Inferring the Principal Type and the Schema
Requirements of an OQL Query

A. Trigoni and G.M. Bierman

University of Cambridge Computer Laboratory, UK

Abstract. In this paper, we present an inference algorithm for OQL
which both identifies the most general type of a query in the absence of
schema type information, and derives the minimum type requirements a
schema should satisfy to be compatible with this query. Our algorithm
is useful in any database application where heterogeneity is encoun-
tered, for example, schema evolution, queries addressed against multiple
schemata, inter-operation or reconciliation of heterogeneous schemata.
Our inference algorithm is technically interesting as it concerns an ob-
ject functional language with a rich semantics and complex type system.
More precisely, we have devised a set of constraints and an algorithm
to resolve them. Our resulting type inference system for OQL should be
useful in any open distributed, or even semi-structured, database envi-
ronment.

1 Introduction

The ODMG Standard [6] (hereafter referred to as simply the Standard) presents,
rather informally, some details of a type system for checking OQL queries using
type information about the classes, extents, named objects and query definitions
from a given database schema. Recently there have been some efforts to formalise
this type system [2,3]. This paper builds on our earlier work [3] and considers
the problem of inferring the most general type of an OQL query in the absence
of any schema information.
For example, consider the following OQL definition and query:

define Dept_Managers(dept) as
select e
from Employees as e
where e.position="manager" and e.department=dept;

select d
from Departments as d
where count(Dept_Managers(d))>5

This query yields those departments that have more than five managers. It is
interesting to notice that this information could be drawn by running the query
against databases with significantly different schemata. For instance, consider
schema A, which has two classes, Employee and Department, defined as follows.

class Employee (extent Employees) class Department (extent Departments)

{ attribute string name; { attribute string id;}
attribute string position;
attribute int year_of_birth;
attribute float salary;

attribute Department department;}

On the other hand, consider a second schema B, which has a class Employee and
a named collection object Departments of type List(int).

class Employee (extent Employees)

{ attribute string name;
attribute string position;
attribute int department;}

The query could potentially run against both A and B without causing any
type errors. In the case of schema A, the result of the query would be a bag of
Department objects. In a database with schema B, the result of the query would
be a bag of integers. Two vital questions arise at this point. First, how we can
draw limits, or put restrictions, on the properties of a schema, so that a certain
query is well-typed with respect to it? Second, what information we can derive
about the type of the result of the query, supposing that we have no specific
schema in mind? In this paper, we study these two questions in detail, but first
let us consider the setting where this could be important.

For example, this information could be exploited in distributed database
applications. Suppose we have time critical queries addressed against multiple
schemata. If frequent updates on parts of these schemata are likely to occur,
then many of the queries will inevitably fail to be executed. In order to avoid
this situation, we should register interest in specific updates of each schema
—at least in those that would affect the critical queries— and resolve the type
incompatibility in due course and not at the time the queries get executed.

Our work is equally useful in contexts where we need to achieve inter-
operation between heterogeneous sources. There has been a lot of research on
reconciling schemata with semantic heterogeneity [4,7]. One approach to this
problem identifies the semantic inconsistencies of the ontologies in different do-
mains and creates a global ontology that combines all of them. Another approach
identifies the intersection of domains where the inconsistencies occur and tries to
resolve them by introducing matching rules between them. In both cases, queries
that are initially written to be executed on one domain need to be rephrased
to fit the needs of more domains. Knowing the schema requirements of a query
and the schema mappings to a (global or just different) ontology, the task of
rephrasing queries becomes a trivial automatic process. Suppose that a group
of airline companies cooperate to create a single uniform system for booking
tickets. In order to do that they define a global ontology that is very close to
each of the distinct ontologies. Each query is initially phrased to conform to the
global ontology and is then transformed to appropriate queries addressed to the
individual schemata. The transformation is much easier to perform if besides the
schema mappings (from one ontology to the other), we are aware of the query

schema requirements. The latter effectively point out the exact mappings we
need to use.

This paper is organised as follows. In section 2 we recall our earlier [3] defi-
nition of a core OQL—a fragment of the language defined in the Standard, but
which has the same expressive power. We give a brief overview of the type sys-
tem of OQL, including the notion of subtyping. In section 3, we study the type
system of our inference model introducing a new relation between types, called
more specific. In section 4, we describe the kinds of constraints generated by our
type inference algorithm, and in section 5, we present an algorithm for resolving
these constraints. The core of our inference system, the inference rules, are given
in section 6. Finally, in section 7, we present the inference algorithm which yields
the most general type of a query along with its type schema requirements.

2 Core OQL

In this section we fix the syntax and type system for OQL. This is explained in
greater detail in an earlier paper [3]; space restrictions mean that here we simply
give the syntax for queries and definitions® in Figure 1. An OQL program
consists of a number (maybe zero) of named definitions followed by a query.

The syntax for OQL types is also given in Figure 1. In what follows we will
write Col(o), to denote an arbitrary collection type (set, bag, list or array), with
elements of type o.

Implicit in the ODMG model is a notion of subtyping; the underlying idea
is that o is said to be a subtype of 7, if a value of type ¢ can be used in any
context in which a value of type 7 is expected. This we shall write ¢ < 7 and
define as the least relation closed under the rules given in Figure 1.

We use the C symbol to denote single inheritance between two classes,
referred to in the Standard as the “derives from” relation. To simplify our pre-
sentation we do not consider interfaces.

An interesting feature of our subtype relation is the treatment of structures.
A type 0 = struct(1li:04,...,1n:0n) is considered to be a subtype of 7 =
struct(ly:7y,...,Ly:7y) if 7 is obtained from o by dropping some labels. (In
fact, we generalise this a little and also allow subtyping between the label types).
This so-called width-subtyping is an extension to the Standard, but we feel it
offers considerable flexibility.

The type system and the subtype relation are given in detail in an earlier
paper [3]. In that work, we aimed at deriving the type of an OQL query given
specific schema information. In order to do that, we defined typing judgements
of the form:

S;D;N;QFqo

where S are the class definitions, D are the persistent query definitions and
N are the named objects of a specific schema. Q represents the query typing

! Naturally as we are interested in inferring types we drop the requirement that defi-
nition parameters be explicitly typed.

Queriesq=b|f|i|c]|s
| x
| bag(q,...,q)|set(q,...,q)|1ist(q,...,q) |array(q,...,q)
| struct(l:q,...,1l:q)

| €(1:q,...,1:q9)|q.1|(C)q

| alallqinq|q()|a(g;---,q)

| forallxingq:q|existsxing:q

|

q binop q | unop(q)
select [distinct]q

from(gasx,---,qasx)
where q
[group by (1:q,---,1:q)]
[having q]
[order by (q asc|desc, - -+, q asc|desc)]
Definitions d ::= define x as q
| definex(x,...,x)asq

Here b, f, 1, ¢, s range over booleans, floats, integers, characters and strings respectively,
x is taken from a countable set of identifiers, 1 is taken from a countable set of labels,
and C ranges over a countable set of class names. We assume sets of unary and binary
operators, ranged over by unop and binop respectively.

Types o ::= int | float | bool | char | string | void
| ox---Xo—0
| bag(o)|set(o) |list(o) | array(o)
| struct(l:o,---,1:0)
| C

We assume a distinguished class name Object.
Sub-typing

ccc

. ——— Sub-Class
C < Object c<c
o1 <010 <o r<7 o<t
Sub-Fun — Sub-Coll

OLX Xog 3T< 01X - X0op =T Col(o) < Col(7)

o1<m -+ 0x < Tk
Sub-Struct
struct(li:01,...,1k: Ok, -+ -y Litn: Oxtn) < struct(li:7,. .., Lle: 7k)
o< o o < o
< Sub-Refl ~ Sub-Trans
c<o c<o

Fig. 1. Syntax, Types and Subtyping for Core OQL

environment, i.e. it contains the types of any free identifiers in q. A simple
example of the typing rules used to derive the type of a query is the following:

S;D;N;Q F q:list(o)
S;D;N; Q F first(q):o

First-list

In the current context, we have no information about the classes, the query
definitions, and the named objects, as we have no schema information. The
problem we address can thus be written ? F q: 7, i.e. given an arbitrary query q,
can we infer its type and the type of any supporting schemata?

3 Type and Schema Inference

In this section, we present the extended type system behind our inference al-
gorithm and a new relation between types called Generalisation-Specialisation
relation. We also discuss the notions of Least Upper Bound and Greatest Lower
Bound of two types that occur frequently in our inference algorithm.

3.1 Extended Type System

It turns out to be convenient to extend the notion of type given in Figure 1; an
example should make this clear. Consider the following:

define ql as select x from Students as x;
define q2 as set(first(Students));
ql union g2

Considering the query q1 union g2 first, we can infer immediately that q1 and
q2 should be either sets or bags of elements. To represent this we introduce
a new type constructor set/bag(—). Moreover, the elements of this collection
cannot be of a function type, since the Standard does not allow functions to
be members of a collection; thus we introduce the types nonfunctional and
function. From the definition q1 we infer that Students is some collection
(set, bag, list or array) of elements of any (non-functional) type. Considering
the definition q2 we can infer further information about Students. As it is the
argument of a first operation it must be an ordered collection, i.e. a list or an
array. Again we introduce a new type constructor list/array(—). In summary,
the algorithm should infer that Students is a list or an array of a nonfunctional
member type 7, and that the query q1 union q2 is of type bag(r).2

The above example motivates our need to extend the initial specific types
(given in Figure 1) with the following so-called general types.

{any, nonfunctional, atomic, orderable, int/float }U
{collection(r), set/bag(r),list/array(7), constructor(l;: ;) }U
{all types from the core type system with at

least one component type being a general type, e.g. set(any)}

%2 The Standard [§4.10.11] states that merging a set and a bag results in a bag.

where 7, 7; are specific or general types.
Given these general types the resulting type system is then as follows:

o = 1int | float | bool | char | string | void
gX--X0o 0
bag(o) | set(o) | list(o) | array(o) | struct(l: o, -, 1:0)
C

atomic | orderable | int/float
constructor(l:o,---,1l:0)

|

|

|

| any|nonfunctional

|

|

| collection(o)|set/bag(c)|list/array(o)

This extended type system (1) is coupled with the type hierarchy illustrated
in Figure 2. It is worth noting that the general types, which are the internal
nodes of the tree, are not types that can be found in a database schema, but
rather abstractions or families of types that encapsulate the common features of
their children.

collection

constructor

(boolean)(ordrrable) (o) (s) (tieg) (i)
(Cang) Cration) () (o) (o) (1) (o)

Fig. 2. Type Hierarchy

A type is said to be specific, if it can be derived by the type system given
in Figure 1. Otherwise, it is said to be general. All the leaves of the hierarchy
tree (in Figure 2) are specific types, if they are nullary (non parametric) types
(int, float, char, string, bool) or if they are parametric types with all the
parameter types being specific types (e.g. set(int)).

Given this more general type system, we need to extend our notion of subtyp-
ing given earlier. We define a new relation, GSR (Generalisation-Specialisation
Relationship). Given types o, 7, we write o C 7 to express that o is more specific

than 7.

osT 0,Co1-r0Cox TCT
GSR — Type - - ,GSR—Fun
ocCrT O1 X - X0xk—=TCOy X " X0 =T

coll; is child of colly o C 7
GSR — Coll

colly (o) C colly(T)

where colly, coll, are nodes in the sub-tree (figure 2) with root collection and
is child of signifies that coll, is a direct or indirect parent of coll; or that coll;
and coll, are the same.

constr; is child of constry o1 C 70k C 7%

GSR — Constr

constri(li:o1,..., ki Ok, .-y Lijn: Oxtn) C constra(Lle: 71, ..., L Tic)

where constr;, constr, are nodes in the sub-tree (figure 2) with root constructor,
and is child of signifies that comnstr, is a direct parent of constr; or constr; and
constr; are the same.

atom; is child of atomy

GSR — Atomic

atom; C atomp

where atom; and atomy are nodes in the sub-tree (figure 2) with root atomic and
is child of signifies that atom; is direct or indirect parent of atom; or atom; and
atomy are the same.

g1 Coy 02Co
GSR — Refl == SGSR—Trans

o1 Cos

ocCo

ocFETI ST

GSR — NonFun GSR — All
o C any

o C nonfunctional

Given this definition, we can define the Greatest Lower Bound (GLB) and
the Least Upper Bound (LUB) of two types 73 and 7». Insight into these con-
cepts can be gained through the following simple example. Consider the types
71 = set(atomic) and 7» = set/bag(int). The GLB of the two types is de-
rived by taking the most specific of the collection constructors, set, and the
most specific of the parameter types, int. Thus GLB(71,72) = set(int). Like-
wise, for the LUB, we take the most general of the two collection construc-
tors, set/bag, and the most general of the two parameter types, atomic. Thus,
LUB(71, T2) = set/bag(atomic).

We may now formally present GLB and LUB. In the following definitions, we
assume that constrj, constry are nodes in the sub-tree (figure 2) with root
constructor and that constr; is a child of constry; or constr; = constrs.
Moreover, coll; and coll, are nodes in the sub-tree (figure 2) with root collection
and coll; is a child of coll, or colly = coll,.

def . .
GLB(71,72) =1 if n C AT Catomic

LUB(71, 72) ity C atomic A 72 C atomicA
(there exists no 7’ s.t. (7" ZT AT CT AR CT ATCT))

def

GLB(constri (1i:01,. .., ki 0x), constra(li: oy, ..., lei 0k, . oy ligni Okyn)) =
constry (11:GLB(04, 0%), . . ., Li: GLB(0%, 0%), - - - , Litn: Oktn)
LUB(constry (11:01,. .., Lgi 0x), constra(li: 01, ..., L 0%,y -« o, Lign: Ohpn)) def

constry(1::LUB(01,01),. .., lx: LUB(0%, 0%))

GLB(colli(o1), collz(02)) def coll;(GLB(o1,02))

LUB(coll:(01), colly(02)) % coll,(LUB(os,02))

GLB(7y X -+* X Tx = 0,7 X - X Ty = 0') = LUB(71,7{) X - -- X LUB(7x, 7y) — GLB(o, ")

(
(
,) def
)

LUB(T4 X +++ X Te = 0,T{ X -+ X Ty — 0') = GLB(71,7{) X - - X LUB(7%, 7y) — LUB(0, 0")

f . . .
LUB(o, 7) E= any, if o C function A 7 C nonfunctional

LUB(o1,02) def nonfunctional, if V71,72.00 C 11 Ao2 C 2 AT # T2A
71,72 € {atomic, constructor(), collection(any)}

4 Type compatibility - Constraints

The inference algorithm we present in section 7 analyses an OQL construct
and infers the most general type of the query and the schema requirements
that should be satisfied so that the query is well-typed. Before being able to
present, the inference algorithm, we first discuss an important mechanism that
the algorithm is based upon—the generation of constraints. When the inference
algorithm analyses a certain query construct, it often infers several relations or
associations amongst the types of the query and its subqueries. These associa-
tions are given in the form of constraints.

For example, the analysis of a query q; union qs would generate the con-
straint that the type 7 of the query is the merge result of the types 7 and 7» of
the two subqueries, i.e. 7 = Merge Result(7y,72). In section 5, we show how this
constraint is simplified and is assimilated in the set of the existing constraints.

Analysing the query exists x in Customers: x.income > 40,000 our algo-
rithm generates the following constraints. First, it introduces the constraint
71 = Member _Type(7s), where 7y is the type of x and 7 is the type of Customers.
The type of x is expected to be the same as that of the members of the collection
Customers. Second, the constraint 73 = Constructor Member_Type(71, income)
is generated, where 73 is the type of x.income. This signifies that x is a construc-
tor type (a structure or a class) with at least one member income of type 3.
Another interesting constraint is that the types of x.income (73) and of the literal
40,000 (int) should be compatible in the sense that they than can be compared

for inequality. This is expressed by the constraint Greater Less_Than Compatible(7s, int).
Later, we will show how this constraint is simplified to the constraint 73 C
int/float.

In section 6, we give a set of inference rules, one for each query construct.
Each rule starts with an existing set of constraints and generates a number (pos-
sibly zero) of new constraints. The different kinds of constraints generated by
the rules in our inference algorithm are given below:

1. Equality_Compatible(7i,...,Ta) 6. To = Merge_Result (7, 72)

2. Greater_Less_Than _Compatible(7i,...,7s)|7. 7o = Distinct_Result(r)

3.7 =" 8. 7 = Member_Type(o)

4.1 Cm 9. 7 = Constructor_Member_Type(o, 1)
5. 7o = Arith Result(r,72)

We briefly explain the constraints used in our inference model. The constraint
Equality_Compatible(qy,...,qs) is analysed in section 4.1. The constraint
Greater Less_Than Compatible(qs, q2) is useful for ensuring typability for queries
like q;1 < ga. Type equality, and GSR, (Generalisation-Specialisation Relation-
ship) are handled by constraints 3 and 4. 7o = Arith Result(7y,72) is needed
for the type inference of queries of the form q; 0p g2 where op € {+, —, /, *}. Like-
wise, 7o = Merge Result(7y, 72) arises as a constraint from inferencing the type of
union, intersect or except query expressions. The constraint 7o = Distinct Result(7y)
implies that both 75 and 7; are collection types and the collection constructor
of 79 is the distinct equivalent of the collection constructor of 7. Moreover,
7 = Member_Type(o) implies that ¢ is a collection type and that 7 is the type
of its members. Finally, the constraint 7 = Constructor Member Type(c,1) is
used to denote that ¢ is a class or struct type with at least one member 1 of
type 7. If 0 is a class type then 1 can be any of its properties, relationships or
methods.

4.1 Collections - Membership Type Compatibility

The first two constraints refer to type compatibility w.r.t. equality or non-
equality comparison. These constraints arise in OQL constructs that involve
a merge of two or more elements, or a membership test. For instance, the first
constraint results from considering a query of the form set(qy,...,qn), which
includes the merge of n query results.

First of all, we should stress the fact that in order for two values (objects or
literals) to be eligible as members of the same collection, they should be eligible
for equality comparison. If two types are compatible (membership-wise), two val-
ues of these types may be members of a set. In order to insert an element into a
set, we need to test if its value is equal to any existing value. Thus, we need to en-
sure that these values have types which are compatible (equality-wise). Inversely,
if two types are compatible equality-wise, then their values may be inserted into
any collection, therefore these types are also compatible membership-wise.

The Standard [§4.10] defines recursively when two types are compatible, and
thus when elements of these types can be put in the same collection. The Stan-

dard then defines the notion of least upper bound (LUB) of two types to derive
the type of the collection elements. In a context where we need to check and
derive the type of a query based on specific type information (from a schema),
this approach is sufficient and straightforward. However, in our context, where
we aim to infer the type of a query without any schema information, the com-
patibility issue becomes more complicated. The use of LUB to infer the type of
a query like set(qy,...,qn) does not yield the appropriate result, for example
consider the following.

define ql as struct(x:12,y:30);
define g2 as element(select z from People as z where z.x=14);
set(ql,q2)

If we call the inference algorithm on q1 and g2 the inferred types (IT) would be
struct(x : int,y : int) and constructor(x : int) respectively. The least upper
bound of these two types is constructor(x : int). Thus, the inferred type of the
query set(ql,q2) would be set(constructor(x: int)).

However, the correct inferred type should be set(struct(x: int)), since we
may not merge objects and structures in the same collection, and therefore we
know that the constructor should be a struct and not a class.

To overcome this problem we define another relation between types, namely
CUB (Compatible Upper Bound). Intuitively, CUB combines the behaviour of both
LUB and GLB (Greatest Lower Bound). In the previous example, the CUB of the
two types IT(qi) and IT(qs) would be derived by taking the most specific of the
two constructor types (constructor and struct), but the least general of the
element types ((x : int) and (x : int,y : int)). Before we define CUB, we define
compatibility (Membership- or Equality- wise) for our typing system.

Compatibility is recursively defined as follows:

T is compatible with 7

— if ¢ is compatible with 7
and colly, colly € {collection,set/bag, list/array, set,bag, list,array}
and either the collection constructors are the same or one is child of the other
in the hierarchy tree then colly(o) is compatible with colly(7).

— Any two class types class name; and class name, are compatible.

— If 0y is compatible with 7, Vi=1,...,n
and constr;, constry € {constructor, struct}
and no labels other than 1;,...,1, are common in both constructor types
then constry(li:o4,...,1n:0n,111: 011, ..., Lix: 01x) and
constra(li:71,...,1n: Tn, Lot: To1, . - ., Loni Ton) are compatible.

— If g; is compatible with 7;, ¥V i = 1,...,n and class_name is a class type such
that Constructor Member Type(classname,1l;) =73, Vi=1,...,n, then
the types class name and constructor(ly:o1,...,1n: On, 111: 011, .., Lix: O1x)
are compatible, provided that no labels other than 1i,...,1, are common

members in the two types.
— If 0,7 € {atomic,orderable, int/float, int, float, char, string, bool}
and either they are the same, or one is a child of the other in the hierarchy

tree, or one is int and the other is float
then ¢ is compatible with 7.

— If either of the types is nonfunctional and the other type is not a function
type then these types are compatible.

— If either of two types is any, then these types are compatible.

Note that we do not define compatibility for function types, as no two func-
tion values may be members of the same collection or may be compared for
equality. Only the results of function application may be considered for compat-
ibility.

Given that two types are compatible (based on the recursive definition above),
their CUB is defined recursively and in accordance with the compatibility category
that they fall into.

— CUB(r,7) =T7.

If colly (o) is compatible with colly(7) and coll; is a child of (or the same

as) colly, then CUB(colly(o), colly(7)) = coll (CUB(o,T)).

— If the types 71 and 75 are class types, then CUB(7y, 73) is the least common
superclass of the two classes.

— If the types 0 = constry(1li:01,...,1n:0n,111: 011, - . ., L1x: 01x) and
7 = constra(14:71,. .., Ly: Tn, Lo1: To1, . . ., Log: Ton) are compatible,
where constr;, constry € {constructor, struct} then
CUB(o, 7) = constry(11: CUB(01, 1), - -, 1n: CUB(0n, Ta))-

— If 0 = classname; and Constructor_Member_Type(Class_na.mel, li) =0j,
Vi=1,...,nand 7 = constructor(ls:7y,..., 1 Tn, Lo1:To1, - - - , Log: Ton) then
CUB(o,7) is the least superclass of class name;, say class name,, satisfy-
ing the following condition: For all lg, lg is a property or a relationship
of classnamey, if Constructor Member Type(classnamey, 1)) = ¢; then
there exists k,1 <k <mn,s.t. 1} = 1y ACUP(7,0%) C ¢35,V j=1,...,m, m<n

— If ¢ is compatible with 7, then

1. if either of them is int/float or one is int and the other is float then
CUB(o,T) = int/float
2. else
CUB(o,T) = GLB(o, 7).
— If 0 = nonfunctional and 7 C nonfunctional then CUB(o,7) = 7.
— If 0 = any then, for any type 7, CUB(0,7) = 7.

As discussed earlier, the notion of CUB is used for the inference of the types of
queries like set(qy, . ..,qs). However, the OQL construct q; in g, raises another
issue of a slighly different nature. The Standard [§4.10.8.3] states that if the type
of g is coll(r) then the type of gq; should be 7. This is not the case in our con-
text. Suppose that the type of q, is inferred to be bag(struct(x: int, y: string));
then according to the Standard q; should have the type struct(x: int, y: string).
Since a value of type struct(x: int) could potentially be added in the collection
qo (that is, since struct(x:int) and struct(x:int,y:float) are compatible
types), there is no reason why q; could not be of type struct(x: int) or even
struct().

The same situation occurs when dealing with a collection of objects of dif-
ferent classes. Suppose lub_class(1li:0y,...,1,:0y) is the LUB of all classes of
the objects in the collection and Object is the most general class that all other
classes derive from (the top of the class hierarchy). We should be able to check
whether an object of type object_class(1}:0},...,1l:0h) is a member of the
collection, even if its class is not a subclass of lub_class(1;:01,...,1s:0p). This
allows more queries to (safely) type-check, for example:

select x
from People as x
where x.father in School_Teachers

does not type-check according to the Standard. In order to be type-correct,
x.father requires an explicit type cast, i.e. (School_Teacher)x.father. The
problem is that this query, despite being well-typed, can generate a run-time er-
ror (if the cast does not succeed). We choose not to enforce that x.father has a
type which is more specific than the member type or the collection School _Teachers.
Rather, we simply ensure that x.father could potentially be a member of
School_Teachers. To do this we add the constraint Equality Compatible(o,7),
where o is the type of x.father and 7 is the member type of School_Teachers.

5 Resolving constraints

Now that we have studied the kinds of constraints that are generated by our
inference algorithm, we can discuss how these constraints are resolved. When a
constraint is generated by an inference rule, it is added to the set of existing
constraints. If this was a simple insertion procedure, we would end up having a
huge set of constraints, that would include redundant and often incomprehensible
type information; there is obviously a need to resolve the inserted constraints.
Due to the complexity of the type system and the expressiveness of the language,
we have a wide variety of constraints, that cannot be solved using a standard
unification mechanism alone [10]. In our system, the insertion of a new constraint
in a set of existing constraints may have one of the following effects:

— A constraint is deleted, if it is always satisfied, e.g. the constraint
Equality Compatible(set(int), set(float))
is always true, so it does not need to be maintained.

— A constraint raises a type error or exception, if it is never satisfied, e.g.
set(Employee(name : string)) C list/array(Employee(name : string)).

— A constraint might be maintained as it is. This usually occurs when some of
the types involved are general; it may be that when refined, these types no
longer satisfy the constraint. Therefore, they must be preserved as required
schema information. For instance, if 73 C set/bag(7)V i =0, 1,2 are in the
set of already produced constraints, the constraint 7o = Merge Result (7, 7o)
needs to be preserved.

— A constraint is often simplified, i.e. replaced by one or more simpler con-
straints. For instance, the constraint set(o) = set(r) is replaced by the
simpler one o = 7.

— A constraint occasionally implies one or more constraints. The latter need
to be added to the set of constraints already produced. For example, the
constraint Greater Less_Than Compatible(7y, T) is inserted as a new con-
straint along with the implied constraints 3 C orderable and 7, C orderable.

The effect varies depending on the constraint kind, the types involved in the
constraint and the already existing constraints on these types. The details of the
constraint resolution algorithm will appear in [11].

It is worth pointing out that the resolution of constraints could take place
either at the time each constraint is generated (gradual resolution) or at the time
all the constraints have been produced (accumnulative resolution).

The gradual resolution is very simple, since it usually concerns the insertion
of a few constraints whose simplification (unification) is straightforward. If their
simplification produces new constraints then these are simplified as well, until
no more constraints are produced.

The accumulative resolution starts from the constraints of the form 7 = m.
It simplifies them to constraints of the form type_var = 7 and replaces type_var
by 7 in all other constraints that involve type_var. Then it proceeds to simplify
all other kinds of constraints. If a simplification leads to more constraints, the
latter are added to the set of unprocessed constraints and are simplified in due
course.

6 Type Inference Rules

Having explained the type system underlying our inference model and the various
constraints generated and resolved by our algorithm, we are now in a position
to present the backbone of our work, the inference rules. Note that there is a
single rule for each OQL construct, and, therefore, the use of the rules by the
inference algorithm is syntax driven. In the remainder of this section, we present
a substantial part of the inference rules; the complete set will be given in [11].

In the following rules, H signifies the type environment, that is H = {var; :
7}, and C denotes the constraints added so far. The inference rules for the literal
and the identifier queries are given first:

H;CF b:bool =C H;Cki:int = C H;CF f:float = C

H;CF c:char ==C H;CF s:string=C HU{xio};Ckxo=>C

There are several rules to deal with various collections (sets, bags, lists, ar-
rays). We just give one representative rule, that concerns the query construct
set(qi,...,qn). As expected, the rule generates a constraint that ensures that
the types of the queries are compatible equality-wise (or membership-wise). We
also give the rules for accessing the first, last or i-th member of an ordered col-
lection, as well as checking whether an element belongs in a certain collection.

The constraint Member_Type(o) = 7 denotes that o is a collection (set, bag, list
or array) with members of type 7.

H;CFqi:o1=>C1 ... H;Ch1 b Quion = Cp

H;C | set(qs,...,qn): set(CUB(oy,...,0q)) = Cn A {Equality_Compatible(oi,...,0n)}

H;CFqiio=C

H;C F first(qi): ¢ = C1 A {Member_Type(c) = ¢} A {o C list/array(¢)}
H;CFqi:o=C1 H;CiFqauT=Cs
H;C F aiaz2]: ¢ = C2 A {7 = int} A {Member_Type(c) = ¢} A {o C list/array(¢)}

H;CHaquiio=C1 H;CiFqa:m=Co

H;C + a1 in gz:bool = Cy A {Equality_Compatible(o, Member_Type(7))}

The rules for constructing a structure or an object, as well as for access-
ing a member of a structure or an object are given below. The constraint
Constructor Member _Type(o,) = 7 denotes that type o is a class or a structure
with a member called ¢ of type 7.

H;Crqi:o1=C1 ... H;Cni b Quion = Cp

H;C F class_name(li:qy,...,La: qq): class_name = C, A
{01 C Constructor_Member_Type(class_name,1;)} A...A
{on C Constructor_Member _Type(class_name, 1,)}

H;CFqiior=C1 ... H;Cho1 b Quion = Cp

H;C F struct(li:qi,...,1ln:Qn): struct(li: o1, ..., laion) = Cn

H;CtFqu:T = Ch

H;Ct+ q1.1:0 = C1 A {Constructor_Member_Type(r,1):0}

The inference rules for the existential and the universal quantification follow.
It is worth noting that the variable x is bound in query g to the member type
of the collection q;.
H;Ctai:ior = C1 HU{x:¢};C1F qaio2 = C2
H;C F exists x in q1: q2:bool = Cz A {2 = bool} A {Member_Type(o:) = ¢}

H;CFaiio1=C1 HU{x:¢};C1Fqero0=Ca

H;C +- forall x in qi: g2:bool = C2 A {02 = bool} A {Member_Type(o1) = ¢}

An interesting set of rules concerns the application of methods with or with-
out parameters. The inferred types of the queries used as arguments are not
constrained to be the same as the types of the parameters of the method in-
volved. They only need to be their subtypes.

H;CFqi:io=C
H;CFai(): ¢ = Ci A{o =unit — ¢}

H;CFqoioo=>Co ... H;Cno1 bk Quion = Cp

H;CFao(at,-)¢ =>CuA{oo=m1 X...XTn > ¢} A{o1 CTi} A...AN{ow C 0}

The rules concerning the query constructs q binop q or unop q are omitted

for space reasons. We finish by giving the rule for a simple select query; the
judgements dealing with a group by or an order by clause can be found in [11].

7

H;C l—q1:01 =C1
HU{x1:71};C1 F q2:02 = C2

HU{xi:71,. ., %n—1:Ta-1};Cn1 F qunion = Cy
HU{x1:71,...,%a:Ta}; Cn F qo1: 001 = Co1
HU{x1:71,...,%a:Ta}; Cor F qoo: 000 = Coo

H;C F select qoo fromqs as Xi,...,0qn @s X, Where qoi: bag(ooo) = Coo/A
{Member_Type(c1) = 71} A ... A {Member_Type(on) = Tu} A {001 = bool}

Inference Algorithm

Having given an overview of the type system, the constraints and the rules
involved in our inference model, we may now present the core of our work,
which is the inference algorithm. The algorithm takes as input a query q and
returns its inferred type, as well as a pair (H,C) of a type environment and its
constraints. This pair is a synopsis of the requirements a schema should satisfy
so that the query q can be executed against it without any type-errors.

1.

8

For each free variable var in the query ¢, H = H U {var:new_type_var}.
Initially C = {}.

. Based on the construct of the query q recursively apply the appropriate

inference rule.

Depending on the unification strategy, either simplify the constraints as soon
as they are produced (gradual unification) or simplify them all in the end
after having applied all the inference rules. If the unification process produces
a type-error then the query is not typable and the algorithm is interrupted.
The final H,C include the requirements a schema should have to be compat-
ible with the query q. The type of ¢, which is the type inferred by the outer
inference rule, also satisfies the constraints C.

Related Work and Conclusions

Fundamental to the work described in this report is the type system for ODMG
OQL described in an earlier paper [3]. Alagi¢ [2] independently gave a number

of typing rules for OQL; see our earlier paper for a comparison. The canonical
reference for work on type systems for database programming languages is the
work of Buneman and Ohori [5]. The goals of their type inference algorithm are
identical to ours; both approaches infer the most general type of an expression
(if one exists) without accessing any schema information, and in this sense deter-
mine the constraints placed on the schema by the query. However, the underlying
languages, the type systems, and some parts of the inference algorithms differ
considerably. Buneman and Ohori introduce kinded types to infer the type of a
record based on selections of fields on this record. Instead, we use the notion of
general types; in this way we are able to express general type information not
only for records, but also for parametric collection types, structures and classes.
Moreover, due to the syntax of OQL, we define a wider variety of constraints
than those introduced in their framework and therefore a different algorithm to
resolve them.

The work most related to ours arises from studying type systems for ob-
ject oriented programming languages, see for example [8,9, 1]. However none of
these studies consider the various issues arising from studying database type
systems; for example, the complications arising from combining parametric col-
lection types with subtyping.

Much research on schema evolution, schema inter-operation, distributed or
semi-structured database applications has pointed out that there is a need to
run queries in the presence of changing or heterogeneous schemata, or even in
the absence of specific schema information. Our work addresses this problem,
by proposing an inference algorithm for the ODMG query language OQL. This
algorithm infers the most general type of an OQL query and derives the schema
information required so that the query can be executed against it without any
type errors. In contrast to other work, we deal with a rather complex type
system, which includes atomic types, structures, classes, various (parameterised)
collection types (set, bag, list, array) and function types. This, in connection
with the rich semantics of OQL, results in the generation of a wide variety of
constraints by the inference rules. We discuss the semantics of these constraints
and provide a mechanism for their solution. Finally, we present a set of inference
rules for OQL, which is the core of our type inference algorithm. Based on our
experience, this algorithm, as well as all the formalisms prior to it, are easy to
implement, and hence, we believe that they could prove to be useful in many
applications.

Acknowledgements
Trigoni is funded by the State Scholarships Foundation of Greece and the Na-

tional Bank of Greece.

References

1. O. Agesen and U. Holzle. Type feedback vs. concrete type inference: a comparison
of optimization techniques for object-oriented languages. In OOPSLA, pages 91—

10.

11

107, 1995.

. S. Alagié¢. Type checking OQL queries in the ODMG type systems. ACM Trans-

actions on Database Systems, 24(3):319-360, September 1999.

G.M. Bierman and A. Trigoni. Towards a formal type system for ODMG OQL.
Technical Report 497, University of Cambridge, Computer Laboratory, October
2000.

. M.W. Bright, A.R. Hurson, and S. Pakzad. Automated resolution of semantic

heterogeneity in multidatabases. ACM Transactions on Database Systems, 19(2),
1994.

P. Buneman and A. Ohori. Polymorphism and type inference in database pro-
gramming. ACM Transactions on Database Systems, 21(1):30-76, March 1996.
R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In PODS, 1997.

J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In OOPSLA,
pages 146-161, 1991.

J. Plevyak and A.A. Chien. Precise concrete type inference for object-oriented
languages. In OOPSLA, pages 324-340, 1994.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, January 1965.

A. Trigoni. Phd thesis, to appear. 2001.

