∪{xn–1} to the value 
f(x0)⊕f(x1)⊕…⊕f(xn-1)—that is, they 
are of the form xs.Select(f).Ag-
gregate(⊕) for some function f Î 

algebra operators (selection σP, pro-
jection πF, and Cartesian product ×) to 
operate over generalized collections 
using the following signatures:

σP Î M<T>×(T→bool) → M<T>
πF Î M<T>×(T→S) → M<S> 
× Î M<T>×M<S> → M<T×S>

In fact, if we assume a single opera-
tor for correlated subqueries, which we 
call SelectMany, but is often called 
CROSS APPLY in SQL

SelectMany Î M<T>×(T→M<S>) → M<S>

then we can define the other operators 
in terms of this single one, as follows:

σP(as) = SelectMany(as, a⇒P(a)?{a}:∅)

πF(as) = SelectMany(as, a⇒{F(a)})

as×bs = SelectMany(as, 
a⇒π(b⇒(a,b),bs))

Rather incredibly, an interface of 
this shape is well known in category 
theory. It is called a monad, where the 
type constructor M< _ > is a functor of 
the monad; the constructor {_} is the 
unit of the monad; SelectMany is 
the bind of the monad; and ∅ and ∪ 
are the neutral element and addition, 
respectively. For the rest of us, they 
are just the signatures for methods 
defined on an abstract interface for 
collections. 

This is no theoretical curiosity. We 
can play the same syntactic tricks that 
SQL does with relational algebra, but 
using monads instead. Such monad 
comprehensions have been recognized 
as a versatile query language by both 
functional programmers and database 
researchers.8 

LINQ queries are just a more famil-
iar SQL-like syntax for monad compre-
hensions. Instead of Greek symbols, 
LINQ uses human-readable identifiers 
such as xs.Where(P) for σP(xs) and 
xs.Select(F) for πF(xs). To accom-
modate a wide range of queries, the 
actual LINQ standard query operators 
contain additional operators for aggre-
gation and grouping such as 

Aggregate M<T>´(T´T→T) → T 

GroupBy M<T>´(T→K) → M<K´M<T>>

Any data source that implements 
the standard LINQ query operators 

can be queried using comprehension 
syntax, including both SQL and coSQL 
data sources, as we show in the next 
section.

The .NET framework defines a pair of 
standard interfaces IEnumerable<T> 
and IQueryable<T> that are often 
implemented by data sources to sup-
port querying, but it is by no means 
necessary to use these particular in-
terfaces. Other standard interfaces 
that support LINQ query operators 
include the IObservable<T> and 
IQbservable<T> interfaces that 
make it possible to use LINQ for com-
plex event processing.10

scalability and Distribution
In contrast to most treatments of 
noSQL, we did not mention scalability 
as a defining characteristic of coSQL. 

Figure 13. Foreign key relationships  
between three relational tables.

uTS

Figure 14. Collection of cosQL documents.

S

Figure 15.  signature for mapReduce in DryadLinQ.

MapReduce Î IQueryable<S>   // source
 x(S→IEnumerable<M>)   // mapper
 x(M→K)    // key selector
 x(KxIEnumerable<M>→R)  // reducer
 →IQueryable<R>
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S→R and binary operator ⊕ Î R´R→R. 
In fact, Richard Bird’s first homomor-
phism lemma3 says that any function 
h Î M<S>→R is a homomorphism 
with respect to ∪ if and only if it can 
be factored into a map followed by a 
reduce: h(xs) = xs.Select(f).Ag-
gregate(⊕). Mathematics dictates 
that coSQL queries are performed us-
ing MapReduce.6 

Practical implementations of Ma-
pReduce usually slightly generalize 
Bird’s lemma to use SelectMany 
instead of Select so that the map 
phase can return a collection instead 
of a single value, and insert an inter-
mediate GroupBy as a way to “write” 
equivalence classes of values from the 
map phase into the key-value store for 
subsequent processing in the reduce 
phase, and then aggregate over each 
subcollection: 

xs.SelectMany(f).GroupBy(s).Select((k,g) 

⇒g.Aggregate(⊕k))

For example, DryadLINQ15 uses the 
type PartitionedTable<S>:IQuer
yable<S> to represent the partitioned 
input collection for LINQ queries and 
then implements MapReduce over the 
partitioned collection using the func-
tion illustrated in Figure 15. 

In an open world where collections 
are distributed across the network, it is 
much harder for a query optimizer to 
perform a global optimization taking 
into account latency, errors, etc. Hence, 
most coSQL databases rely on explicit 
programmatic queries of a certain pat-
tern such as MapReduce that can be 
executed reliably on the target physical 
machine configuration or cluster. 

Conclusion
The nascent noSQL market is ex-
tremely fragmented, with many com-
peting vendors and technologies. Pro-
gramming, deploying, and managing 
noSQL solutions requires specialized 
and low-level knowledge that does not 
easily carry over from one vendor’s 
product to another. 

A necessary condition for the net-
work effect to take off in the noSQL 
database market is the availability of a 
common abstract mathematical data 
model and an associated query lan-
guage for noSQL that removes product 
differentiation at the logical level and 

instead shifts competition to the phys-
ical and operational level. The avail-
ability of such a common mathemati-
cal underpinning of all major noSQL 
databases can provide enough critical 
mass to convince businesses, develop-
ers, educational institutions, etc. to 
invest in noSQL.  

In this article we developed a math-
ematical data model for the most 
common form of noSQL—namely, 
key-value stores as the mathematical 
dual of SQL’s foreign-/primary-key 
stores. Because of this deep and beau-
tiful connection, we propose chang-
ing the name of noSQL to coSQL. 
Moreover, we show that monads and 
monad comprehensions (i.e., LINQ) 
provide a common query mechanism 
for both SQL and coSQL and that 
many of the strengths and weakness-
es of SQL and coSQL naturally follow 
from the mathematics.

In contrast to common belief, the 
question of big versus small data is 
orthogonal to the question of SQL ver-
sus coSQL. While the coSQL model 
naturally supports extreme sharding, 
the fact that it does not require strong 
typing and normalization makes it at-
tractive for “small” data as well. On the 
other hand, it is possible to scale SQL 
databases by careful partitioning.2

What this all means is that coSQL 
and SQL are not in conflict, like good 
and evil. Instead they are two opposites 
that coexist in harmony and can trans-
mute into each other like yin and yang. 
Because of the common query language 
based on monads, both can be imple-
mented using the same principles.
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