
Separation Logic and Abstraction

Matthew Parkinson
University of Cambridge

Computer Laboratory
Cambridge CB3 0FD, UK

mjp41@cl.cam.ac.uk

Gavin Bierman
Microsoft Research
7 J J Thomson Ave

Cambridge CB3 0FB, UK

gmb@microsoft.com

ABSTRACT
In this paper we address the problem of writing specifications for
programs that use various forms of modularity, including proce-
dures and Java-like classes. We build on the formalism of sepa-
ration logic and introduce the new notion of anabstract predicate
and, more generally, abstract predicate families. This provides a
flexible mechanism for reasoning about the different forms of ab-
straction found in modern programming languages, such as abstract
datatypes and objects. As well as demonstrating the soundness of
our proof system, we illustrate its utility with a series of examples.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—class in-
variants; D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages; D.3.3 [Programming Langua-
ges]: Language Constructs and Features—Classes and inheritance

General Terms
Languages, Theory, Verification

Keywords
Separation Logic, Modularity, Resources, Abstract data types, Class-
es

1. INTRODUCTION
In order to assist programmers in building complex softwaresys-

tems, programming languages offer various forms of abstraction.
In this paper we focus on those that provide some form of modular-
ity. These range from simple procedures with local state, through
abstract datatypes (ADTs), to the complexities of Java-like class hi-
erarchies with method overriding and runtime resolution ofmethod
invocation.

Our aim is to provide intuitive ways for programmers to specify
the behaviour of their modular code. Previous solutions to handling
modularity are either too weak, in that certain natural specifications
can not be expressed; or too strong, in that the programmer isforced
to accept an unreasonable proof or annotation burden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05,January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

We choose to build upon the recent formalism of separation logic,
which facilitates local reasoning about code [23]. This local reason-
ing approach has proved successful when considering many real
world algorithms, including the Schorr-Waite graph marking al-
rithm [31] and a copying garbage collector [4].

Until recently, the work on separation logic has focused exclu-
sively on low-level C-like languages with no support for abstrac-
tion. O’Hearn, Reynolds and Yang [22] have recently addedstatic
modularity to separation logic. They hide the internal resources of a
module from its clients using the so called hypothetical frame rule.
This partitioning of resources between the client and the module
allows them to model “ownership transfer”, where state can safely
be transferred between the module and the client without fear of
dereferencing dangling pointers. This allows them to reason about
examples such as a simple memory manager, which allocates fixed
size blocks of memory, and a queue.

Though this is a significant advance, their work is severely lim-
ited as it only models static modularity. Their modules are based on
Parnas’ work on information hiding [25], which deals with single
instances of the hidden data structure. Hence, it can not be used for
many common forms of abstraction, including ADTs and classes,
where we require multiple instances of the hidden resource.For
example, one would expect, given a list module, to use multiple
lists in an application; and one frequently creates new objects in
object-oriented applications.

Let us review the problem: take a piece of code that we wish to
consider “abstract” (this could be because the code is a procedure,
a module or a method). A specification is then a contract between
the code and its callers. It includes a precondition that expresses
what a caller must establish before the code may be executed.The
implementation of the module can assume the precondition onen-
try. A specification also contains a postcondition that records what
must hold upon exit of the module. Consequently the caller can
assume the postcondition upon return from the module. When rea-
soning about the module and the calls, only the contract given by
the specification is used: that is, we expect the appropriateform of
information hiding.

Various researchers have proposed enriching the logic to view
the data abstractly (as in data groups [14]), or the methods/proce-
dures abstractly (as in method groups [30, 13]). In contrast, we
propose to add the abstraction to the logical framework itself, by
introducing the notion of anabstract predicate. An abstract pred-
icate has a name, a definition, and a scope. Within the scope one
can freely swap between using the abstract predicate’s nameand its
definition, but outside its scope it must be handled atomically, i.e.
by its name. Thus the scope defines the abstraction boundary for
the abstract predicate.

In various work on separation logic (e.g. [29]) it is common

to use inductively defined predicates to represent data types. In
essence we allow predicates to additionally encapsulate state and
not just represent it. This gives us two key advantages: (1) the
impact of changing a predicate is easy to define; and (2) by encap-
sulating state we are able to reason about ownership transfer.

Whilst the notion of abstract predicates is sufficient to reason
about modules and simple ADTs, we should like to reason about
object-oriented forms of abstractions; more precisely Java-like class-
es and inheritance. This adds an additional complication: not only
do we have to reason about encapsulation but also inheritance. Rath-
er pleasingly this again can be provided by reflecting the abstrac-
tion in the logical framework itself. Here the key observation is
that an object can exist at multiple types through the class hierar-
chy. We reflect this in the logic by generalising abstract predicates
to familiesof abstract predicates that are indexed by class.

The rest of the paper is structured as follows. In§2 we give a
brief overview of separation logic, detailing the featuresthat we
use in this paper. In§3 we present more formally the notion of
anabstract predicate, giving proof rules and outlining a soundness
proof. We also give a number of worked examples. In§4 we ex-
tend these reasoning principles to a core subset of Java. Again we
outline a soundness proof and give examples. We conclude in§5
with a comparison to related work and propose some future work.

2. SEPARATION LOGIC PRIMER
In this section we give some brief details of the fragment of sepa-

ration logic that we shall use. Space prevents us giving a complete
description or explanation of the significant advantages ofusing
separation logic. The interested reader can read further details and
references in a survey paper by Reynolds [29].

Separation logic is an extension to Hoare logic that permitsrea-
soning about shared mutable state. It extends Hoare logic byadding
spatial connectives to the assertion language, which allowasser-
tions to define separation between parts of the heap. This sepa-
ration provides the key feature of separation logic—local reason-
ing—specifications need only mention the state they access [23].

We use the standard model of state from separation logic. A
heap,H, is a partial function from locations to values (for simplicity
we takeValues to be the integers andLocations to be the positive
integers).

H
def
= Locations ⇀fin Values

This has a partial commutative monoid for disjoint functioncom-
position:

H1 ∗ H2
def
= λl.

(

H1(l) l ∈ dom(H1)

H2(l) l ∈ dom(H2)

which is defined iffdom(H1) ∩ dom(H2) = ∅. A stack,S, is a
function from (program) variables to values. Unlike other presen-
tations [22], we do not interpret auxiliary variables1 using the stack
but we define an auxiliary stack,I, that is a function from auxiliary
variable names to values.2

S
def
= Vars → Values

I
def
= AuxVars → Values

We define a state as a triple consisting of a stack, a heap and an
auxiliary stack. A predicate is just a set of states, and formulae
are given by the following grammar whereB and E range over
boolean- and integer-valued expressions respectively (these are de-
fined formally in the§3.1).

1Sometimes called ghost or logical variables.
2We add this as we make heavy use of local variables, and do not
have global variables.

P, Q ::= B | ¬P | P ∧ Q | P ∨ Q | P ⇒ Q
| empty | P ∗ Q | P −∗ Q | E 7→ E′

The usual classical connectives (¬,∨,∧,⇒) are interpreted using
the boolean algebra structure induced on the powerset of states. In
addition to the boolean connectives we have the new spatial con-
nectives∗ and−∗, along with the predicatesempty and 7→. Taking
these in reverse order: the predicate E7→ E′ consists of all the
triples (S, H, I) where the heap,H, consists of the single mapping
from the location given by the meaning of E to the value given by
the meaning of E′.

S, H, I |= E 7→ E′ def
= dom(H) = {JEKS,I} ∧ H(JEKS,I) = JE′KS,I

We use the shorthandE 7→ E1, E2 to meanE 7→ E1 ∗ E + 1 7→
E2.

The spatial conjunctionP ∗ Q means the heap can be split into
two disjoint parts in whichP andQ hold respectively.

S, H, I |= P ∗ Q
def
=

∃H1, H2. H1 ∗ H2 = H ∧ S, H1, I |= P ∧ S, H2, I |= Q

Heaps of more than one element are specified by using the∗ to join
smaller heaps. The∗ has a unitempty that consists of all states
(S, H, I) whereH is the empty heap. The adjunct to∗, written−∗,
is not used in this paper so we shall suppress its (routine) definition.

The essence of “local reasoning” is that to understand how a
piece of code works it should only be necessary to reason about
the memory the code actually accesses (its so-called “footprint”).
Ordinarily aliasing precludes such a principle but the separation
enforced by the∗ connective allows this intuition to be captured
formally by the following rule.
FRAME RULE

⊢ {P}C{Q}

⊢ {P ∗ R}C{Q ∗ R}

whereC does not modify the free variables ofR, i.e. modifies(C)∩
FV (R) = ∅.

The side-condition is required because∗ only describes the sep-
aration of heap locations and not variables; see [5] for moredetails.
Note: modifies(C) denotes the set of stack variables assigned by a
given command, C, e.g. modifies(x=3) = {x}. However assign-
ment through a stack variable to the heap is not counted:
modifies([x]=3) = ∅. See [31] for full definition.

By using this rule, a local specification concerning only thevari-
ables and parts of the heap that are used byC can be arbitrarily
extended as long as the extension’s free variables are not modified
by C. Thus, from a local specification we can infer a global spec-
ification that is appropriate to the larger footprint of an enclosing
program.

3. A LANGUAGE WITH MODULES
In this section we consider reasoning about a simple imperative

language with first-order functions/procedures, which is essentially
the same as that considered by Reynolds [29]. To simplify thepre-
sentation we delay using Java to§4. We introduce our novel con-
cept of an abstract predicate, and state some rules for its use. (These
rules are proved sound in§3.4.) We demonstrate the power and el-
egance of abstract predicates in reasoning about modular code by
considering two detailed examples: a connection pool and a mem-
ory manager.

3.1 Syntax
The syntax for the programming language considered in this sec-

tion is given by the grammar in Figure 1. We usex to range over

C := let k1 x1 = C1, . . . ,kn xn = Cn in C
| return E | x = k(E) | newvarx;C | x = E
| x = [E] | [E] = E | x = cons(E) | dispose(E)
| if B then C else C | while B C | C;C

E := x | E + E | E− E | E ∗ E | n | null
B := E== E | E≤ E | true | false

Figure 1: Module language syntax

program variable names, andk ranges over function names. We
have a distinguished program variableret that is not modifiable
except with thereturn command. We restrict our considera-
tion to well-formed programs: e.g. a well-formed program only has
returns as the last command of a function; and defines a function
name at most once in alet . In the examples of§3.3 we will use
syntactic sugar for procedures: procedure definitions are functions
that returnnull, and procedure calls are functions calls assigned
to an unused variable.

The commandnewvar x;C defines a new local variable for the
command C, we use a shorthandnewvar x,. . . ,y;C for introduc-
ing multiple variables;x = cons(E) allocates|E| consecutive heap
locations with the values ofE. The location E is disposed using
dispose; updated to E′ with [E] = E′; and stored inx with x =
[E].

3.2 Proof rules
For the assertion language we take the language given in§2 and

extend it with predicates. Naturally we restrict our consideration
to well-formed formulae, and again we elide the obvious defini-
tion. We writeα to range over predicate names and use a function
arity() from predicate names to their arity.

A judgement in our assertion language is written as follows:

Λ;Γ ⊢ {P}C{Q}

This is read: the command,C, satisfies the specification{P} {Q},
given the function hypotheses,Γ, and predicate definitions,Λ. The
hypotheses and definitions are given by the following grammar:

Γ := ǫ | {P}k(x){Q},Γ

Λ := ǫ | α(x)
def
= P,Λ

However, when it simplifies the presentation, we will treatΛ as
a partial function from predicate names to formulae, andΓ as a
partial function from function names to specifications. We define

Λ(α)[E] asP [E/x] whereΛ containsα(x)
def
= P .

For the hypotheses,Γ, to be well-formed each function,k, can
appear at most once; and the specification’s free program variables
are contained in its arguments andret. For the predicate defini-
tions, Λ, to be well-formed we require that each predicate,α, is
contained at most once; the free variables of the body,P , are con-
tained in the arguments,x; andP is a positive formula.3 We will
only consider well-formedΓ andΛ.

Intuitively, the predicates are used like abstract data types. Ab-
stract data types have a name, a scope and a concrete represen-
tation. Within this scope the name and the representation can be
freely exchanged, but outside only the name can be used. Simi-
larly abstract predicates have a name and a formula. The formula is
scoped: inside the scope the name and the body can be exchanged,

3A positive formula is one where predicate names appear only un-
der an even number of negations. This ensures that a fixed point
can be found; this is explained in further detail in§3.4.2

and outside the predicate must be treated atomically. Henceour
first rule:
ABSTRACT FUNCTION DEFINITION

Λ,Λ′; Γ ⊢ {P1}C1{Q1}
...

Λ,Λ′; Γ ⊢ {Pn}Cn{Qn}
Λ;Γ, {P1}k1(x1){Q1}, . . . {Pn}kn(x1){Qn} ⊢ {P}C{Q}

Λ; Γ ⊢ {P}let k1 x1 =C1, . . . , kn xn=Cn inC{Q}

where • P , Q, Γ andΛ do not contain the predicate names in
dom(Λ′);

• dom(Λ) anddom(Λ′) are disjoint; and
• the functions only modify local variables:

modifies(Ci) = ∅(1 ≤ i ≤ n) .

This rule allows a module writer to use the definition of an abstract
predicate, yet the client can only use the abstract predicate name.
The functionsk1, . . . , kn are within the scope of the predicates de-
fined inΛ′ hence verifying the function bodiesC1...Cn can use the
predicate definitions. The client code,C, is not in the scope of the
predicates, so it can only use the predicates atomically andthrough
the specifications ofk1, ..., kn. The predicate names can not occur
in the conclusions specification,P andQ.

The side-conditions for this rule prevent both the predicates es-
caping the scope of the module, and repeated definitions of a predi-
cate. The final restriction is not required but reduces the complexity
of the modifies clauses for the frame rule.

In fact, the previous function definition rule is a derived rule in
our system. It is derived from the standard function definition rule
and two new rules for manipulating abstractions:
ABSTRACT WEAKENING

Λ;Γ ⊢ {P}C{Q}

Λ,Λ′; Γ ⊢ {P}C{Q}

wheredom(Λ′) anddom(Λ) are disjoint

ABSTRACT ELIMINATION

Λ,Λ′; Γ ⊢ {P}C{Q}

Λ;Γ ⊢ {P}C{Q}

where the predicate names inP , Q, Γ andΛ are not indom(Λ′).
The first, ABSTRACT WEAKENING, allows the introduction of new
definitions; and the second, ABSTRACT ELIMINATION allows any
unused predicate to be removed.

We derive the abstraction function definition rule by takingthe
standard function definition rule, and usingABSTRACT WEAKEN-
ING on the client code premise andABSTRACT ELIMINATION on
the conclusion to remove the new predicate definitions. We can ap-
ply the same technique to the recursive function definition,however
we do not require this for our examples.

Next we give one of the standard Hoare logic rules: the rule of
consequence. (Of course, we use the other standard rules; space
prevents us from listing them here.)
CONSEQUENCE

Λ |= P ⇒ P ′ Λ;Γ ⊢ {P ′}C{Q′} Λ |= Q′ ⇒ Q

Λ;Γ ⊢ {P}C{Q}

This rule is key to actual use of abstract predicate definitions. We
provide the following two axioms concerning abstract predicates:

OPEN (α(x)
def
= P),Λ |= α(E) ⇒ P [E/x]

CLOSE (α(x)
def
= P),Λ |= P [E/x] ⇒ α(E)

These axioms embody our intuition that if (and only if) an ab-
stract predicate is in scope then we can freely move between its
name and its definition.

Next we present the rules for function call and return.
Λ;Γ ⊢ {P [y/x]} y=k(y) {Q[y, y/x, ret]} where {P}k(x){Q} ∈ Γ

Λ;Γ ⊢ {P [x/ret]}returnx {P}

These rules use the distinguished variableret to match the return
value with its destination variable.

Finally we give the small axioms of separation logic
Λ; Γ ⊢ {E 7→ } [E]=E′ {E 7→ E′}

Λ; Γ ⊢ {E 7→ n ∧ x = m}x=[E] {E[m/x] 7→ n ∧ x = n}

Λ; Γ ⊢ {E 7→ }dispose(E) {empty}

Λ; Γ ⊢ {empty ∧ x = m}x=cons(E)
˘

x 7→ E[m/x]
¯

These refer only to the state that is accessed by the commands.
They can typically be extended using theFRAME RULE to refer to
a larger state, e.g.

Λ; Γ ⊢ {E 7→ ∗ E1 7→ E2}dispose(E) {E1 7→ E2} .

3.3 Examples

3.3.1 Connection pool
Our first example is a database connection pool. Constructing

a database connection is generally an expensive operation,so this
cost is reduced by pooling connections using the object pooldesign
pattern [9]. Programs regularly access several different databases,
hence we require multiple connection pools and dynamic instantia-
tion (hence this could not be modelled in the framework of O’Hearn
et al. [22]). The connection pool must prevent the connections be-
ing used after they are returned: ownership must be transferred be-
tween the client and the pool.

We assume a library routine,consConn, to construct a database
connection. This routine takes a single parameter that specifies the
database,4 and returns a handle to a connection. The specification
uses a predicateconn to represent the state of the connection.

{empty} consConn(s) {conn(ret, s)}

We define two abstract predicates for the connection pool mod-
ule: cpool andclist. The cpool predicate is used to represent a
connection pool; and theclist predicate is used inside thecpool to
represent a list of connection predicates.

cpool(x, s)
def
= ∃i.x 7→ i, s ∗ clist(i, s)

clist(x, s)
def
= x

.
= null ∨ (∃ij.x 7→ i, j ∗ conn(i, s) ∗ clist(j, s))

whereE
.
= E′ is a shorthand forE = E′ ∧ empty.

The connection pool has three operations: construct a pool,con-
sPool; get a connection,getConn; and free a connection,free-
Conn. These are specified as follows.

{empty}consPool(s){cpool(ret, s)}
{cpool(x, s)}getConn(x){cpool(x, s) ∗ conn(ret, s)}
{cpool(x, s) ∗ conn(y, s)}freeConn(x,y){cpool(x, s)}

We give the implementation of these operations in Figure 2.
We present the proof that thefreeConn implementation satisi-

fies its specification, which illustrates the use of abstractpredicates:

{cpool(x, s) ∗ conn(y, s)}
{∃i.x 7→ i, s ∗ clist(i, s) ∗ conn(y, s)}

t=[x];

4In a more realistic implementation, such as JDBC [8], several ar-
guments would be used to specify how to access a database.

let
consPool s =
(newvar p; p=cons(null,s); return p)

getConn x =(newvar n,c,l,p; l=[x];
if (l == null) then
p=[x+1]; c=consConn(p)

else (c=[l]; n=[l+1]; dispose(l);
dispose(l+1); [x]=n);

return c)
freeConn x y =
(newvar t,n; t=[x]; n=cons(y,t); [x]=n)

in
C

Figure 2: Source code for the connection pool

{x 7→ t, s ∗ clist(t, s) ∗ conn(y, s)}
n=cons(y,t);

{x 7→ t, s ∗ n 7→ y, t ∗ clist(t, s) ∗ conn(y, s)}
[x]=n

{x 7→ n, s ∗ n 7→ y, t ∗ clist(t, s) ∗ conn(y, s)}
{x 7→ n, s ∗ clist(n, s)}
{cpool(x, s)}

In this proof the definitions of bothcpool andclist are used with
OPENandCLOSEto give the following three implications

cpool(x, s) ⇒ ∃i.x 7→ i, s ∗ clist(i, s)

n 7→ y, t ∗ clist(t, s) ∗ conn(y, s) ⇒ clist(n, s)

x 7→ n, s ∗ clist(n, s) ⇒ cpool(x, s)

These are used with the rule ofCONSEQUENCEto complete the
proof.

Next we present, and attempt to verify, a fragment of client code
using the connection pool. It demonstrates both correct andincor-
rect usage, which causes the verification to fail. The example calls
a function,useConn, that uses a connection.

{cpool(x, s)}
y = getConn(x);

{cpool(x, s) ∗ conn(y, s)}
{conn(y, s)}
useConn(y);
{conn(y, s)}

{cpool(x, s) ∗ conn(y, s)}
freeConn(x,y);

{cpool(x, s)}
useConn(y)

{???}

The client gets a connection from the pool, uses it and then returns
it. However, after returning it, the client tries to use the connection.
This command cannot be validated as the precondition does not
contain theconn predicate. Even though this predicate is contained
in cpool, the client is unable to expand the definition because it is
out of scope. This illustrates how abstract predicates capture “own-
ership transfer”. The connection passes from the client into the
connection pool stopping the client from accessing it, eventhough
the client has a pointer to the connection.

A connection pool library wants many instances; generally one
per database. This can be easily handled by callingconsPool the
required number of times. Assume we have two different databases,
s1 ands2.

{empty}
y = consPool(s1);

{conPool(y, s1)}
z = consPool(s2);

{conPool(y, s1) ∗ conPool(z, s2)}

This code creates two connection pools. The parameter prevents us
returning the connection to the incorrect pool.

{conPool(y, s1) ∗ conPool(z, s2)}
x = getConn(z);

{conPool(y, s1) ∗ conPool(z, s2) ∗ conn(x, s2)}
freeConn(y,x)

{???}

ThefreeConn call can only be validated ifs1 = s2.5

This example has illustrated that abstract predicates capture the
notion of “ownership transfer”, first presented with the hypotheti-
cal frame rule. Abstract predicates additionally deal withdynamic
instantiation of a module, which the hypothetical frame rule can-
not.
Note: To complete this example we should include a dispose pool
function. As it presents no additional interesting difficults we omit
it from our exposition.

3.3.2 Malloc and free
The next example is a simple memory manager that allocates

variable sized blocks of memory. We use a couple of additional
features for handling arrays, described by Reynolds [29]: the it-
erated separating conjunctions,⊙E2

x=E1
.P ; and a system routine

allocate that allocates variable sized blocks. Intuitively the it-
erated separating conjunction,⊙E2

x=E1
.P , is the expansion

P [E1/x] ∗ . . . ∗ P [E2/x]

wherex ranges from E1 to E2. If E2 is less than E1, it is equivalent
to empty. More formally its semantics are:

S, H, I |=∆ ⊙E2

x=E1
.P

def
= (JE1KS,I = n1 ∧ JE2KS,I = n2) ⇒

((n1 ≤ n2 ⇒ S, H, I |=∆ P [n1/x] ∗ ⊙n2

x=n1+1.P)

∧ (n1 > n2 ⇒ S, H, I |=∆ empty))

Returning to the example, consider the following naı̈ve specifi-
cations, which demonstrate the difficulties in reasoning about the
memory manager:

{empty}malloc(n){⊙n−1
i=0 .ret + i 7→ }

{⊙n−1
i=0 .x + i 7→ }free(x){empty}

The problem is with the specification offree: it does not specify
how much memory is returned asn is a free variable.

The standard specification [12] offree only requires it to deal-
locate blocks provided bymalloc. Using abstract predicates we
are able to provide an adequate specification.

{empty}malloc(n){⊙n−1
i=0 .ret + i 7→ ∗ Block(ret, n)}

{⊙n−1
i=0 .x + i 7→ ∗ Block(x, n)}free(x){empty}

TheBlock predicate is used as a modular certificate thatmalloc
actually produced the block. The client can not construct aBlock
predicate as its definition is not in scope.

Standard implementations ofmalloc andfree store the block’s
size in the cell before the allocated block [12]. This can be specified
by defining theBlock predicate as follows.

Block(x, n)
def
= x − 1 7→ n

This allowsfree to determine the quantity of memory returned.6

We can give a simple implementations of these routines that call
system routines to construct (allocate) and dispose (dispose)
the blocks.7

5Given the specification it is always valid to return a connection to
a pool if it is to the correct database. A tighter specification could
be given to restrict returning to the allocating pool.
6More complicated specifications can be used which account for
padding and other book keeping.
7One could extend the specifications to have an additional memory
manager predicate as in the connection pool example.

malloc n =(newvar x; x=allocate(n+1);
[x]=n; return x+1)

free x =(newvar n; n=[x-1];
while(n≥0) (n=n-1; dispose(x+n))

Both of their implementations can be verified; here we present the
proof ofmalloc:

{empty}
x=allocate(n+1);

{⊙n
i=0.x + i 7→ }

{x 7→ ∗ ⊙n
i=1.x + i 7→ }

[x]=n;
{x 7→ n ∗ ⊙n

i=1.x + i 7→ }
return x+1

{ret − 1 7→ n ∗ ⊙n
i=1.ret − 1 + i 7→ }

{ret − 1 7→ n ∗ ⊙n−1
i=0 .ret + i 7→ }

{⊙n−1
i=0 .ret + i 7→ ∗ Block(ret, n)}

The final implication in this proof abstracts the cell containing the
block’s length, hence the client cannot directly access it.The fol-
lowing code fragment attempts to break this abstraction:

{empty}
x=malloc(30);

{⊙29
i=0.x + i 7→ ∗ Block(x, 30)}
[x-1]=15;

{???}
free(x);

The client attempts to modify the information about the block’s
size. This would be a clear failure in modularity as the client is
dependent on the implementation ofBlock. Fortunately, we are
unable to validate the assignment as the pre-condition doesnot con-
tain x − 1 7→ . Although, theBlock contains the cell, the client
does not have the definition in scope and hence cannot use it.

O’Hearn, Reynolds and Yang’s [22] idealization of a memory
manager does not support variable sized blocks. Their specifica-
tions can not be extended to cover this without exposing the rep-
resentation of the block. Additionally, it is impossible for them to
enforce thatmalloc must provide the blocks thatfree deallo-
cates without extending the logic.

3.3.3 Permissions reading
O’Hearn [21] has recently given separation logic an ownership,

or permissions, interpretation: E7→ E′ is the permission to read,
write and dispose the cell at location E. Bornat et al. [5] extend
this to allow read sharing. Essentially they annotate the7→ relation
to express the type of permission it represents: read or total. In
the previous example, theBlock predicate is the permission to dis-
pose the memory usingfree. Using this permissions reading of
separation logic, abstract predicates allow modules to define their
own permissions. The concept of ownership transfer can be seen as
transferring permission to and from the client.

Consider a ticket machine:

{empty}getTicket(){Ticket(ret)}
{Ticket (x)}useTicket(x){empty}

To calluseTicket you must have calledgetTicket; each us-
age consumes a ticket. Trying to use a ticket twice fails:

{empty}
x = getTicket();

{Ticket (x)}
useTicket(x);

{empty}
useTicket(x);

{???}

The second call touseTicket fails, because the first call re-
moved theT icket.

Any client that is validated against this specification mustuse the
ticket discipline correctly. In fact the module is free to define the

ticket in any way, e.g.T icket(x)
def
= true. Although this ticket

would be logically valid to duplicate,true ∗ true ⇔ true, the
client does not know this, and hence cannot.

3.4 Semantics
In the previous section we have informally introduced the notion

of abstract predicates and detailed a couple of examples to high-
light their use and demonstrate their usefulness. In this section we
formalize them precisely and show that the two abstract predicate
rules are sound.

3.4.1 Programming language
We assume the usual semantics of separation logic [31] and ex-

tend it to handle the functions. Asemantic function environment,
Π, is a finite partial function from function names,k, to a pair of
a vector of variable names and a command for the body (Π : k ⇀
(x, C)). An environment is well-formed,Π ok, if it only modifies
local variables,∀x, C ∈ cod(Π).modifies(C) = ∅.

A configuration is defined as a quadruple of a function environ-
ment, a command, a stack, and a heap. A terminal configuration
is a stack, heap pair orFault. The semantics are given by a recur-
sively defined relation between configurations and terminalconfig-
urations presented in Figure 3. We provide additional failure rules
for each heap command accessing undefined state:

(Π, [E]=E′, S, H) ⇓ Fault

(Π, x=[E], S, H) ⇓ Fault

(Π, dispose(E), S, H) ⇓ Fault

9

>

=

>

;

where

JEKS /∈ dom(H)

and add rules to propagate theFault states in the obvious way.

DEFINITION 3.1 (SAFETY).
(Π, C, S, H) : safe

def
= ¬((Π, C, S, H) ⇓ Fault)

Note: As we only consider partial correctness, we consider non-
termination as safe.

We have the standard properties required for the soundness of
the frame rule [31].

LEMMA 3.2 (SAFETY MONOTONICITY).

(Π, C, S, H) : safe ∧ H′⊥H ⇒ (Π, C, S, H ◦ H′) : safe

LEMMA 3.3 (HEAP LOCALITY).

(Π, C, S, H1) : safe ∧ (Π, C, S, H1 ∗ H) ⇓ (S′, H′) ⇒

∃H2.H
′ = H ∗ H2 ∧ (Π, C, S, H1) ⇓ (S′, H2)

3.4.2 Abstract predicates
Next we define the semantics of an abstract predicate. First we

define semantic predicate environments,∆, as follows:

∆ : A ⇀
a

n∈N

(Nn → P(H))

whereA is the set of predicate names. We restrict our consideration
to well-formed environments: each predicate name is mappedto a
function of the correct arity,∆(α) : N

arity(α) → P(H). The
reader might have expected the use ofP(H × S × I), but this
breaks substitution as the predicate can depend on variables that
are not syntactically free.

The semantics of a predicate is as follows:

S, H, I |=∆ α(E) ⇔ α ∈ dom(∆) ∧ H ∈ (∆α)[JEKS,I]

The rest of the semantics are from the standard definition, sketched
in §2, with the predicate environment added in the obvious way.

We define the following ordering on semantic predicate environ-
ments

∆ ⊑ ∆′ def
=

∀α.∀n : N
arity(α).∆(α) 6= ⊥ ⇒ ∆(α)(n) ⊆ ∆′(α)(n)

The least upper bound of this order is written⊔.

LEMMA 3.4. Well-formed semantic predicate environments form
a complete lattice with respect to⊑.

LEMMA 3.5. Formulae only depend on the predicate names they
mention, i.e. if∆ defines all the predicate names in P, and∆ and
∆′ are disjoint, then

∀S, H, I. S, H, I |=∆ P ⇔ S, H, I |=∆⊔∆′ P

LEMMA 3.6. Positive formulae are monotonic with respect to
semantic predicate environments, i.e. ifP is a positive formula,

∆ ⊑ ∆′ ∧ S, H, I |=∆ P ⇒ S, H, I |=∆′ P

Now let us consider the construction of a semantic predicateen-
vironment from an abstract one,Λ. The abstract predicate environ-
ment does not, necessarily, define every predicate, so constructing
a solution requires additional semantic definitions,∆, to fill the
holes. We use the following function to generate a fixed point:

step(∆,Λ)(∆n)
def
= λα ∈ dom(Λ).λn ∈ N

arity(α).

{H|S, H, I |=∆n⊔∆ Λ(α)[n]}

whereΛ are the definitions we want to solve;∆ are the predicates
not defined inΛ; and∆n is an approximation to the solution.step
is monotonic on predicate environments, because of Lemma 3.6
and that all the definitions are positive. Hence by Tarski’s theorem
and Lemma 3.4 we know a least fixed point always exists. We write
JΛK∆ for the least fixed point ofstep∆,Λ.
Note: step is not Scott-continuous. This does not cause any prob-
lems because we only need consider the properties of the least fixed
point, rather than its construction.

Consider the set of all solutions ofΛ of the form∆ ⊔ JΛK∆:

close(Λ)
def
= {∆ ⊔ JΛK∆| dom(∆) = A \ dom(Λ)}

This function has two properties.

LEMMA 3.7. Adding new predicate definitions refines the set of
possible semantic predicate environments, i.e.

close(Λ) ⊇ close(Λ,Λ′)

LEMMA 3.8. The removal of predicate definitions does not af-
fect predicates that do not use them. GivenΛ which is disjoint from
Λ′ and does not mention predicate names in its domain; we have

∀∆ ∈ close(Λ).∃∆′ ∈ close(Λ, Λ′). ∆ ↾ dom(Λ′) = ∆′ ↾ dom(Λ′)

wheref ↾ S is {a 7→ b|a 7→ b ∈ f ∧ a /∈ dom(S)}

We define validity wrt an abstract predicate environment, written
Λ |= P , as follows:

∀S, H, I,∆ ∈ close(Λ). S, H, I |=∆ P

THEOREM 3.9. OPENandCLOSE, i.e.

α(x)
def
= P,Λ |= α(E) ⇒ P [E/x]

α(x)
def
= P,Λ |= P [E/x] ⇒ α(E),

are valid.

Function definition
(Π[k1 7→ (x1, C1), . . . , kn 7→ (xn, Cn)], C, S, H) ⇓ (S′, H′)

(Π,let k1 x1=C1, . . . , kn xn=Cn inC), S, H) ⇓ (S′, H′)

New variable
(Π, C, S[x 7→ nil], H) ⇓ (S1, H1)

(Π, newvarx;C, S, H) ⇓ (S1[x 7→ S(x)], H1)

While1
JBKS = false

(Π,whileB C, S1, H1) ⇓ (S1, H1)

While2
JBKS = true (Π, C;whileB C, S1, H1) ⇓ (S2, H2)

(Π, whileB C, S1, H1) ⇓ (S2, H2)

Function call
(Π, C, x 7→ JyKS, H) ⇓ (S′, H′) Π(k) = x, C

(Π, x=k(y), S, H) ⇓ (S[x 7→ JretKS′], H′)

Sequence
(Π, C1, S1, H1) ⇓ (S2, H2)
(Π, C2, S2, H2) ⇓ (S3, H3)

(Π, C1; C2, S1, H1) ⇓ (S3, H3)

If1
JBKS = true (Π, C1, S, H) ⇓ (S1, H1)

(Π, ifB thenC1 elseC2, S, H) ⇓ (S1, H1)

If2
JBKS = false (Π, C2, S, H) ⇓ (S1, H1)

(Π, ifB thenC1 elseC2, S, H) ⇓ (S1, H1)

Read (Π, x=[E], S, H)⇓(S[x 7→ n], H) whereH(JEKS) = n

Write (Π, [E]=E′, S, H)⇓(S, H[n 7→ n′]) whereJEKS = n, n ∈ dom(H) andJE′KS = n′

Cons (Π, x=cons(E), S, H)⇓(S[x 7→ n], H[n 7→ n]) where|E| = n′, {n, . . . , n + n′}⊥dom(H) andJEKS = n

Dispose (Π,dispose(E), S, H)⇓(S, H′) whereJEKS = n, H′[n 7→ n′] = H andn /∈ dom(H′)

Assign (Π, x=E, S, H)⇓(S[x 7→ n], H) whereJEKS = n

Return (Π,returnE; , S, H)⇓(S[ret 7→ JEKS], H)

Figure 3: Operational semantics

3.4.3 Judgements
We are now in a position to define a semantics for our reasoning

system. We writeΛ; Γ |= {P}C{Q} to mean that, if every spec-
ification in Γ is true of a function environment, and every abstract
predicate definition inΛ is true of a predicate environment, then so
is {P}C{Q}:

Λ; Γ |= {P}C{Q}
def
= ∀∆ ∈ close(Λ), Π.

Π ok ∧ (∆ |=Π Γ) ⇒ ∆ |=Π {P}C{Q}

where

∆ |=Π Γ
def
=

∀{P}k{Q} ∈ Γ.Π(k) = (x, C) ⇒ ∆ |=Π {P}C{Q}

∆ |=Π {P}C{Q}
def
=

∀S, H, I. S, H, I |=∆ P ⇒ ((Π, C, S, H) : safe

∧ ((Π, C, S, H) ⇓ (S′, H′) ⇒ S′, H′, I |=∆ Q))

Given this definition we can show that the two new rules for
abstract predicates are sound.

THEOREM 3.10. Abstract weakening is sound.

PROOF. Direct consequence of definition of judgements and Lem-
ma 3.7.

THEOREM 3.11. Abstract elimination is sound.

PROOF. Follows from Lemmas 3.5 and 3.8.

4. A JAVA-LIKE LANGUAGE
In the previous section we have shown how abstract predicates

can be used with separation logic to provide a powerful but intuitive
framework to reason about a language with first-order functions or
procedures. We now turn our attention to another form of modular-
ity: class-based objects.

More precisely we shall consider the problems of reasoning about
a fragment of Java. We will consider a simple subset of Java based
on Middleweight Java (MJ) [3]. We restrict MJ’s expressionsto be

Program
prog ::= cldef1 . . . cldefn ; s

Class definition
cldef ::= class C extends D {fdef mdef}

Method definition
mdef ::= C m(C1 x1, ...,Cn xn) { s return x;}

Field definition
fdef ::= C f;

Expressions
E ::= x | null

Statements
s ::= x = y.f; | x = (C)y; | x = new C();

| x.f = E; | x = y.m(E); | C x;
| {s} | ; | if (E == E) {s} else {s}

Figure 4: Syntax of MJ subset

stack variables andnull,8 and remove constructors. We present
the full syntax in Figure 4. We write f and m to range over field
and method names respectively. We useC, D to range over class
names, andx, y to range over variable names.

Consider giving a separation logic to this language: clearly we
require the “points to” relation to describe fields.9 The new asser-
tion “field points to”, writtenx.f 7→ y, means the fieldf of the
objectx contains the valuey. We also use the predicatex : C to
mean thatx points to an object of classC: it is actually aC not just
a subtype ofC.

Now consider a motivational example [1] of aCell class and
a subclass that has backup,Recell, presented in Figure 5. The
specifications of theset methods are:

{this.cnts 7→ }
Cell.set(n)
{this.cnts 7→ n}

{this.cnts 7→ X ∗ this.bak 7→ }
Recell.set(n)

{this.cnts 7→ n ∗ this.bak 7→ X}

These specifications have two problems: (a) they have no encapsu-
lation; and (b) they do not respect behavioural subtyping.

(a) From the specification the client knows which field is usedto

8This restriction is required as separation logic requires expres-
sions to be pure: they cannot access the heap, i.e.x.f1.f2 is not
allowed.
9An alternative approach would be to use the heap primitive asa
whole object [18]. However, being able to split an object allows for
more flexible reasoning.

class Cell {
Object cnts;
void set(Object n) {this.cnts = n;}
Object get() {Object t;
t = this.cnts; return t;}}

class Recell extends Cell {
Object bak;
void set(Object n) {
Object t; t = this.cnts;
this.bak = t; this.cnts = n;}}

Figure 5: Source code for Cell and Recell classes

store the contents. Clearly we need a greater level of abstraction.
Using an abstract predicate allows us to encapsulate the object’s
state. We can write theCell’s set specification as:

{ValCell(this,)} Cell.set(n) {ValCell(this, n)}

and define the abstract predicate as

ValCell(this, x)
def
= this.cnts 7→ x

and scope it to theCell class. This stops theCell’s client using
the field directly as it is hidden in the abstract predicate.

(b) Using standard behavioural subtyping [17], to allow dynamic
dispatch, theRecell’s specification needs to be compatible with
theCell’s, i.e. we require the following two implications to hold

pre(Cell, set) ⇒ pre(Recell,set) (1)

post(Recell, set) ⇒ post(Cell,set) (2)

wherepre(C, m) denotes the pre-condition for the methodm in
classC, andpost denotes the post-condition.

Given the earlier specifications, these implications can never hold
as they require a one element heap to be the same size as a two el-
ement heap. What about abstract predicates? The specification for
Recell must use a different abstract predicate toCell as it has a
different body, i.e.

{ValRecell(this, X,)}Recell.set(n){ValRecell(this, n, X)}

with the obvious definition forValRecell. Unfortunately the predi-
cates are treated parametrically; no implications hold between them.

As it stands, abstract predicates do not, by themselves, help with
behavioural subtyping. They provide support for encapsulation but
not inheritance. In an object-oriented setting we require predicates
to have multiple definitions, hence we introduceabstract predicate
familieswhere the families are sets of definitions indexed by class.
Abstract predicate family instances10 are writtenα(x;~v) to indicate
that the objectx satisfiesonedefinition from the abstract predicate
family α with arguments~v. The particular definition satisfied de-
pends on the dynamic type ofx. In object-oriented programming
an object could be from one of many classes; abstract predicate
families provide a similar choice of predicate definitions when con-
sidering their behaviour.

We define abstract predicate family definitions,Λf , with the fol-
lowing syntax.

Λf := ǫ | αC
def
= λ(x; x)P, Λf

Λf is well-formed if it has at most one entry for each predicate
and class name pair, and the free variables of the body,P , are in
its argument list,x; x. We treatΛf as a function from predicate

10In the module system the concept of abstract predicate instance,
and the abstract predicate are conflated, but here as we have multi-
ple definitions the distinction must be kept.

and class name pairs to formulae. Each entry corresponds to the
definition of an abstract predicate family for a particular class.

Our example shows the need to alter the arity of the predicateto
reflect casting; theRecell’s predicate has three arguments while
theCell’s only has two. Hence we provide the following pair of
implications:
WIDEN Λf |= α(x; x) ⇒ ∃y.α(x;x, y)

NARROW Λf |= ∃y.α(x; x, y) ⇒ α(x; x)

If we give a predicate more variables than its definition requires,
it ignores them, and if too few, it treats the missing arguments as
existentially quantified. This leads to our definition of substitution
onto a predicate definition,

(λ(x; x).P)[E; E]
def
=

(

P [E/x, E1/x] |E1| = |x| andE = E1, E2

∃y.P [E/x, (E, y)/x] |E, y| = |x|

This definition of substitution can then be used to give the families’
version ofOPENandCLOSE.
OPEN Λf |= (x : C ∧ α(x; x)) ⇒ Λf (α, C)[x;x]

CLOSE Λf |= (x : C ∧ Λf (α, C)[x;x]) ⇒ α(x; x)

whereα, C ∈ dom(Λf).
To OPEN or CLOSEa predicate we must know which class con-

tains the definition, and must have that version of the predicate in
scope.
Note: We canOPEN predicates at incorrect arities as the substi-
tution will correctly manipulate the arguments. An alternative ap-
proach would be to restrict opening to the correct arity, anduse
WIDEN and NARROW to get the correct arity. However, this ap-
proach complicates the semantics.

4.1 Proof rules
In this section we define a set of Hoare-style proof rules for rea-

soning about MJ programs. The judgements take the following
form:

Λf ; Γ ⊢ {P}s{Q}

whereΓ is a set of assertions about methods. They have the fol-
lowing form:

Γ := ǫ | {P}C.m(x){Q}, Γ

A well-formed method environment,⊢ Γ wf , defines each method
and class name pair only once and has the following three proper-
ties:

1. The pre- and post-conditions can only contain free program
variables in the argument list,this andret; i.e.

∀{P}C.m(x){Q} ∈ Γ.FPV(P) ⊆ ({this} ∪ x)

∧ FPV(Q) ⊆ ({this, ret} ∪ x)

2. A method can only modify local variables; there are no global
variables and arguments cannot be modified, i.e.

∀{P}C.m(x){Q} ∈ Γ.modifies(mbody(C, m)) = ∅

wherembody(C,m) returns the body of methodm in class
C.

3. Subtypes must have compatible specifications with their su-
pertypes, i.e.

∀{PC}C.m(x){QC} ∈ Γ. D ≺ C

⇒ {PD}D.m{QD} ∈ Γ ∧

(⊢ {PC} {QC} ⇒ {PD} {QD})

DEFINITION 4.1 (SPECIFICATION COMPATIBILITY). We de-
fine specification compatiblity,⊢ {PC} {QC} ⇒ {PD} {QD},
as∀s. if Λ;Γ ⊢ {PD}s{QD} is derivable fromΛ; Γ ⊢ {PC}s{QC}
using only the structural rules:CONSEQUENCE, AUXILIARY VARI -
ABLE ELIMINATION andVARIABLE SUBSTITUTION.11

This is more general than the behavioural subtyping rules asit
allows manipulation of auxiliary variables. In fact, if thederivation
only uses the rule of CONSEQUENCE, specification compatibilty
degenerates to behavioural subtyping.

Now let us consider the method call rule:
METHOD CALL

Λ; Γ ⊢



P [x, y/this, x]
∧ x ! = null

ff

y=x.m(y){Q[x, y, y/this, ret, x]}

wherex has static typeC and{P}C.m(x){Q} ∈ Γ

The method call rule only needs to consider the static type ofthe
receiver, because we have restricted ourselves to methods that are
specification compatible.12

The rules for checking the whole program deserve some atten-
tion.
CLASS

Λf ; Γ ⊢ {Pn ∧ this : C}mbody(C, mn){Qn}

...
Λf ; Γ ⊢ {P1 ∧ this : C}mbody(C, m1){Q1}

Λf ; Γ ⊢ {P1}C.m1(x1){Q1}, . . . , {Pn}C.mn(xn){Qn}
PROGRAM

Λf1
; Γ ⊢ Γ1 . . . Λf n

; Γ ⊢ Γn ∅,Γ ⊢ {P}s{Q}

⊢ {P}cldef1 . . . cldefn; s{Q}

whereΓ1 is the method specifications of the methods defined in
and inherited intocldef1; . . . ; Γn is induced bycldefn; Γ =
Γ1, . . . , Γn; andΛf 1, . . . ,Λf n

have disjoint domains.

These two rules correspond to the abstract function definition
from the previous section. They enforce that each method is checked
with the predicate definitions associated to its class.13 Inherited
methods must be rechecked with the new predicate definitionsfor
the class that inherits them. This is because when we check the
method bodies in theclassrule, we add to the pre-conditionthis :
C. Without this we would not be able to open or close the abstract
predicate families.

Again we have the two rules for introducing and eliminating ab-
stract predicate families.
ABSTRACT WEAKENING

Λf ; Γ ⊢ {P}C{Q}

Λf ,Λ′

f
; Γ ⊢ {P}C{Q}

wheredom(Λ′

f) anddom(Λ) are disjoint.
ABSTRACT ELIMINATION

Λf ,Λ′

f
; Γ ⊢ {P}C{Q}

Λf ; Γ ⊢ {P}C{Q}

where the predicates names inP , Q, Γ andΛ are not indoma(Λ′

f)
and definedoma(Λf) as{α|(α, C) ∈ dom(Λf)}.

11The frame rule could be included in this list ifs is restricted to
terms that modify no variables.

12We could present additional rules that do not rely on the subtyping
constraint, but they would only serve to complicate the presentation
and wouldn’t illustrate anything interesting.

13We assume these definitions will be provided during the proof,
and provide no explicit syntax for them.

Abstract predicate families are less symmetric than abstract pred-
icates: weakening allows the introduction for a particularclass and
predicate, while elimination requires the entire family ofdefini-
tions to be removed, i.e. must remove all the classes’ definitions
for a predicate. This is because it is not possible to give a simple
syntactic check for which parts, i.e. classes, of a family will be
used.

Finally we give the rules for field access, field write, and object
construction, which are similar to their equivalents in themodule
system:

Λf ; Γ ⊢ {x.f 7→ }x.f=E′ {x.f 7→ E′}

Λf ; Γ ⊢



y.f 7→ n
∧ x = m

ff

x=y.f



y[m/x].f 7→ n
∧ x = n

ff

Λf ; Γ ⊢ {empty}x=new C() {x.f1 7→ ∗. . . ∗ x.fn 7→ ∧ x : C}
whereC has fieldsf1. . .fn

4.2 Example: Cell/Recell
Let us return to our original motivating example. We define an

abstract predicate family,Val , with the definitions forCell and
Recell given earlier.

We have to validate four methods:Cell.set, Cell.get,
Recell.set and Recell.get. Even though the bodies of
Cell.get and Recell.get are the same, we must validate
both, because they have different predicate definitions.

We give the proof forRecell.set.

{Val(this;X,) ∧ this : Recell}
{this.cnts 7→ X ∗ this.bak 7→ ∧ this : Recell}

t = this.cnts;
{this.cnts 7→ X ∗ this.bak 7→ ∧ this : Recell ∧ X = t}

this.bak = t;
{this.cnts 7→ X ∗ this.bak 7→ t ∧ this : Recell ∧ X = t}

this.cnts = n;
{this.cnts 7→ n ∗ this.bak 7→ t ∧ this : Recell ∧ X = t}
{this.cnts 7→ n ∗ this.bak 7→ X ∧ this : Recell}
{Val(this;n, X)}

The other method bodies are all easily verifiable.
Additionally, we must prove the method specifications are com-

patible. The compatiblity of theset method follows from the rule
of CONSEQUENCEandAUXILIARY VARIABLE ELIMINATION .

⊢ {Val(this;X,)} {Val(this;n, X)}

⊢ {Val(this; ,)} {Val(this;n,)}

⊢ {Val(this;)} {Val(this;n)}

The get methods have the same specification, so are obviously
compatible.

A client that uses this code does not need to worry about dy-
namic dispatch, because of the behavioural subtyping constraints.
Consider the following method:

m(Cell c) {
c.set(c);

}

This code simply sets the Cell to point to itself. The code is speci-
fied as

{Val(c;)} m(Cell c) ... {Val(c; c)}

Now consider callingm with aRecell argument.

{empty}
Recell r = new Recell(x);

{Val(r; x,)}
{Val(r;)}
m(r);

{Val(r; r)}
{Val(r; r,)}

We useCONSEQUENCEto cast theVal predicate to have the correct
arity. We need not consider dynamic dispatch at all because of
behavioural subtyping.
Note: The specification of methodm is weaker than we might like.
Based on the implementation we might expect the post-condition
{Val(r; r, x)}. However, there are several bodies that satisfym’s
specification: for examplec.set(x);c.set(c);. We can set
theCell to have any value, as long as the last value we set is the
Cell itself. This body acts identically on aCell to the previous
body, however on aRecell acts differently. Hence only using the
specification we can not infer the tighter post-condition. This could
be deduced ifm was specified for aRecell as well.

4.3 Semantics
In this section we consider the extensions to the semantics of

§3.4 sufficient to model abstract predicate families. MJ has been
defined formally elsewhere [3]. First we shall make some small
changes to the basics of the separation logic setting:

DEFINITION 4.2. A heap, H, is composed of two functions, H=
(Hv, Ht): the first, Hv, maps pairs of object identifiers and field
names,(oid, f), to values,val; and the second, Ht, maps object
identifiers to class names,C. We use H(oid, f) to refer to the value
given by the first function, Hv(oid, f), and H(oid) to refer to the
value given by the second function, Ht(oid).

(We make the obvious alterations to the semantics to deal with the
new heap definition.) This definition allows a heap to containonly
some fields of an object. This new definition also separates the type
information from the value information in the heap.

We use the following two definitions to give the partial commu-
tative heap composition monoid

(H′

v, H′

t) ∗ (H′′

v , H′′

t)
def
= (H′

v ◦ H′′

v , H′

t)

and is defined iffdom(H′

v)⊥dom(H′′

v) andH′

t = H′′

t where◦ is
composition of disjoint partial functions.

The semantic predicate environment as defined in§3.4 has to be
extended to handle the arity changes that predicate families require.
We define a semantic predicate family environment as

∆f : A× C ⇀
`

N
+ → P(H)

´

This is a partial function from pairs of predicate and class name
to semantic definition. An abstract predicate family is defined for
all arities, so the semantic definition must be a function from all
tuples of non-zero arity. This semantically supports the change in
arity required byWIDEN andNARROW.

We can now give the semantics of the new assertions as follows

S, H, I |=∆f
E.f 7→ E′

⇔ H(JEKS,I , f) = JE′KS,I ∧ dom(H) = {JEKS,I , f}

S, H, I |=∆f
E : C ⇔ H(JEKS,I) = C

S, H, I |=∆f
α(E; E) ⇔ H ∈ (∆f (α, C))[JE; EKS,I] ∧ H(JEKS,I) = C

The field “points to” relation, E.f 7→ E′, holds if the heap con-
sists of a single field,f , of the objectJEKS,I and has the value
JE′KS,I . E : C is true if the heap typesJEKS,I as classC. α(E; E)
holds for some heapH, whereJEKS,I has classC, iff H satisfies the
predicate definition forC, given argumentsJE, EKS,I , in the predi-
cate familyα.

To ensure thatWIDEN andNARROW hold we restrict our atten-
tion toargument refineableenvironments.

DEFINITION 4.3 (ARGUMENT REFINEABLE). A semantic pred-
icate family environment is said to be argument refineable ifadding

an argument can not increase, or “decrease”, the set of accepting
states, i.e.

AR(∆f) ⇔ ∀α, n, n. ∆f (α)[n; n] =
[

n′

∆f (α)[n; n, n′]

PROPOSITION 4.4. Argument refinement coincides precisely with
WIDEN andNARROW: ∀S, H, I, α, n, n.

AR(∆f) ⇐⇒ (S, H, I |=∆f
α(n; n) ⇔ ∃n′.α(n; n, n′))

We can define an order on semantic predicate families environ-
ments, i.e

∆f ⊑ ∆′

f

def
= ∀α, C, n, n.∆f (α, C)[n; n] ⊆ ∆f (α, C)[n;n]

Again, the least upper bound of the order is written⊔. Lemmas 3.4
and 3.6 can be extended to semantic predicate family environments
as follows:

LEMMA 4.5. Argument refineable predicate family environments
form a complete lattice with respect to⊑.

LEMMA 4.6. Positive formulae are monotonic with respect to
semantic predicate family environments

∆f ⊑ ∆′

f ∧ S, H, I |=∆f
P ⇒ S, H, I |=∆′

f
P

However extending Lemma 3.5 is less straight forward, as it is not
possible to tell which predicate name, class name pairs are used in
a formula.

LEMMA 4.7. Formulae only depend on the abstractions they
mention. If∆f contains all the abstractions in P, anddoma(∆f)∩
doma(∆′

f) = ∅, then

∀S, H, I. S, H, I |=∆f
P ⇔ S, H, I |=∆f⊔∆′

f
P

Now let us consider the construction of semantic predicate fam-
ily environments from their abstract syntactic counterparts. We de-
fine a new function,stepf , that accounts for the first argument’s
type and uses the special substitution,

stepf(Λf ,∆f)(∆
′

f)(α, C)[n;n]
def
=

{H|H(n) = C ∧ S, H, I |=∆f∪∆′

f
Λf (α, C)[n;n]}

This function is monotonic on predicate family environments, be-
cause of Lemma 4.6 and that all the predicate definitions are posi-
tive. Hence by Lemma 4.5 and Tarski’s theorem we know a fixed
point must always exist. We writeJΛf K∆f

as the least fixed point
of stepf(Λf ,∆f).

LEMMA 4.8. stepf produces argument refineable results.

Consider the following set of solutions:

{JΛf K∆f
⊔ ∆f | (A× C) \ dom(∆f) = dom(Λf) ∧ AR(∆f)}

This satisfies the analogues of Lemmas 3.7 and 3.8.

LEMMA 4.9. Adding new predicate definitions refines the set of
possible semantic predicate environments.

close(Λf) ⊇ close(Λf ,Λ′

f)

LEMMA 4.10. The removal of predicate definitions does not af-
fect predicates that do not use them, i.e. givenΛf which is disjoint
fromΛ′

f and does not mention predicates in its domain; we have

∀∆ ∈ close(Λf).∃∆′

f ∈ close(Λf ,Λ′

f).

∆f ↾ dom(Λ′

f) = ∆′

f ↾ dom(Λ′

f)

wheref ↾ S is {a 7→ b|a 7→ b ∈ f ∧ a /∈ dom(S)}

Validity is defined identically to the previous section, i.e.

Λf |= P
def
= ∀S, H, I,∆f ∈ close(Λf).S, H, I |=∆f

P

THEOREM 4.11. OPENandCLOSE, i.e.

Λf |= α(E; E) ∧ E : C ⇒ Λf (α, C)[E, E/x, x]

Λf |= Λf (α, C)[E, E/x, x] ∧ E : C ⇒ α(E; E)

where(α, C) ∈ dom(Λf), are valid.

THEOREM 4.12. WIDEN andNARROW, i.e.

Λf |= α(E; E) ⇒ ∃X.α(E; E, X)

Λf |= α(E; E, E′) ⇒ α(E; E),

are valid.

4.3.1 Judgements
We are now in a position to define the semantics for our reason-

ing system. We writeΛf ; Γ |= {P}C{Q} to mean if every spec-
ification in Γ is true of a method environment, and every abstract
predicate family inΛf is true of a predicate family environment,
then so is{P}C{Q}, i.e.

Λf ; Γ |= {P}C{Q}
def
=

∀∆f ∈ close(Λf). (∆f |= Γ) ⇒ ∆f |= {P}C{Q}

where

∆f |= Γ
def
= ∀{P}C.m{Q} ∈ Γ.∆f |= {P}mbody(C, m){Q}

∆f |= {P}s{Q}
def
=

∀S, H, I.S, H, I |=∆f
P ⇒ ((S, H, s, []) : safe

∧ ((S, H, s, []) →∗ (S′, H′, v, []) ⇒ S′, H′, I |=∆f
Q))

Given this definition we can show that the two new rules for
abstract predicate families are sound.

THEOREM 4.13. Abstract weakening is sound.

PROOF. Direct consequence of the definition of judgements and
Lemma 4.9.

THEOREM 4.14. Abstract elimination is sound.

PROOF. Follows from Lemmas 4.7 and 4.10

5. RELATED AND FUTURE WORK
In this paper we have considered the problem of writing spec-

ifications for programs that use various forms of abstraction. We
have focused here on modules and Java-like classes. We have built
on the formalism of separation logic and presented rules forrea-
soning about ADTs and Java-like classes. We have demonstrated
the utility of these rules with a series of examples.

The principles of abstraction this paper builds on have beenaround
since the Seventies. Parnas [25] first described the principles of
information hiding and showed that without it seemingly indepen-
dent components of a program could become tied together. Hoare
provided a logic for data abstraction [11] that allowed internal im-
plementation details to be hidden from the client. These ideas were
developed further by Liskov [16] and Guttag [10] to provide what
we now know as abstract datatypes.

In Hoare’s [11] presentation of data abstraction, he used anab-
straction function that maps values from a concrete domain to an
abstract one. This abstraction function has been used in behavioural
subtyping [17] to make classes with different implementations meet

the same specification. When reasoning with framing, Leino ob-
served that, in addition to abstraction functions, datagroups [14] are
needed to abstractmodifies14 clauses. Abstract predicates, and fam-
ilies, combine the concept of both datagroups and the abstraction
function into a single definition: separation logic formulae repre-
sent both the amount of state and its possible values.

There have been several attempts to reason about Java using a
Hoare logic, including those by Oheimb and Nipkow [24], Poetzsch-
Heffter and Müller [27], Pierik and de Boer [26]. However these
logics do not have the framing properties of separation logic; method
bodies must be verified at each call site. Also they do not at-
tempt to express abstraction. In this sense Leino’s work with data-
groups [14] and data abstraction [15] are more closely related. This
work uses the concept of “modular soundness” to determine when
state can be exposed to a client. Another related approach byBar-
net et al. [2] uses a private invariant to encapsulate the objects state.
This invariant can be “packed” and “unpacked” to access its con-
tents. These pack and unpack operations can be seen as correspond-
ing to the open and close implications of abstract predicates.

Reddy [28] takes a different approach to adding abstractionto
the logic. He extends specification logic to provide the ability to
existentially quantify a predicate. This quantified predicate behaves
in a similar way to an abstract predicate.

Middelkoop et al. [18] have similar aims to us and give a sepa-
ration logic for a class-based language. Their approach considers
an object as the primitive element of the heap, rather than a field.
This restricts their use of the frame rule by preventing themfrom
considering splitting an object. Their work does not consider ab-
straction or inheritance and so can not handle any of the examples
presented in this paper.

A different approach to adding abstraction to separation logic
has been taken by O’Hearn et al. [22]. They use the hypothetical
frame rule to reason about static modularity. They are not able to
reason about ADTs or classes, and cannot verify the exampleswe
present. All the examples they present can by expressed using ab-
stract predicates, however the proofs are less compact: predicates
must be threaded through the proof to represent the internalinvari-
ant. This leads to two open questions: (1) can abstract predicates
express all the proofs of the hypothetical frame rule?; and (2) can
the concepts be soundly combined into a single logic? We believe
the answer to both of these questions to be yes, but more work re-
mains.

Building on the principles of the hypothetical frame rule, Mija-
jlović and Torp-Smith [19] have built a semantic model of refine-
ment in a setting similar to separation logic. This allows them to
semantically show one module could be used in place of another.
They do not provide any logical rules for this reasoning, andthey
do not deal with ADTs. It would be interesting to see if their mod-
els could be adapted to abstract predicates.

A different approach to separation logic to dealing with theprob-
lem of aliasing is to impose some form of restriction using a type
system. Ownership types [6] have been used to restrict aliasing in
object-oriented languages. They prevent pointers into an object’s
representation, which helps reasoning about encapsulation. Smith
and Drossopoulou [7] exploit this encapsulation to extend aHoare
logic with framing properties. Separation logic is more flexible
than ownership types as it prevents dereferencing of a pointer rather
than its existence.

Many researchers have pointed to similarities between separation
logic and ownership types. However close comparison has been
hampered by the fact that separation logic research has dealt with

14A modifiesclause is an annotation that specifies all the possible
changes made by a method/function body.

low-level pointer manipulation; whereas ownership types has dealt
with high-level object languages. We hope that the work detailed in
this paper may provide a stepping-stone for a more indepth analysis
of these two approaches.

In this paper we have built a logic for reasoning about abstract
types. It is well-known that abstract types correspond via the Curry-
Howard correspondence to existential types [20]. Abstractpredi-
cates appear to be analogous, but at the level of the propositions
themselves. We should also like to explore this analogy further,
perhaps using higher-order logic to provide a logical semantics for
abstract predicates.

The types analogy leads to another direction to pursue: para-
metric polymorpism. In this paper functions and methods canbe
defined to manipulate a datatype or class without knowing itsrepre-
sentation: e.g. the connection pool did not know how a connection
was stored. This is related to O’Hearn’s comment that “Ownership
is in the eye of the asserter”. Abstract predicates may provide a
suitable setting for studying parametric datatypes; we arecurrently
working on a set of proof rules.

Finally, in this paper we have only considered sequential lan-
guages. Recently, O’Hearn has shown how to extend separation
logic with rules to reason about concurrency primitives [21]. These
rules use the same information hiding principles of the hypotheti-
cal frame rule [22]. They allow state to be stored in a semaphore,
and by manipulating this semaphore the state can be transfered be-
tween threads. Unfortunately the semaphore is statically scoped,
which prevents reasoning about heap allocated semaphores includ-
ing, for example Java’ssynchronised primitive. We are cur-
rently consider the combination of the information hiding provided
by abstract predicates with O’Hearn’s system for concurrency to
allow for reasoning about semaphores in the heap, and hence Java
with threads.

Acknowledgements
We should like to thank Peter O’Hearn for insightful comments
on earlier versions of this work and proposing the malloc andfree
example; and Andrew Pitts, Alisdair Wren and the anonymous ref-
erees for comments on this paper. We acknowledge funding from
EPSRC (Parkinson) and APPSEM II (Bierman and Parkinson).

6. REFERENCES
[1] M. Abadi and L. Cardelli.A theory of objects. Springer,

1996.
[2] M. Barnett, R. DeLine, M. Fähndrich, K.R.M. Leino, and

W. Schulte. Verification of object-oriented programs with
invariants.Journal of Object Technology, 2004.

[3] G.M. Bierman and M.J. Parkinson. Effects and effect
inference for a core Java calculus. InProceedings of WOOD,
volume 82 ofENTCS, 2004.

[4] L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local
reasoning about a copying garbage collector. InProceedings
of POPL, 2004.

[5] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson.
Permissions accounting in separation logic. Proceedings of
POPL, 2005.

[6] D. Clarke and S. Drossopolou. Ownership, encapsulationand
the disjointness of type and effect. InProceedings of
OOPSLA, 2002.

[7] S. Drossopoulou and M. Smith. Cheaper reasoning with
ownership types. InProceedings of IWACO, 2003.

[8] J. Ellis and L. Ho. JDBC 3.0 specification, 2001.
http://java.sun.com/products/jdbc/download.html.

[9] M. Grand.Patterns in Java, volume 1. Wiley, second edition,
2002.

[10] J. Guttag.The Specification and Applications to
Programming of Abstract Data Types.PhD thesis, Dept. of
Computer Science, University of Toronto, 1975.

[11] C. A. R. Hoare. Proof of correctness of data representations.
Acta Informatica, 1(4):271–281, 1972.

[12] B. W. Kernighan and D. M. Ritchie.The C Programming
Language, Second Edition. Prentice-Hall, 1988.

[13] J. Lamping. Typing the specialization interface. In
Proceedings of OOPSLA, 1993.

[14] K.R.M. Leino. Data groups: Specifying the modificationof
extended state. InProceedings of OOPSLA, 1998.

[15] K.R.M. Leino and G. Nelson. Data abstraction and
information hiding.ACM Transactions on Programming
Languages and Systems, 24:491–553, September 2002.

[16] B. Liskov and S.N. Zilles. Programming with abstract data
types. InProceedings of Symposium on Very High Level
Programming Languages, 1974.

[17] B.H. Liskov and J.M. Wing. A behavioral notion of
subtyping.ACM TOPLAS, 16(6):1811–1841, 1994.

[18] R. Middelkoop, K. Huizing, and R. Kuiper. A Separation
Logic Proof System for a Class-based Language. In
Proceedings of LRPP, 2004.

[19] I. Mijajlović and N. Torp-Smith. Refinement in a separation
context. InProceedings of FSTTCS, 2004.

[20] J.C. Mitchell and G.D. Plotkin. Abstract types have
existential type.ACM Trans. Program. Lang. Syst.,
10(3):470–502, 1988.

[21] P.W. O’Hearn. Resources, concurrency and local reasoning.
Invited paper, inProceedings of CONCUR, 2004.

[22] P.W. O’Hearn, H.Yang, and J.C. Reynolds. Separation and
information hiding. InProceedings of POPL, 2004.

[23] P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. InProceedings of
CSL, 2001.

[24] D. Oheimb and T. Nipkow. Hoare logic for NanoJava:
Auxiliary variables, side effects and virtual methods
revisited. InFormal Methods Europe, 2002.

[25] D.L. Parnas. The secret history of information hiding.In
Software Pioneers: Contributions to Software Engineering.
Springer, 2002.

[26] C. Pierik and F.S. de Boer. A syntax-directed Hoare logic for
object-oriented programming concepts. InFormal Methods
for Open Object-Based Distributed Systems, 2003.

[27] A. Poetzsch-Heffter and P. Müller. A programming logic for
sequential Java. InProceedings of ESOP, 1999.

[28] U.S. Reddy. Objects and classes in Algol-like languages.
Information and Computation, 2002.

[29] J.C. Reynolds. Separation logic: A logic for shared mutable
data structures. InProceedings of LICS, 2002.

[30] R. Stata. Modularity in the presence of subclassing.
Technical Report 145, Digital Equipment Corporation
Systems Research Center, April 1997.

[31] H. Yang.Local reasoning for stateful programs. PhD thesis,
University of Illinois, July 2001.

