
Inferring the Principal Type and the SchemaRequirements of an OQL QueryA. Trigoni and G.M. BiermanUniversity of Cambridge Computer Laboratory, UKAbstract. In this paper, we present an inference algorithm for OQLwhich both identi�es the most general type of a query in the absence ofschema type information, and derives the minimum type requirements aschema should satisfy to be compatible with this query. Our algorithmis useful in any database application where heterogeneity is encoun-tered, for example, schema evolution, queries addressed against multipleschemata, inter-operation or reconciliation of heterogeneous schemata.Our inference algorithm is technically interesting as it concerns an ob-ject functional language with a rich semantics and complex type system.More precisely, we have devised a set of constraints and an algorithmto resolve them. Our resulting type inference system for OQL should beuseful in any open distributed, or even semi-structured, database envi-ronment.1 IntroductionThe ODMG Standard [6] (hereafter referred to as simply the Standard) presents,rather informally, some details of a type system for checking OQL queries usingtype information about the classes, extents, named objects and query de�nitionsfrom a given database schema. Recently there have been some e�orts to formalisethis type system [2, 3]. This paper builds on our earlier work [3] and considersthe problem of inferring the most general type of an OQL query in the absenceof any schema information.For example, consider the following OQL de�nition and query:define Dept_Managers(dept) asselect efrom Employees as ewhere e.position="manager" and e.department=dept;select dfrom Departments as dwhere count(Dept_Managers(d))>5This query yields those departments that have more than �ve managers. It isinteresting to notice that this information could be drawn by running the queryagainst databases with signi�cantly di�erent schemata. For instance, considerschema A, which has two classes, Employee and Department, de�ned as follows.

class Employee (extent Employees) class Department (extent Departments){ attribute string name; { attribute string id;}attribute string position;attribute int year_of_birth;attribute float salary;attribute Department department;}On the other hand, consider a second schema B, which has a class Employee anda named collection object Departments of type List(int).class Employee (extent Employees){ attribute string name;attribute string position;attribute int department;}The query could potentially run against both A and B without causing anytype errors. In the case of schema A, the result of the query would be a bag ofDepartment objects. In a database with schema B, the result of the query wouldbe a bag of integers. Two vital questions arise at this point. First, how we candraw limits, or put restrictions, on the properties of a schema, so that a certainquery is well-typed with respect to it? Second, what information we can deriveabout the type of the result of the query, supposing that we have no speci�cschema in mind? In this paper, we study these two questions in detail, but �rstlet us consider the setting where this could be important.For example, this information could be exploited in distributed databaseapplications. Suppose we have time critical queries addressed against multipleschemata. If frequent updates on parts of these schemata are likely to occur,then many of the queries will inevitably fail to be executed. In order to avoidthis situation, we should register interest in speci�c updates of each schema{at least in those that would a�ect the critical queries{ and resolve the typeincompatibility in due course and not at the time the queries get executed.Our work is equally useful in contexts where we need to achieve inter-operation between heterogeneous sources. There has been a lot of research onreconciling schemata with semantic heterogeneity [4, 7]. One approach to thisproblem identi�es the semantic inconsistencies of the ontologies in di�erent do-mains and creates a global ontology that combines all of them. Another approachidenti�es the intersection of domains where the inconsistencies occur and tries toresolve them by introducing matching rules between them. In both cases, queriesthat are initially written to be executed on one domain need to be rephrasedto �t the needs of more domains. Knowing the schema requirements of a queryand the schema mappings to a (global or just di�erent) ontology, the task ofrephrasing queries becomes a trivial automatic process. Suppose that a groupof airline companies cooperate to create a single uniform system for bookingtickets. In order to do that they de�ne a global ontology that is very close toeach of the distinct ontologies. Each query is initially phrased to conform to theglobal ontology and is then transformed to appropriate queries addressed to theindividual schemata. The transformation is much easier to perform if besides theschema mappings (from one ontology to the other), we are aware of the query

schema requirements. The latter e�ectively point out the exact mappings weneed to use.This paper is organised as follows. In section 2 we recall our earlier [3] de�-nition of a core OQL|a fragment of the language de�ned in the Standard, butwhich has the same expressive power. We give a brief overview of the type sys-tem of OQL, including the notion of subtyping. In section 3, we study the typesystem of our inference model introducing a new relation between types, calledmore speci�c. In section 4, we describe the kinds of constraints generated by ourtype inference algorithm, and in section 5, we present an algorithm for resolvingthese constraints. The core of our inference system, the inference rules, are givenin section 6. Finally, in section 7, we present the inference algorithm which yieldsthe most general type of a query along with its type schema requirements.2 Core OQLIn this section we �x the syntax and type system for OQL. This is explained ingreater detail in an earlier paper [3]; space restrictions mean that here we simplygive the syntax for queries and de�nitions1 in Figure 1. An OQL programconsists of a number (maybe zero) of named de�nitions followed by a query.The syntax for OQL types is also given in Figure 1. In what follows we willwrite Col(�), to denote an arbitrary collection type (set, bag, list or array), withelements of type �.Implicit in the ODMG model is a notion of subtyping; the underlying ideais that � is said to be a subtype of � , if a value of type � can be used in anycontext in which a value of type � is expected. This we shall write � � � andde�ne as the least relation closed under the rules given in Figure 1.We use the v symbol to denote single inheritance between two classes,referred to in the Standard as the \derives from" relation. To simplify our pre-sentation we do not consider interfaces.An interesting feature of our subtype relation is the treatment of structures.A type � = struct(l1:�1; : : : ; lm:�m) is considered to be a subtype of � =struct(l1: �1; : : : ; ln: �n) if � is obtained from � by dropping some labels. (Infact, we generalise this a little and also allow subtyping between the label types).This so-called width-subtyping is an extension to the Standard, but we feel ito�ers considerable
exibility.The type system and the subtype relation are given in detail in an earlierpaper [3]. In that work, we aimed at deriving the type of an OQL query givenspeci�c schema information. In order to do that, we de�ned typing judgementsof the form: S;D;N ;Q ` q:�where S are the class de�nitions, D are the persistent query de�nitions andN are the named objects of a speci�c schema. Q represents the query typing1 Naturally as we are interested in inferring types we drop the requirement that de�-nition parameters be explicitly typed.

Queries q ::= b j f j i j c j sj xj bag(q; : : : ; q) j set(q; : : : ; q) j list(q; : : : ; q) j array(q; : : : ; q)j struct(l: q; : : : ; l: q)j C(l: q; : : : ; l: q) j q:l j (C)qj q[q] j q in q j q() j q(q; : : : ; q)j forall x in q: q j exists x in q: qj q binop q j unop(q)j select [distinct] qfrom (q as x; � � � ; q as x)where q[group by (l: q; � � � ; l: q)][having q][order by (q ascjdesc; � � � ; q ascjdesc)]De�nitions d ::= define x as qj define x(x; : : : ; x) as qHere b; f; i; c; s range over booleans,
oats, integers, characters and strings respectively,x is taken from a countable set of identi�ers, l is taken from a countable set of labels,and C ranges over a countable set of class names. We assume sets of unary and binaryoperators, ranged over by unop and binop respectively.Types � ::= int j float j bool j char j string j voidj � � � � � � � ! �j bag(�) j set(�) j list(�) j array(�)j struct(l: �; � � � ; l:�)j CWe assume a distinguished class name Object.Sub-typing TopC � Object C v C0 Sub-ClassC � C0�01 � �1 � � ��0k � �k � � � 0 Sub-Fun�1 � � � � � �k ! � � �01 � � � � � �0k ! � 0 � � � Sub-CollCol(�) � Col(�)�1 � �1 � � � �k � �k Sub-Structstruct(l1:�1; : : : ; lk:�k; : : : ; lk+n:�k+n) � struct(l1: �1; : : : ; lk: �k)Sub-Re
� � � � � �0 �0 � �00 Sub-Trans� � �00Fig. 1. Syntax, Types and Subtyping for Core OQL

environment, i.e. it contains the types of any free identi�ers in q. A simpleexample of the typing rules used to derive the type of a query is the following:S;D;N ;Q ` q: list(�) First-listS;D;N ;Q ` first(q):�In the current context, we have no information about the classes, the queryde�nitions, and the named objects, as we have no schema information. Theproblem we address can thus be written ? ` q: ?, i.e. given an arbitrary query q,can we infer its type and the type of any supporting schemata?3 Type and Schema InferenceIn this section, we present the extended type system behind our inference al-gorithm and a new relation between types called Generalisation-Specialisationrelation. We also discuss the notions of Least Upper Bound and Greatest LowerBound of two types that occur frequently in our inference algorithm.3.1 Extended Type SystemIt turns out to be convenient to extend the notion of type given in Figure 1; anexample should make this clear. Consider the following:define q1 as select x from Students as x;define q2 as set(first(Students));q1 union q2Considering the query q1 union q2 �rst, we can infer immediately that q1 andq2 should be either sets or bags of elements. To represent this we introducea new type constructor set=bag(�). Moreover, the elements of this collectioncannot be of a function type, since the Standard does not allow functions tobe members of a collection; thus we introduce the types nonfunctional andfunction. From the de�nition q1 we infer that Students is some collection(set, bag, list or array) of elements of any (non-functional) type. Consideringthe de�nition q2 we can infer further information about Students. As it is theargument of a first operation it must be an ordered collection, i.e. a list or anarray. Again we introduce a new type constructor list=array(�). In summary,the algorithm should infer that Students is a list or an array of a nonfunctionalmember type � , and that the query q1 union q2 is of type bag(�).2The above example motivates our need to extend the initial speci�c types(given in Figure 1) with the following so-called general types.fany; nonfunctional; atomic; orderable; int=floatg[fcollection(�); set=bag(�); list=array(�); constructor(li: �i)g[fall types from the core type system with atleast one component type being a general type; e:g: set(any)g2 The Standard [x4.10.11] states that merging a set and a bag results in a bag.

where � , �i are speci�c or general types.Given these general types the resulting type system is then as follows:� ::= int j float j bool j char j string j voidj � � � � � � � ! �j bag(�) j set(�) j list(�) j array(�) j struct(l: �; � � � ; l: �)j Cj any j nonfunctionalj atomic j orderable j int=floatj constructor(l:�; � � � ; l:�)j collection(�) j set=bag(�) j list=array(�) (1)
This extended type system (1) is coupled with the type hierarchy illustratedin Figure 2. It is worth noting that the general types, which are the internalnodes of the tree, are not types that can be found in a database schema, butrather abstractions or families of types that encapsulate the common features oftheir children.

any

function

atomic constructor collection

boolean orderable class struct set/bag

string int/float char set bag list array

list/array

int float

nonfunctional

Fig. 2. Type HierarchyA type is said to be speci�c, if it can be derived by the type system givenin Figure 1. Otherwise, it is said to be general. All the leaves of the hierarchytree (in Figure 2) are speci�c types, if they are nullary (non parametric) types(int, float, char, string, bool) or if they are parametric types with all theparameter types being speci�c types (e.g. set(int)).Given this more general type system, we need to extend our notion of subtyp-ing given earlier. We de�ne a new relation, GSR (Generalisation-SpecialisationRelationship). Given types �, � , we write � � � to express that � is more speci�c

than � .� � � GSR� Type� � � �01 � �1 � � ��0k � �k � � � 0 GSR� Fun�1 � � � � � �k ! � � �01 � � � � � �0k ! � 0coll1 is child of coll2 � � � GSR�Collcoll1(�) � coll2(�)where coll1; coll2 are nodes in the sub-tree (�gure 2) with root collection andis child of signi�es that coll2 is a direct or indirect parent of coll1 or that coll1and coll2 are the same.constr1 is child of constr2 �1 � �1 � � ��k � �k GSR� Constrconstr1(l1:�1; : : : ; lk:�k; : : : ; lk+n: �k+n) � constr2(l1: �1; : : : ; lk: �k)where constr1; constr2 are nodes in the sub-tree (�gure 2) with root constructor,and is child of signi�es that constr2 is a direct parent of constr1 or constr1 andconstr2 are the same. atom1 is child of atom2 GSR�Atomicatom1 � atom2where atom1 and atom2 are nodes in the sub-tree (�gure 2) with root atomic andis child of signi�es that atom2 is direct or indirect parent of atom1 or atom1 andatom2 are the same. GSR�Re
� � � �1 � �2 �2 � �3 GSR� Trans�1 � �3� 6= �1 ! �2 GSR�NonFun� � nonfunctional GSR�All� � anyGiven this de�nition, we can de�ne the Greatest Lower Bound (GLB) andthe Least Upper Bound (LUB) of two types �1 and �2. Insight into these con-cepts can be gained through the following simple example. Consider the types�1 = set(atomic) and �2 = set=bag(int). The GLB of the two types is de-rived by taking the most speci�c of the collection constructors, set, and themost speci�c of the parameter types, int. Thus GLB(�1; �2) = set(int). Like-wise, for the LUB, we take the most general of the two collection construc-tors, set=bag, and the most general of the two parameter types, atomic. Thus,LUB(�1; �2) = set=bag(atomic).We may now formally present GLB and LUB. In the following de�nitions, weassume that constr1, constr2 are nodes in the sub-tree (�gure 2) with rootconstructor and that constr1 is a child of constr2 or constr1 = constr2.Moreover, coll1 and coll2 are nodes in the sub-tree (�gure 2) with root collectionand coll1 is a child of coll2 or coll1 = coll2.

GLB(�1; �2) def= �1 if �1 � �2 ^ �2 � atomicLUB(�1; �2) def= � if �1 � atomic ^ �2 � atomic^(there exists no � 0 s:t: (� 0 6= � ^ �1 � � 0 ^ �2 � � 0 ^ � � � 0))GLB(constr1(l1:�1; : : : ; lk:�k); constr2(l1:�01; : : : ; lk:�0k; : : : ; lk+n:�0k+n)) def=constr1(l1: GLB(�1; �01); : : : ; lk: GLB(�k; �0k); : : : ; lk+n:�k+n)LUB(constr1(l1:�1; : : : ; lk:�k); constr2(l1:�01; : : : ; lk:�0k; : : : ; lk+n:�0k+n)) def=constr2(l1: LUB(�1; �01); : : : ; lk: LUB(�k; �0k))GLB(coll1(�1); coll2(�2)) def= coll1(GLB(�1; �2))LUB(coll1(�1); coll2(�2)) def= coll2(LUB(�1; �2))GLB(�1 � � � � � �k ! �; � 01 � � � � � � 0k ! �0) def= LUB(�1; � 01)� � � � � LUB(�k; � 0k)! GLB(�; �0)LUB(�1 � � � � � �k ! �; � 01 � � � � � � 0k ! �0) def= GLB(�1; � 01)� � � � � LUB(�k; � 0k)! LUB(�; �0)LUB(�; �) def= any; if � � function ^ � � nonfunctionalLUB(�1; �2) def= nonfunctional; if 8�1; �2:�1 � �1 ^ �2 � �2 ^ �1 6= �2^�1; �2 2 fatomic; constructor(); collection(any)g4 Type compatibility - ConstraintsThe inference algorithm we present in section 7 analyses an OQL constructand infers the most general type of the query and the schema requirementsthat should be satis�ed so that the query is well-typed. Before being able topresent the inference algorithm, we �rst discuss an important mechanism thatthe algorithm is based upon|the generation of constraints. When the inferencealgorithm analyses a certain query construct, it often infers several relations orassociations amongst the types of the query and its subqueries. These associa-tions are given in the form of constraints.For example, the analysis of a query q1 union q2 would generate the con-straint that the type � of the query is the merge result of the types �1 and �2 ofthe two subqueries, i.e. � = Merge Result(�1; �2). In section 5, we show how thisconstraint is simpli�ed and is assimilated in the set of the existing constraints.Analysing the query exists x in Customers: x:income > 40; 000 our algo-rithm generates the following constraints. First, it introduces the constraint�1 = Member Type(�2), where �1 is the type of x and �2 is the type of Customers.The type of x is expected to be the same as that of the members of the collectionCustomers. Second, the constraint �3 = Constructor Member Type(�1; income)is generated, where �3 is the type of x:income. This signi�es that x is a construc-tor type (a structure or a class) with at least one member income of type �3.Another interesting constraint is that the types of x:income (�3) and of the literal40; 000 (int) should be compatible in the sense that they than can be compared

for inequality. This is expressed by the constraint Greater Less Than Compatible(�3; int).Later, we will show how this constraint is simpli�ed to the constraint �3 �int=float.In section 6, we give a set of inference rules, one for each query construct.Each rule starts with an existing set of constraints and generates a number (pos-sibly zero) of new constraints. The di�erent kinds of constraints generated bythe rules in our inference algorithm are given below:1: Equality Compatible(�1 ; : : : ; �n) 6: �0 = Merge Result(�1; �2)2: Greater Less Than Compatible(�1 ; : : : ; �n) 7: �0 = Distinct Result(�1)3: �1 = �2 8: � = Member Type(�)4: �1 � �2 9: � = Constructor Member Type(�; l)5: �0 = Arith Result(�1; �2)We brie
y explain the constraints used in our inference model. The constraintEquality Compatible(q1; : : : ; qn) is analysed in section 4.1. The constraintGreater Less Than Compatible(q1; q2) is useful for ensuring typability for querieslike q1 < q2. Type equality, and GSR (Generalisation-Specialisation Relation-ship) are handled by constraints 3 and 4. �0 = Arith Result(�1; �2) is neededfor the type inference of queries of the form q1op q2 where op 2 f+;�; =; �g. Like-wise, �0 = Merge Result(�1; �2) arises as a constraint from inferencing the type ofunion, intersect or except query expressions. The constraint �0 = Distinct Result(�1)implies that both �0 and �1 are collection types and the collection constructorof �0 is the distinct equivalent of the collection constructor of �1. Moreover,� = Member Type(�) implies that � is a collection type and that � is the typeof its members. Finally, the constraint � = Constructor Member Type(�; l) isused to denote that � is a class or struct type with at least one member l oftype � . If � is a class type then l can be any of its properties, relationships ormethods.4.1 Collections - Membership Type CompatibilityThe �rst two constraints refer to type compatibility w.r.t. equality or non-equality comparison. These constraints arise in OQL constructs that involvea merge of two or more elements, or a membership test. For instance, the �rstconstraint results from considering a query of the form set(q1; : : : ; qn), whichincludes the merge of n query results.First of all, we should stress the fact that in order for two values (objects orliterals) to be eligible as members of the same collection, they should be eligiblefor equality comparison. If two types are compatible (membership-wise), two val-ues of these types may be members of a set. In order to insert an element into aset, we need to test if its value is equal to any existing value. Thus, we need to en-sure that these values have types which are compatible (equality-wise). Inversely,if two types are compatible equality-wise, then their values may be inserted intoany collection, therefore these types are also compatible membership-wise.The Standard [x4.10] de�nes recursively when two types are compatible, andthus when elements of these types can be put in the same collection. The Stan-

dard then de�nes the notion of least upper bound (LUB) of two types to derivethe type of the collection elements. In a context where we need to check andderive the type of a query based on speci�c type information (from a schema),this approach is suÆcient and straightforward. However, in our context, wherewe aim to infer the type of a query without any schema information, the com-patibility issue becomes more complicated. The use of LUB to infer the type ofa query like set(q1; : : : ; qn) does not yield the appropriate result, for exampleconsider the following.define q1 as struct(x:12,y:30);define q2 as element(select z from People as z where z.x=14);set(q1,q2)If we call the inference algorithm on q1 and q2 the inferred types (IT) would bestruct(x : int; y : int) and constructor(x : int) respectively. The least upperbound of these two types is constructor(x : int). Thus, the inferred type of thequery set(q1,q2) would be set(constructor(x : int)).However, the correct inferred type should be set(struct(x : int)), since wemay not merge objects and structures in the same collection, and therefore weknow that the constructor should be a struct and not a class.To overcome this problem we de�ne another relation between types, namelyCUB (Compatible Upper Bound). Intuitively, CUB combines the behaviour of bothLUB and GLB (Greatest Lower Bound). In the previous example, the CUB of thetwo types IT(q1) and IT(q2) would be derived by taking the most speci�c of thetwo constructor types (constructor and struct), but the least general of theelement types ((x : int) and (x : int; y : int)). Before we de�ne CUB, we de�necompatibility (Membership- or Equality- wise) for our typing system.Compatibility is recursively de�ned as follows:{ � is compatible with �{ if � is compatible with �and coll1; coll2 2 fcollection; set=bag; list=array; set; bag; list; arraygand either the collection constructors are the same or one is child of the otherin the hierarchy tree then coll1(�) is compatible with coll2(�).{ Any two class types class name1 and class name2 are compatible.{ If �i is compatible with �i, 8 i = 1; : : : ; nand constr1; constr2 2 fconstructor; structgand no labels other than l1; : : : ; ln are common in both constructor typesthen constr1(l1:�1; : : : ; ln:�n; l11:�11; : : : ; l1k:�1k) andconstr2(l1: �1; : : : ; ln: �n; l21: �21; : : : ; l2m: �2m) are compatible.{ If �i is compatible with �i, 8 i = 1; : : : ; n and class name is a class type suchthat Constructor Member Type(class name; li) = �i, 8 i = 1; : : : ; n, thenthe types class name and constructor(l1:�1; : : : ; ln:�n; l11:�11; : : : ; l1k:�1k)are compatible, provided that no labels other than l1; : : : ; ln are commonmembers in the two types.{ If �; � 2 fatomic; orderable; int=float; int; float; char; string; boolgand either they are the same, or one is a child of the other in the hierarchy

tree, or one is int and the other is floatthen � is compatible with � .{ If either of the types is nonfunctional and the other type is not a functiontype then these types are compatible.{ If either of two types is any, then these types are compatible.Note that we do not de�ne compatibility for function types, as no two func-tion values may be members of the same collection or may be compared forequality. Only the results of function application may be considered for compat-ibility.Given that two types are compatible (based on the recursive de�nition above),their CUB is de�ned recursively and in accordance with the compatibility categorythat they fall into.{ CUB(�; �) = � .{ If coll1(�) is compatible with coll2(�) and coll1 is a child of (or the sameas) coll2, then CUB(coll1(�); coll2(�)) = coll1(CUB(�; �)).{ If the types �1 and �2 are class types, then CUB(�1; �2) is the least commonsuperclass of the two classes.{ If the types � = constr1(l1:�1; : : : ; ln:�n; l11:�11; : : : ; l1k:�1k) and� = constr2(l1: �1; : : : ; ln: �n; l21: �21; : : : ; l2m: �2m) are compatible,where constr1; constr2 2 fconstructor; structg thenCUB(�; �) = constr1(l1: CUB(�1; �1); : : : ; ln: CUB(�n; �n)).{ If � = class name1 and Constructor Member Type(class name1; li) = �i,8 i = 1; : : : ; n and � = constructor(l1: �1; : : : ; ln: �n; l21: �21; : : : ; l2m: �2m) thenCUB(�; �) is the least superclass of class name1, say class name2, satisfy-ing the following condition: For all l0j, l0j is a property or a relationshipof class name2, if Constructor Member Type(class name2; l0j) = �j thenthere exists k; 1 � k � n, s.t. l0j = lk ^ CUP(�k; �k) � �j, 8 j = 1; : : : ; m; m � n.{ If � is compatible with � , then1. if either of them is int=float or one is int and the other is float thenCUB(�; �) = int=float2. elseCUB(�; �) = GLB(�; �).{ If � = nonfunctional and � � nonfunctional then CUB(�; �) = � .{ If � = any then, for any type � , CUB(�; �) = � .As discussed earlier, the notion of CUB is used for the inference of the types ofqueries like set(q1; : : : ; qn). However, the OQL construct q1 in q2 raises anotherissue of a slighly di�erent nature. The Standard [x4.10.8.3] states that if the typeof q2 is coll(�) then the type of q1 should be � . This is not the case in our con-text. Suppose that the type of q2 is inferred to be bag(struct(x: int; y: string));then according to the Standard q1 should have the type struct(x: int; y: string).Since a value of type struct(x: int) could potentially be added in the collectionq2 (that is, since struct(x: int) and struct(x: int; y: float) are compatibletypes), there is no reason why q1 could not be of type struct(x: int) or evenstruct().

The same situation occurs when dealing with a collection of objects of dif-ferent classes. Suppose lub class(l1:�1; : : : ; ln:�n) is the LUB of all classes ofthe objects in the collection and Object is the most general class that all otherclasses derive from (the top of the class hierarchy). We should be able to checkwhether an object of type object class(l01:�01; : : : ; l0m:�0m) is a member of thecollection, even if its class is not a subclass of lub class(l1:�1; : : : ; ln:�n). Thisallows more queries to (safely) type-check, for example:select xfrom People as xwhere x.father in School_Teachersdoes not type-check according to the Standard. In order to be type-correct,x.father requires an explicit type cast, i.e. (School_Teacher)x.father. Theproblem is that this query, despite being well-typed, can generate a run-time er-ror (if the cast does not succeed). We choose not to enforce that x:father has atype which is more speci�c than the member type or the collection School Teachers.Rather, we simply ensure that x:father could potentially be a member ofSchool Teachers. To do this we add the constraint Equality Compatible(�; �),where � is the type of x:father and � is the member type of School Teachers.5 Resolving constraintsNow that we have studied the kinds of constraints that are generated by ourinference algorithm, we can discuss how these constraints are resolved. When aconstraint is generated by an inference rule, it is added to the set of existingconstraints. If this was a simple insertion procedure, we would end up having ahuge set of constraints, that would include redundant and often incomprehensibletype information; there is obviously a need to resolve the inserted constraints.Due to the complexity of the type system and the expressiveness of the language,we have a wide variety of constraints, that cannot be solved using a standarduni�cation mechanism alone [10]. In our system, the insertion of a new constraintin a set of existing constraints may have one of the following e�ects:{ A constraint is deleted, if it is always satis�ed, e.g. the constraintEquality Compatible(set(int); set(float))is always true, so it does not need to be maintained.{ A constraint raises a type error or exception, if it is never satis�ed, e.g.set(Employee(name : string)) � list=array(Employee(name : string)).{ A constraint might be maintained as it is. This usually occurs when some ofthe types involved are general ; it may be that when re�ned, these types nolonger satisfy the constraint. Therefore, they must be preserved as requiredschema information. For instance, if �i � set=bag(�)8 i =0; 1; 2 are in theset of already produced constraints, the constraint �0 = Merge Result(�1; �2)needs to be preserved.{ A constraint is often simpli�ed, i.e. replaced by one or more simpler con-straints. For instance, the constraint set(�) = set(�) is replaced by thesimpler one � = � .

{ A constraint occasionally implies one or more constraints. The latter needto be added to the set of constraints already produced. For example, theconstraint Greater Less Than Compatible(�1; �2) is inserted as a new con-straint along with the implied constraints �1 � orderable and �2 � orderable.The e�ect varies depending on the constraint kind, the types involved in theconstraint and the already existing constraints on these types. The details of theconstraint resolution algorithm will appear in [11].It is worth pointing out that the resolution of constraints could take placeeither at the time each constraint is generated (gradual resolution) or at the timeall the constraints have been produced (accumulative resolution).The gradual resolution is very simple, since it usually concerns the insertionof a few constraints whose simpli�cation (uni�cation) is straightforward. If theirsimpli�cation produces new constraints then these are simpli�ed as well, untilno more constraints are produced.The accumulative resolution starts from the constraints of the form �1 = �2.It simpli�es them to constraints of the form type var = � and replaces type varby � in all other constraints that involve type var. Then it proceeds to simplifyall other kinds of constraints. If a simpli�cation leads to more constraints, thelatter are added to the set of unprocessed constraints and are simpli�ed in duecourse.6 Type Inference RulesHaving explained the type system underlying our inference model and the variousconstraints generated and resolved by our algorithm, we are now in a positionto present the backbone of our work, the inference rules. Note that there is asingle rule for each OQL construct, and, therefore, the use of the rules by theinference algorithm is syntax driven. In the remainder of this section, we presenta substantial part of the inference rules; the complete set will be given in [11].In the following rules, H signi�es the type environment, that is H = fvari :�ig, and C denotes the constraints added so far. The inference rules for the literaland the identi�er queries are given �rst:H; C ` b: bool) C H; C ` i : int) C H; C ` f : float) CH; C ` c: char) C H; C ` s: string) C H [fx:�g; C ` x:�) CThere are several rules to deal with various collections (sets, bags, lists, ar-rays). We just give one representative rule, that concerns the query constructset(q1; : : : ; qn). As expected, the rule generates a constraint that ensures thatthe types of the queries are compatible equality-wise (or membership-wise). Wealso give the rules for accessing the �rst, last or i-th member of an ordered col-lection, as well as checking whether an element belongs in a certain collection.

The constraint Member Type(�) = � denotes that � is a collection (set, bag, listor array) with members of type � .H; C ` q1:�1) C1 : : : H; Cn�1 ` qn:�n) CnH; C ` set(q1; : : : ; qn): set(CUB(�1; : : : ; �n))) Cn ^ fEquality Compatible(�1; : : : ; �n)gH; C ` q1:�) C1H; C ` first(q1):�) C1 ^ fMember Type(�) = �g ^ f� � list=array(�)gH; C ` q1:�) C1 H; C1 ` q2: �) C2H; C ` q1[q2]:�) C2 ^ f� = intg ^ fMember Type(�) = �g ^ f� � list=array(�)gH; C ` q1:�) C1 H; C1 ` q2: �) C2H; C ` q1 in q2: bool) C2 ^ fEquality Compatible(�; Member Type(�))gThe rules for constructing a structure or an object, as well as for access-ing a member of a structure or an object are given below. The constraintConstructor Member Type(�; `) = � denotes that type � is a class or a structurewith a member called ` of type � .H; C ` q1:�1) C1 : : : H; Cn�1 ` qn: �n) CnH; C ` class name(l1: q1; : : : ; ln: qn): class name) Cn^f�1 � Constructor Member Type(class name; l1)g ^ : : :^f�n � Constructor Member Type(class name; ln)gH; C ` q1:�1) C1 : : : H; Cn�1 ` qn: �n) CnH; C ` struct(l1: q1; : : : ; ln: qn): struct(l1:�1; : : : ; ln:�n)) CnH; C ` q1: �) C1H; C ` q1:l:�) C1 ^ fConstructor Member Type(�; l):�gThe inference rules for the existential and the universal quanti�cation follow.It is worth noting that the variable x is bound in query q2 to the member typeof the collection q1.H; C ` q1:�1) C1 H[fx:�g; C1 ` q2:�2) C2H; C ` exists x in q1: q2: bool) C2 ^ f�2 = boolg ^ fMember Type(�1) = �gH; C ` q1:�1) C1 H[fx:�g; C1 ` q2:�2) C2H; C ` forall x in q1: q2: bool) C2 ^ f�2 = boolg ^ fMember Type(�1) = �gAn interesting set of rules concerns the application of methods with or with-out parameters. The inferred types of the queries used as arguments are notconstrained to be the same as the types of the parameters of the method in-volved. They only need to be their subtypes.

H; C ` q1:�) C1H; C ` q1():�) C1 ^ f� = unit! �gH; C ` q0:�0) C0 : : : H; Cn�1 ` qn:�n) CnH; C ` q0(q1; : : : ; qn):�) Cn ^ f�0 = �1 � : : :� �n ! �g ^ f�1 � �1g ^ : : : ^ f�n � �ngThe rules concerning the query constructs q binop q or unop q are omittedfor space reasons. We �nish by giving the rule for a simple select query; thejudgements dealing with a group by or an order by clause can be found in [11].H; C ` q1:�1) C1H [fx1: �1g; C1 ` q2:�2) C2: : :H [fx1: �1; : : : ; xn�1: �n�1g; Cn�1 ` qn:�n) CnH[fx1: �1; : : : ; xn: �ng; Cn ` q01:�01) C01H[fx1: �1; : : : ; xn: �ng; C01 ` q00:�00) C00H; C ` select q00 from q1 as x1; : : : ; qn as xn where q01: bag(�00)) C00^fMember Type(�1) = �1g ^ : : : ^ fMember Type(�n) = �ng ^ f�01 = boolg7 Inference AlgorithmHaving given an overview of the type system, the constraints and the rulesinvolved in our inference model, we may now present the core of our work,which is the inference algorithm. The algorithm takes as input a query q andreturns its inferred type, as well as a pair (H; C) of a type environment and itsconstraints. This pair is a synopsis of the requirements a schema should satisfyso that the query q can be executed against it without any type-errors.1. For each free variable var in the query q, H = H [fvar: new type varg.Initially C = fg.2. Based on the construct of the query q recursively apply the appropriateinference rule.3. Depending on the uni�cation strategy, either simplify the constraints as soonas they are produced (gradual uni�cation) or simplify them all in the endafter having applied all the inference rules. If the uni�cation process producesa type-error then the query is not typable and the algorithm is interrupted.4. The �nal H; C include the requirements a schema should have to be compat-ible with the query q. The type of q, which is the type inferred by the outerinference rule, also satis�es the constraints C.8 Related Work and ConclusionsFundamental to the work described in this report is the type system for ODMGOQL described in an earlier paper [3]. Alagi�c [2] independently gave a number

of typing rules for OQL; see our earlier paper for a comparison. The canonicalreference for work on type systems for database programming languages is thework of Buneman and Ohori [5]. The goals of their type inference algorithm areidentical to ours; both approaches infer the most general type of an expression(if one exists) without accessing any schema information, and in this sense deter-mine the constraints placed on the schema by the query. However, the underlyinglanguages, the type systems, and some parts of the inference algorithms di�erconsiderably. Buneman and Ohori introduce kinded types to infer the type of arecord based on selections of �elds on this record. Instead, we use the notion ofgeneral types; in this way we are able to express general type information notonly for records, but also for parametric collection types, structures and classes.Moreover, due to the syntax of OQL, we de�ne a wider variety of constraintsthan those introduced in their framework and therefore a di�erent algorithm toresolve them.The work most related to ours arises from studying type systems for ob-ject oriented programming languages, see for example [8, 9, 1]. However none ofthese studies consider the various issues arising from studying database typesystems; for example, the complications arising from combining parametric col-lection types with subtyping.Much research on schema evolution, schema inter-operation, distributed orsemi-structured database applications has pointed out that there is a need torun queries in the presence of changing or heterogeneous schemata, or even inthe absence of speci�c schema information. Our work addresses this problem,by proposing an inference algorithm for the ODMG query language OQL. Thisalgorithm infers the most general type of an OQL query and derives the schemainformation required so that the query can be executed against it without anytype errors. In contrast to other work, we deal with a rather complex typesystem, which includes atomic types, structures, classes, various (parameterised)collection types (set, bag, list, array) and function types. This, in connectionwith the rich semantics of OQL, results in the generation of a wide variety ofconstraints by the inference rules. We discuss the semantics of these constraintsand provide a mechanism for their solution. Finally, we present a set of inferencerules for OQL, which is the core of our type inference algorithm. Based on ourexperience, this algorithm, as well as all the formalisms prior to it, are easy toimplement, and hence, we believe that they could prove to be useful in manyapplications.AcknowledgementsTrigoni is funded by the State Scholarships Foundation of Greece and the Na-tional Bank of Greece.References1. O. Agesen and U. Holzle. Type feedback vs. concrete type inference: a comparisonof optimization techniques for object-oriented languages. In OOPSLA, pages 91{

107, 1995.2. S. Alagi�c. Type checking OQL queries in the ODMG type systems. ACM Trans-actions on Database Systems, 24(3):319{360, September 1999.3. G.M. Bierman and A. Trigoni. Towards a formal type system for ODMG OQL.Technical Report 497, University of Cambridge, Computer Laboratory, October2000.4. M.W. Bright, A.R. Hurson, and S. Pakzad. Automated resolution of semanticheterogeneity in multidatabases. ACM Transactions on Database Systems, 19(2),1994.5. P. Buneman and A. Ohori. Polymorphism and type inference in database pro-gramming. ACM Transactions on Database Systems, 21(1):30{76, March 1996.6. R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,2000.7. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.In PODS, 1997.8. J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In OOPSLA,pages 146{161, 1991.9. J. Plevyak and A.A. Chien. Precise concrete type inference for object-orientedlanguages. In OOPSLA, pages 324{340, 1994.10. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journalof the ACM, 12(1):23{41, January 1965.11. A. Trigoni. Phd thesis, to appear. 2001.

