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ABSTRACT

In this paper we address the problem of writing specificatifmm
programs that use various forms of modularity, includingoer
dures and Java-like classes. We build on the formalism dd-sep
ration logic and introduce the new notion of abstract predicate
and, more generally, abstract predicate families. Thisiges a
flexible mechanism for reasoning about the different forinatn
straction found in modern programming languages, suchsissah
datatypes and objects. As well as demonstrating the soaadfe
our proof system, we illustrate its utility with a series abeples.

Categories and Subject Descriptors

D.2.4 [Software Engineerind: Program Verification—€lass in-
variants D.3.3 [Programming Language$: Language Constructs
and Features-Modules, package®.3.3 [Programming Langua-
gegd: Language Constructs and FeatureStasses and inheritance

General Terms
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1. INTRODUCTION

In order to assist programmers in building complex softveye
tems, programming languages offer various forms of abitrac
In this paper we focus on those that provide some form of naselul
ity. These range from simple procedures with local stateuth
abstract datatypes (ADTS), to the complexities of Java4diiss hi-
erarchies with method overriding and runtime resolutiomethod
invocation.

Our aim is to provide intuitive ways for programmers to sfeci
the behaviour of their modular code. Previous solutionsatudting
modularity are either too weak, in that certain natural gations
can not be expressed; or too strong, in that the programrfecisd
to accept an unreasonable proof or annotation burden.
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We choose to build upon the recent formalism of separatigic o
which facilitates local reasoning about code [23]. Thislaeason-
ing approach has proved successful when considering mahy re
world algorithms, including the Schorr-Waite graph magkial-
rithm [31] and a copying garbage collector [4].

Until recently, the work on separation logic has focusedwexc
sively on low-level C-like languages with no support for iaae-
tion. O’'Hearn, Reynolds and Yang [22] have recently adstetic
modularity to separation logic. They hide the internal teses of a
module from its clients using the so called hypotheticaifeaule.
This partitioning of resources between the client and theluteo
allows them to model “ownership transfer”, where state GHalg
be transferred between the module and the client withoutdéa
dereferencing dangling pointers. This allows them to reagmut
examples such as a simple memory manager, which allocagek fix
size blocks of memory, and a queue.

Though this is a significant advance, their work is severiety |
ited as it only models static modularity. Their modules asdu on
Parnas’ work on information hiding [25], which deals witmgie
instances of the hidden data structure. Hence, it can noddxk for
many common forms of abstraction, including ADTs and classe
where we require multiple instances of the hidden resouFas.
example, one would expect, given a list module, to use maltip
lists in an application; and one frequently creates newabja
object-oriented applications.

Let us review the problem: take a piece of code that we wish to
consider “abstract” (this could be because the code is a&ftoe,

a module or a method). A specification is then a contract betwe
the code and its callers. It includes a precondition thatesqes
what a caller must establish before the code may be exectitexd.
implementation of the module can assume the preconditicenen
try. A specification also contains a postcondition that rdsavhat
must hold upon exit of the module. Consequently the caller ca
assume the postcondition upon return from the module. Wéan r
soning about the module and the calls, only the contracingiye
the specification is used: that is, we expect the appropioate of
information hiding.

Various researchers have proposed enriching the logiceww vi
the data abstractly (as in data groups [14]), or the metpoais#-
dures abstractly (as in method groups [30, 13]). In contrast
propose to add the abstraction to the logical frameworkfjtbg
introducing the notion of aabstract predicate An abstract pred-
icate has a name, a definition, and a scope. Within the scope on
can freely swap between using the abstract predicate’s aachigs
definition, but outside its scope it must be handled atoryiciab.
by its name. Thus the scope defines the abstraction boundary f
the abstract predicate.

In various work on separation logic (e.g. [29]) it is common



to use inductively defined predicates to represent datestype
essence we allow predicates to additionally encapsulate and
not just represent it. This gives us two key advantages: H@d) t
impact of changing a predicate is easy to define; and (2) bapmenc
sulating state we are able to reason about ownership transfe
Whilst the notion of abstract predicates is sufficient tosoea

about modules and simple ADTSs, we should like to reason about

object-oriented forms of abstractions; more preciselp<ée class-
es and inheritance. This adds an additional complicatiohonly
do we have to reason about encapsulation but also inhegit&ath-
er pleasingly this again can be provided by reflecting thérabs
tion in the logical framework itself. Here the key obserwatis
that an object can exist at multiple types through the clémah
chy. We reflect this in the logic by generalising abstractimates
to familiesof abstract predicates that are indexed by class.

The rest of the paper is structured as follows.§thwe give a
brief overview of separation logic, detailing the featuteat we
use in this paper. 183 we present more formally the notion of
anabstract predicategiving proof rules and outlining a soundness
proof. We also give a number of worked examples§4nwe ex-
tend these reasoning principles to a core subset of Javan Aga
outline a soundness proof and give examples. We conclugg in
with a comparison to related work and propose some futuré&.wor

2. SEPARATION LOGIC PRIMER

In this section we give some brief details of the fragmenepks
ration logic that we shall use. Space prevents us giving gtetm
description or explanation of the significant advantagesisifg
separation logic. The interested reader can read furtheisland
references in a survey paper by Reynolds [29].

Separation logic is an extension to Hoare logic that perrags
soning about shared mutable state. It extends Hoare logiddiyng
spatial connectives to the assertion language, which adlsser-

P,Q == B|-P|PAQ|PVQ|P=Q
| empty| PxQ|P—=*Q|E—FE
The usual classical connectives, (/, A, =) are interpreted using
the boolean algebra structure induced on the powersettessta
addition to the boolean connectives we have the new spatial ¢
nectivesx and—, along with the predicatesnpty and—. Taking
these in reverse order: the predicate-E E’ consists of all the
triples (S H, I) where the heagl, consists of the single mapping
from the location given by the meaning of E to the value givgn b
the meaning of E
SH,| EE—F def dom(H) = {[E]s,} A H([E]s,) = [E']s,
We use the shorthanl — FE,,E>stomeanE — E1 « E +1 —
Es.
The spatial conjunctio® * Q means the heap can be split into
two disjoint parts in which? and@ hold respectively.

def

SHIEPxQY
3H1,H2.H1*H2:H/\S,H1,| ):P/\ S7H2,| ':Q

Heaps of more than one element are specified by usingtigin
smaller heaps. The has a unitempty that consists of all states
(S, H, I) whereH is the empty heap. The adjuncttpwritten —,
is not used in this paper so we shall suppress its (routirfejitien.

The essence of “local reasoning” is that to understand how a
piece of code works it should only be necessary to reasontabou
the memory the code actually accesses (its so-called ‘fimttp
Ordinarily aliasing precludes such a principle but the safen
enforced by thex connective allows this intuition to be captured
formally by the following rule.

FRAME RULE
F{r}c{Q}
F{P = R}C{Q = R}

tions to define separation between parts of the heap. Th& sep \\herec does not modify the free variables Bf i.e. modifie¢C) N

ration provides the key feature of separation logloeal reason-
ing—specifications need only mention the state they access [23]

We use the standard model of state from separation logic. A

heapH, is a partial function from locations to values (for simfilc
we takeValues to be the integers andocations to be the positive
integers).

H 4°f | ocations — ¢in Values
This has a partial commutative monoid for disjoint functimom-
position:
Hi (1)
Ha(1)

which is defined iffdom(H1) N dom(Hz2) = 0. A stack,S is a
function from (program) variables to values. Unlike othezgen-

tations [22], we do not interpret auxiliary variablesing the stack
but we define an auxiliary stack,that is a function from auxiliary

variable names to valués.

I € dom(H1)
l € dom(H2)

Hy % Ho %F AL {

Vars — Values

AuxVars — Values

We define a state as a triple consisting of a stack, a heap and a

auxiliary stack. A predicate is just a set of states, and e
are given by the following grammar where¢ and E range over
boolean- and integer-valued expressions respectivedgéthre de-
fined formally in the§3.1).

!Sometimes called ghost or logical variables.

n

FV(R) = 0.

The side-condition is required becausenly describes the sep-
aration of heap locations and not variables; see [5] for rdetails.
Note: modifies(C) denotes the set of stack variables assigned by a
given command, C, e.g. modifigs=3) = {z}. However assign-
ment through a stack variable to the heap is not counted:
modifieg[z]=3) = (). See [31] for full definition.

By using this rule, a local specification concerning onlyvhs-
ables and parts of the heap that are used’byan be arbitrarily
extended as long as the extension’s free variables are mdifigtb
by C. Thus, from a local specification we can infer a global spec-
ification that is appropriate to the larger footprint of artlesing
program.

3. A LANGUAGE WITH MODULES

In this section we consider reasoning about a simple imperat
language with first-order functions/procedures, whictsseatially
the same as that considered by Reynolds [29]. To simplifytkee
sentation we delay using Java§é. We introduce our novel con-
cept of an abstract predicate, and state some rules folit§Tikese
rules are proved sound §38.4.) We demonstrate the power and el-
egance of abstract predicates in reasoning about modutiar lwy
considering two detailed examples: a connection pool anéma-m
ory manager.

3.1 Syntax

2We add this as we make heavy use of local variables, and do not  The syntax for the programming language considered in &tis s

have global variables.

tion is given by the grammar in Figure 1. We usé¢o range over



and outside the predicate must be treated atomically. Hence

C = let kizi=C1,....knZn=CrinC first rule:

| return B[z =k(E)| newar z:C |z =E ABSTRACT FUNCTION DEFINITION

| x=[E]|[E]=E|z=cons(E)|di spose(E)

| if BthenCelseC|while BC|C;C AN T H{P}YC1{Q1}
E = z|E+E|E—E|ExE|n|null )
B = E==E|E<E|true|false :

AN T HA{PICR{Qn}
. AT {Pl}kl(x_l){Ql}7 s {Pn}kn(x_l){Qn} F {P}C{Q}
Figure 1: Module language syntax AT F {PY et k1 71=C1,. .., knZn=CninC{Q}
where e P, @, I and A do not contain the predicate names in

program variable names, ardranges over function names. We dom(A");
have a distinguished program variablet that is not modifiable e dom(A) anddom(A’) are disjoint; and
except with ther et urn command. We restrict our considera- ethe functions only modify local variables:
tion to well-formed programs: e.g. a well-formed progranydras modifiegC;) = 0(1 <i<n).

r et ur ns as the last command of a function; and defines a function This rule allows a module writer to use the definition of antetzs

name gt most once inlaet . In 'the examples 0533 we W|Illuse predicate, yet the client can only use the abstract prezitame.
syntactic sugar for procedures: procedure definitionsuaretions The functionsk1, . . ., k,, are within the scope of the predicates de-
that returnnul | , and procedure calls are functions calls assigned fined inA’ hencé ver7ifying the function bodi€s, ...C,, can use the
to _?E unused vau:able. - C defi local variable for th predicate definitions. The client codg, is notin the scope of the

e co(;n(r:nan ewar hx’ " etines a new OF%\f’a”.a edort e predicates, so it can only use the predicates atomicallytandgh
commana ©, we use a s orthamewar ... y; Cfor |n§ro uc- the specifications df4, ..., k.. The predicate names can not occur
ing multiple variablesy = cons(E) allocateqE| consecutive heap in the conclusions specificatiof?, andQ
chations with the values .df' The Ic/>cation E is d.ispos.ed using The side-conditions for this r;JIe prevent both the predisats-
dé spose; updated to Ewith [E] = E'; and stored in: with z = caping the scope of the module, and repeated definitions refci-p
[E]- cate. The final restriction is not required but reduces timeptexity

2 Proof rul of the modifies cla_uses for the fram_e _r_ule. _ _ _

3 oorruies In fact, the previous function definition rule is a derivederin
our system. Itis derived from the standard function definitiule
and two new rules for manipulating abstractions:
ABSTRACT WEAKENING

For the assertion language we take the language givga amd
extend it with predicates. Naturally we restrict our coesadion
to well-formed formulae, and again we elide the obvious defin
tion. We writex to range over predicate names and use a function

arity() from predicate names to their arity. AT HA{PIC{Q}
A judgement in our assertion language is written as follows: A AT F{P}C{Q}
AT H{PYC{Q} wheredom(A’) anddom(A) are disjoint
This is read: the command;, satisfies the specificatidni}-{Q}, ABSTRACT ELIMINATION

given the function hypotheseB, and predicate definitiong,. The
hypotheses and definitions are given by the following gramma

e[ {PI@{Q}.T

ela@ P A

AN T HA{PYC{Q}
AT HA{PYC{Q}

where the predicate namesi @, T andA are not indom(A’).
The first, ABSTRACT WEAKENING, allows the introduction of new
definitions; and the second,BATRACT ELIMINATION allows any
unused predicate to be removed.

We derive the abstraction function definition rule by takthg
standard function definition rule, and usingSTRACT WEAKEN-

However, when it simplifies the presentation, we will tréags
a partial function from predicate names to formulae, &hds a

partial function from function names to specifications. Vedine
def

A(a)[E] asP[E/z] whereA containsa(Z) = P. ING on the client code premise amBSTRACT ELIMINATION 0N
For the hypothesed;, to be well-formed each functiort, can the conclusion to remove the new predicate definitions. \Weaga
appear at most once; and the specification’s free prograiables ply the same technique to the recursive function definitiowever
are contained in its arguments anet. For the predicate defini- we do not require this for our examples.
tions, A, to be well-formed we require that each predicateis Next we give one of the standard Hoare logic rules: the rule of
contained at most once; the free variables of the bégyare con- consequence. (Of course, we use the other standard rulese sp
tained in the arguments; and P is a positive formuld. We will prevents us from listing them here.)
only consider well-formed™ andA. CONSEQUENCE
Intuitively, the predicates are used like abstract dategypAb-
stract data types have a name, a scope and a concrete represen AEP=P ANTH{PIC{Q} AEQ =Q
tation. Within this scope the name and the representatiarbea AT = {PYC{Q}
freely exchanged, but outside only the name can be used.- Simi
larly abstract predicates have a name and a formula. Theufaris This rule is key to actual use of abstract predicate defimstioNe
scoped: inside the scope the name and the body can be exdhange provide the following two axioms concerning abstract pecatés:
3A positive formula is one where predicate names appear onrly u  OPEN (@@ ¥ P,A E oF) = PE/A
der an even number of negations. This ensures that a fixedl poin ¢ osg (@) ¥ P),A = PE/F = af)

can be found; this is explained in further detaig®4.2



These axioms embody our intuition that if (and only if) an ab-
stract predicate is in scope then we can freely move betwsen i

name and its definition.
Next we present the rules for function call and return.

AT A{Py/2]}y=k(Yy) {QY, /T, ret]} where {P}k(z){Q} € T
A;T = {P[z/ret]}returnz {P}
These rules use the distinguished variataleto match the return
value with its destination variable.
Finally we give the small axioms of separation logic
A;TH{Ew— _}[E]=E' {E— FE'}
AT HA{E— nAz=m}z=[E {Em/z] — nAz=n}
A;T F {Ew— _}di spose(E) {empty}
AT+ {empty Az = m}a=cons(E) {z — E[m/z]}

These refer only to the state that is accessed by the commands

They can typically be extended using theAME RULE to refer to
a larger state, e.g.

AT H{Ew— _xE; — Ez}di spose(E){E1 — Ea}.

3.3 Examples

3.3.1 Connection pool

Our first example is a database connection pool. Constgictin

a database connection is generally an expensive operatichjs

cost is reduced by pooling connections using the object gesign

pattern [9]. Programs regularly access several differatdlzhses,
hence we require multiple connection pools and dynami@imigt-

tion (hence this could not be modelled in the framework of €akh

et al. [22]). The connection pool must prevent the connastioe-

ing used after they are returned: ownership must be traesfe-

tween the client and the pool.

We assume a library routinepns Conn, to construct a database

connection. This routine takes a single parameter thaifsgethe

databasé,and returns a handle to a connection. The specification

uses a predicatenn to represent the state of the connection.

{empty} consConn(s) {conn(ret,s)}

We define two abstract predicates for the connection poolmod

| et
consPool s =
(newar p; p=cons(null,s); return p)
get Conn x =(newar n,c,l,p; |=[x];
if (I == null) then
p=[ x+1]; c=consConn(p)
else (c=[1]; n=[1+1]; dispose(l);
di spose(l +1); [x]=n);
return c)
freeConn x y =
(newar t,n; t=[x]; n=cons(y,t); [x]=n)
in
C

Figure 2: Source code for the connection pool

{z — t,s*clist(t, s) x conn(y, s)}
n=cons(y,t);

{z —t,sxn > y,txclist(t,s) x conn(y, s)}
[x] =n

{z — n,sxn —y,t=*clist(t, s) x conn(y, s)}

{z — n,sx*clist(n,s)}

{epool (i, )}

In this proof the definitions of bothpool andclist are used with
OPENandcLOSEto give the following three implications

cpool(x, s) = Fi.x +— i, s * clist(i, s)
n — y,t* clist(t, s) * conn(y, s) = clist(n, s)

x — n, s * clist(n, s) = cpool(x, s)

These are used with the rule cONSEQUENCEto complete the
proof.

Next we present, and attempt to verify, a fragment of cliemtsc
using the connection pool. It demonstrates both correcirzut-
rect usage, which causes the verification to fail. The exaroalls
a function,useConn, that uses a connection.

{cpool(, s)}
y = get Conn(Xx);
{epool(x, s) * conn(y,s)}
{conn(y, s)}
useConn(y);
feonn(y, 5)}
{cpool(z, s) * conn(y, s)}
freeConn(x,y);

ule: cpool andclist. The cpool predicate is used to represent a {cpool(z,s)}

connection pool; and thdist predicate is used inside thgool to
represent a list of connection predicates.

cpool(zx, s) ef 3z i, 8 * clist(i, s)

useConn(y)
{??7}

The client gets a connection from the pool, uses it and thiemne
it. However, after returning it, the client tries to use tlo@cection.

def

This command cannot be validated as the precondition does no
contain theconn predicate. Even though this predicate is contained
in cpool, the client is unable to expand the definition because it is

clist(xz,s) = x =null V (Fij.x — 1,5 * conn(i, s) * clist(j, s))

whereE = E' is a shorthand foff = E’ A empty.

The connection pool has three operations: construct a poak
sPool ; getaconnectiorget Conn; and free a connectiofif ee-
Conn. These are specified as follows.

{empty}consPool (s) {cpool(ret,s)}
{cpool(z, s)}get Conn( x) {cpool(x, s) * conn(ret, s)}
{epool(zx, s) * conn(y, s) H reeConn(x, y) {cpool(z, s)}

We give the implementation of these operations in Figure 2.
We present the proof that tfie¢ eeConn implementation satisi-
fies its specification, which illustrates the use of abstpeetliicates:

{cpool(z, s) * conn(y, s)}
{Fi.x — 1i,s * clist(i, s) * conn(y, s)}
t=[x];

4In a more realistic implementation, such as JDBC [8], sé\ara
guments would be used to specify how to access a database.

out of scope. This illustrates how abstract predicatesucafown-
ership transfer”. The connection passes from the cliemt ihe
connection pool stopping the client from accessing it, éhenigh
the client has a pointer to the connection.

A connection pool library wants many instances; generatly o
per database. This can be easily handled by catlmgs Pool the
requirgd gumber oftimes. Assume we have two different dested,
sl ands2.

{empty}

y = consPool (s1);
{conPool(y, s1)}

z = consPool (s2);
{conPool(y, s1) * conPool(z, s2)}

This code creates two connection pools. The parameteriseus
returning the connection to the incorrect pool.



{conPool(y, s1) * conPool(z, s2)}
x = get Conn(z);

{conPool(y, s1) * conPool(z, s2) * conn(z, s2)}
freeConn(y, x)

(227}

Thef r eeConn call can only be validated 1 =s2.°

This example has illustrated that abstract predicatesioapte
notion of “ownership transfer”, first presented with the btfeti-
cal frame rule. Abstract predicates additionally deal wignamic
instantiation of a module, which the hypothetical frameercén-
not.

Note: To complete this example we should include a dispose pool {z

function. As it presents no additional interesting difftsule omit
it from our exposition.

3.3.2 Malloc and free

mal | oc n =(newar x; x=allocate(n+1);
[x]=n; return x+1)
free x =(newar n; n=[x-1];
whi | e(n>0) (n=n-1; dispose(x+n))

Both of their implementations can be verified; here we pregen
proof of mal | oc:

{empty}
x=al | ocat e( n+1);
(O g+ i}
o ook i)
[x]=n;
—nxQ .o +i— }
return x+1
{ret —1—n*xO  .ret —1+i— _}
{ret —1—mnx @;L:_Ol.ret +i— _}
{@?;01.7"61? + ¢ +— _x Block(ret,n)}

The next example is a simple memory manager that allocates The final implication in this proof abstracts the cell coniag the

variable sized blocks of memory. We use a couple of additiona
features for handling arrays, described by Reynolds [29¢ it-
erated separating conjunctior@?:El.P; and a system routine
al | ocat e that allocates variable sized blocks. Intuitively the it-
erated separating conjunctio:niiE1 .P, is the expansion

P[E1/x] % ...x P[E2/x]

wherez ranges from Eto E;. If E; is less than E, it is equivalent
to empty. More formally its semantics are:

def
SH,I Ea 052 P = ([Eilsi =n1 A [Ez]s) = n2) =
((n1 <n2 = SH, I Ea Plna/a]x002, .P)
A (n1 > na = SH,l A empty))

Returning to the example, consider the following naivecgpe
cations, which demonstrate the difficulties in reasoninguathe
memory manager:

{empty}mal | oc(n) {O7) ret +1i — _}
{@nfol.:v + i+ _Hree(x) {empty}

1=

The problem is with the specification bf ee: it does not specify
how much memory is returned ass a free variable.

The standard specification [12] bf ee only requires it to deal-
locate blocks provided bgral | oc. Using abstract predicates we
are able to provide an adequate specification.

{empty}mal | oc(n) {@;L:_Ol.ret + 4 +— _x Block(ret,n)}
{@?;Ol.x + ¢ — _x Block(z,n)}f ree(x) {empty}

The Block predicate is used as a modular certificate tiedt| oc
actually produced the block. The client can not construBiack
predicate as its definition is not in scope.

Standard implementationsiwél | oc andf r ee store the block’s
size in the cell before the allocated block [12]. This canpetied
by defining theBlock predicate as follows.

Block(xz,n) df

—1l—n

This allowsf r ee to determine the quantity of memory returrfed.
We can give a simple implementations of these routines #iat c

system routines to construetl(l ocat e) and disposedi spose)

the blocks’

5Given the specification it is always valid to return a coniggcto

a pool if it is to the correct database. A tighter specifiaatiould

be given to restrict returning to the allocating pool.

SMore complicated specifications can be used which account fo
padding and other book keeping.

"One could extend the specifications to have an additionalonem
manager predicate as in the connection pool example.

block’s length, hence the client cannot directly acces§$lie fol-
lowing code fragment attempts to break this abstraction:

{empty}
x=mal | oc(30);

{2, .2 + i+ _* Block(z, 30)}

[ x-1] =15;
{???}
free(x);

The client attempts to modify the information about the klsc
size. This would be a clear failure in modularity as the dlisn
dependent on the implementation Biock. Fortunately, we are
unable to validate the assignment as the pre-conditionrmmeson-
tainz — 1 — _. Although, theBlock contains the cell, the client
does not have the definition in scope and hence cannot use it.
O’Hearn, Reynolds and Yang's [22] idealization of a memory

manager does not support variable sized blocks. Their figeeci
tions can not be extended to cover this without exposing ¢pe r
resentation of the block. Additionally, it is impossible them to
enforce thatral | oc must provide the blocks thétr ee deallo-
cates without extending the logic.

3.3.3 Permissions reading

O’Hearn [21] has recently given separation logic an owriprsh
or permissions, interpretation: & E’ is the permission to read,
write and dispose the cell at location E. Bornat et al. [Skext
this to allow read sharing. Essentially they annotate-theelation
to express the type of permission it represents: read ok tbta
the previous example, thBlock predicate is the permission to dis-
pose the memory usingr ee. Using this permissions reading of
separation logic, abstract predicates allow modules taéefieir
own permissions. The concept of ownership transfer candrease

transferring permission to and from the client.
Consider a ticket machine:

{empty}get Ti cket () {Ticket(ret}
{ Ticket (x)luseTi cket ( x) {empty}

To calluseTi cket you must have calledet Ti cket ; each us-
age consumes a ticket. Trying to use a ticket twice fails:

{empty} _

x = getTicket();
{ Ticket (x)}

useTi cket (x);
{empty

useTi cket (x);
{???}

The second call taiseTi cket fails, because the first call re-
moved theTicket.



Any client that is validated against this specification nuss the The rest of the semantics are from the standard definiti@ickkd
ticket discipline correctly. In fact the module is free tdfide the in §2, with the predicate environment added in the obvious way.
ticket in any way, e.gTicket(x) def e Although this ticket We define the following ordering on semantic predicate emvir

would be logically valid to duplicateirue  true < true, the o
client does not know this, and hence cannot. AT A def
3.4 Semantics Va.vm : N A(a) # L = A(e)@) C Al(e)(R)

In the previous section we have informally introduced theamo
of abstract predicates and detailed a couple of examplegls h
light their use and demonstrate their usefulness. In tlisewe LEMMA 3.4. Well-formed semantic predicate environments form
formalize them precisely and show that the two abstractipase a complete lattice with respect fo.
rules are sound.

The least upper bound of this order is written

LEMMA 3.5. Formulae only depend on the predicate names they
3.4.1 Programming language mention, i.e. ifA defines all the predicate names in P, aAdand

. . . A’ are disjoint, then
We assume the usual semantics of separation logic [31] and ex g

tend it to handle the functions. $emantic function environment VSH,I. SH,I=aA P SH,l Eaua P

11, is a finite partial function from function names, to a pair of

a vector of variable names and a command for the bddy k —

(z, C)). An environment is well-formed] ok, if it only modifies

local variablesyz, C' € cod(IT).modifiegC) = 0. ACA" ASHIEAP = SH,l A P
A configuration is defined as a quadruple of a function environ

ment, a command, a stack, and a heap. A terminal configuration _Now let us consider the construction of a semantic predieate
is a stack, heap pair ﬂaun The semantics are given by a recur- vironment from an abstract OnA, The abstract predlcate environ-

LEMMA 3.6. Positive formulae are monotonic with respect to
semantic predicate environments, i.ePifs a positive formula,

sively defined relation between configurations and terminafig- ment does not, necessarily, define every predicate, soraotisy
urations presented in Figure 3. We provide additional failules @ solution requires additional semantic definitions, to fill the
for each heap command accessing undefined state: holes. We use the following function to generate a fixed point
(IL [E]=E’, S H) { Fault where step(a,ay(An) f \a € dom(A). A € Narity (),
I1, z=[E], S, H) |} Fault -
- (Wa=EL,SH) G Faulty o o om(H) {HISH,1 Ea,ua A(a)[n]}
(I1,di spose(E), S H) |} Fault
. . whereA are the definitions we want to solv4; are the predicates
and add rules to propagate thault states in the obvious way. not defined im\; andA,, is an approximation to the solutiostep
is monotonic on predicate environments, because of Lemfa 3.

DEFINITION 3-1def(S“FETY)- and that all the definitions are positive. Hence by Tarskintem
(IL,C,S H) :safe = ~((II,C, S H) § Fault) and Lemma 3.4 we know a least fixed point always exists. Wewrit
Note: As we only consider partial correctness, we consider non- [A] for the least fixed point oftepa a.
termination as safe. Note: step is not Scott-continuous. This does not cause any prob-

) ) lems because we only need consider the properties of thdfibazts
We have the standard properties required for the soundriess 0 point, rather than its construction.

the frame rule [31]. Consider the set of all solutions d&fof the formA U [A]a:

LEMMA 3.2 (SAFETY MONOTONICITY). closgA) % (A U [A]a| dom(A) = A\ dom(A)}

(TI,C,SH) : safeAH' LH = (TI,C,SHo H') : safe This function has two properties.
LEMMA 3.3 (HEAP LOCALITY) LEMMA 3.7. Adding new predicate definitions refines the set of
' ' possible semantic predicate environments, i.e.
(I, C, S Hy) : safe A (IL, G, S Hi + H) | (S, H) = closgA) D closgA, A')
!/
FHe H' = HaHo A (I, C, S H) U (S, He) LEMMA 3.8. The removal of predicate definitions does not af-
. fect predicates that do not use them. Givewhich is disjoint from

3.4.2 Abstract predicates A’ and does not mention predicate names in its domain; we have

Next we define the semantics of an abstract predicate. Fast w , , , , ,
define semantic predicate environmenis,as follows: VA € closgA).3A" € closgA, A). A [ dom(A") = A” | dom(A)

A A H(Nn — P(H)) wheref | Sis{a — bla— b€ fAa¢dom(S)}
neN We define validity wrt an abstract predicate environmenitten

whereA is the set of predicate names. We restrict our consideration A = P, as follows:

to well-formed environments: each predicate name is mapped VS H,I,A €closgA). SH,l =a P
function of the correct arityA(a) : N#%(®) _, P(H). The .
reader might have expected the useR{fH x S x I), but this THEOREM 3.9. GPENaNdCLOSE i.e.
breaks substitution as the predicate can depend on vegitidé (@) def p o = a(E) = P[E/7]
are not syntactically free. ’

The semantics of a predicate is as follows: a@) Y P A E PE/] = oB),

SH,l Ea a(E) & a€dom(A) A He (Aw)[[E]s] are valid.



Function definition
(H[kl — (ﬁ, Cl), vk —

(IL,1 et k1 z1=C1,...

(Tn,Cn)],C, S H) U (S, H)
ykn Tp=Ch i nC),S,H) 4 (S’7H’)

New variable
(H7 Cv S[‘T = nll]v H) *U (Sly Hl)

(I, newar z; C, S, H) | (Si[z — S(z)],H1)

Whilel While2 Function call
[Bls = false [Bls =true (II,C;whileBC,S;,H1) | (S2,H2) (II,C, T — [y]s,H) U (S,H) II(k) =7%,C

(I, whil e BC,Si,H1) { (S1,H1) (II,whi l e BC,Si,H1) I (S2,H2) (11, z=k(y), SH) { (Sz +— [ret]g],H")
Sequence

(I, Cy, St Hi) U (So,H)  IfL If2

(IL, C2,%,H2) | (S3,Ha) [B]s = true (II,C1,SH) (S, H1) [B]s = false (II,C3,SH) | (S1,H1)
(I, C1; Ca,S1,H1) U (S3,Hs) (ILi f BthenCyel seCz,SH) | (S, H1) (I,i f BthenCyel seCy,SH) | (Si,H)
Read (11, z=[E], S H){}(Fz — n],H) whereH([E]s) =
Write (I, [E]=E, S, H) (S, H[n — n']) where[E]s = n, n € dom(H) and[E']s = n’
Cons (I1, z=cons (E), S, H)|(S[x — n],H[n — n]) where|E| =n/,{n,...,n+n'} Ldom(H) and[E]s =7
Dispose (II,di spose(E), S H){(S H') where[E]s = n, H'[n — n'] = Handn ¢ dom(H")
Assign (I1, z=E, S H){(S[xz — n],H) where[E]s =n
Return (IL,retur nE;, S H)|(Yret — [E]s], H)

Figure 3: Operational semantics

3.4.3 Judgements

We are now in a position to define a semantics for our reasoning
system. We write\; I' = {P}C{Q} to mean that, if every spec-
ification inT" is true of a function environment, and every abstract
predicate definition in\ is true of a predicate environment, then so

is{P}C{Q}:

def

AT E{P}C{Q} = VA € closgA),II
Mok A (A En F) = A Fn {P}C{Q}
where
A ':1'[ T d_ef

V{P}k{Q} € I.II(k) =

A Eq {Pyo{Q} &
VS H,l.SH,I |:A P = ((H,C,SH) :
A ((Ha C,S, H) U’ (Slv Hl) = Slv H/vl ):A Q))

@,C) = A Fn {P}IC{Q}

safe

Given this definition we can show that the two new rules for
abstract predicates are sound.

THEOREM 3.10. Abstract weakening is sound.

PrRooF Direct consequence of definition of judgements and Lem-
ma3.7. O

THEOREM 3.11. Abstract elimination is sound.

ProoF Follows from Lemmas 3.5 and 3.8

4. A JAVA-LIKE LANGUAGE

In the previous section we have shown how abstract predicate
can be used with separation logic to provide a powerful Ruttine
framework to reason about a language with first-order fonstior
procedures. We now turn our attention to another form of rtavelu
ity: class-based objects.

More precisely we shall consider the problems of reasortogia
a fragment of Java. We will consider a simple subset of Jasada
on Middleweight Java (MJ) [3]. We restrict MJ’s expressitmbe

Program
prog ::= cldef, ...cldef,; s
Class definition
cldef::= class C extends D {fdefmdef
Method definition
mdef::=  Cm(C: z1,...,.Cr z,) {Sreturn z; }
Field definition
fdef .= Cf;
Expressions
E == z|null
Statements
s uw= z=yf | z=)y; | z=new C();
| zf=E | x=ymE);, | Cux;
| {5} 1 |if E==E){s) el se {5}

Figure 4: Syntax of MJ subset

stack variables andul | ,® and remove constructors. We present
the full syntax in Figure 4. We write f and m to range over field
and method names respectively. We a&eD to range over class
names, and., y to range over variable names.

Consider giving a separation logic to this language: cjeag
require the “points to” relation to describe fiefi&he new asser-
tion “field points to”, writtenz.f — vy, means the field’ of the
objectz contains the valug. We also use the predicate: C' to
mean that: points to an object of clags: itis actually aC not just
a subtype of”.

Now consider a motivational example [1] ofGel | class and
a subclass that has backugecel | , presented in Figure 5. The
specifications of theet methods are:

{this.cnts — _} {thi s.cnts — X =t hi s.bak — _}
Cell.set(n) Recel | . set(n)
{thi s.cnts — n} {t hi s.cnts — n *t hi s.bak — X}

These specifications have two problems: (a) they have ngenca
lation; and (b) they do not respect behavioural subtyping.
(a) From the specification the client knows which field is used

8This restriction is required as separation logic requingsres-
sions to be pure: they cannot access the heapgi.p..f> is not
allowed.

9An alternative approach would be to use the heap primitiva as
whole object [18]. However, being able to split an objeahal for
more flexible reasoning.



class Cell {

Obj ect cnts;

voi d set(Object n) {this.cnts =
Obj ect get() {Object t;

t = this.cnts; return t;}}
class Recell extends Cell {

n;}

Obj ect bak;

voi d set(Object n) {

Object t; t = this.cnts;
this.bak = t; this.cnts = n;}}

Figure 5: Source code for Cell and Recell classes

store the contents. Clearly we need a greater level of aibisina
Using an abstract predicate allows us to encapsulate treetihj
state. We can write théel | 's set specification as:

{Valce”(t hi S,_)} Cel | . set ( n) {Valce”(t hi S,n)}
and define the abstract predicate as

Valcen(this, x) Lt hi s.ents — =

and scope it to th€el | class. This stops theel | ’s client using

the field directly as it is hidden in the abstract predicate.

(b) Using standard behavioural subtyping [17], to allowaiyric
dispatch, theRecel | ’s specification needs to be compatible with
theCel | ’s, i.e. we require the following two implications to hold

(€Y
@)

pre(Cel | ,set) = pre(Recel | ,set)
post(Recel | ,set) = post(Cel | ,set)

where pre(C, m) denotes the pre-condition for the methodin
classC, andpost denotes the post-condition.
Given the earlier specifications, these implications caenieold

as they require a one element heap to be the same size as a two e

ement heap. What about abstract predicates? The speoifidati
Recel | must use a different abstract predicat€#d | as it has a
different body, i.e.

{ValRecell(t hi s, X, _)}Recel | . set ( n) {ValRecell(t hi S,n,X)}

with the obvious definition folal gec.;;. Unfortunately the predi-
cates are treated parametrically; no implications hold/beh them.
As it stands, abstract predicates do not, by themselvgs with
behavioural subtyping. They provide support for encapsuidut
not inheritance. In an object-oriented setting we requieglicates
to have multiple definitions, hence we introdwadestract predicate
familieswhere the families are sets of definitions indexed by class.
Abstract predicate family instanc8sre writtenx(z; 7) to indicate
that the object: satisfiesonedefinition from the abstract predicate
family o with argumentss. The particular definition satisfied de-
pends on the dynamic type of In object-oriented programming
an object could be from one of many classes; abstract ptedica
families provide a similar choice of predicate definitiortsam con-

sidering their behaviour.
We define abstract predicate family definitions,, with the fol-
lowing syntax.

Af:=€lac def Ma; T)P, Ay
Ay is well-formed if it has at most one entry for each predicate

and class name pair, and the free variables of the bBdwre in
its argument listx; z. We treatA; as a function from predicate

1%1n the module system the concept of abstract predicateriosta
and the abstract predicate are conflated, but here as we hdtie m
ple definitions the distinction must be kept.

and class name pairs to formulae. Each entry correspondgeto t
definition of an abstract predicate family for a particulkass.

Our example shows the need to alter the arity of the predicate
reflect casting; th®ecel | 's predicate has three arguments while
theCel | ’s only has two. Hence we provide the following pair of

implications:
WIDEN Ay E alrz) = FalsT,y)
NARROW Ay E Foalnzy) = olx;z)

If we give a predicate more variables than its definition neeg)
it ignores them, and if too few, it treats the missing argurners
existentially quantified. This leads to our definition of stitution
onto a predicate definition,

(A(z;7).P)[E; E] &
P[E/z,E1/7]
3y.P[E/x, (E.9)/7]

This definition of substitution can then be used to give theilias’
version ofoPENandCLOSE
OPEN Af = (z: CAa(zr;T) = Af(a, O)[z; T

Af = (z: CAAp(o, O)[z; 7)) = a(z; @)

|E1| = |z| andE = Ey, Ez
IE ¥l = ||

CLOSE

wherea, C' € dom(Ay).

To OPENoOr CLOSEa predicate we must know which class con-
tains the definition, and must have that version of the pegdim
scope.

Note: We canoPEN predicates at incorrect arities as the substi-
tution will correctly manipulate the arguments. An altgiveaap-
proach would be to restrict opening to the correct arity, asd
WIDEN and NARROW to get the correct arity. However, this ap-
proach complicates the semantics.

4.1 Proof rules

In this section we define a set of Hoare-style proof ruleséar r
soning about MJ programs. The judgements take the following
form:

Ag; D E{P}s{Q}
whereT is a set of assertions about methods. They have the fol-
lowing form:

I = e[{P}Cm@{Q},T

A well-formed method environmerit, I' wf, defines each method
and class name pair only once and has the following threeeprop
ties:

1. The pre- and post-conditions can only contain free pragra
variables in the argument ligthi s andret; i.e.

V{P}C.m(z){Q} € T.FPV(P) C ({this}ux)
A FPV(Q) C ({this,ret} UT)

2. A method can only modify local variables; there are no glob
variables and arguments cannot be modified, i.e.

V{P}C.m(z){Q} € I'.modifie{mbody(C, m)) = 0

wherembody(C, m) returns the body of methoa in class

3. Subtypes must have compatible specifications with their s
pertypes, i.e.

V{Pc}C.m(z){Qc} €Tl.D<C
= {Pp}D.m{Qp} €T A
(F{Pc}{Qc} = {Pp}{@p})



DEFINITION 4.1 (SPECIFICATION COMPATIBILITY). We de-
fine specification compatiblity; {Pc}_{Qc} = {Pp}-{Qp},
asVvs.if A;T'F {Pp}s{Qp}isderivable from\; ' - { P }5{Qc}
using only the structural ruleSCONSEQUENCE AUXILIARY VARI -
ABLE ELIMINATION andVARIABLE SUBSTITUTION.M

Abstract predicate families are less symmetric than attgtrad-
icates: weakening allows the introduction for a particelass and
predicate, while elimination requires the entire family dsfini-
tions to be removed, i.e. must remove all the classes’ dieifirsit
for a predicate. This is because it is not possible to giverpls
syntactic check for which parts, i.e. classes, of a familil e
used.

Finally we give the rules for field access, field write, andeabj
construction, which are similar to their equivalents in thedule
system:

Ap;THA{z.f— Yo f=E {z.f — E'}

This is more general than the behavioural subtyping rulgs as
allows manipulation of auxiliary variables. In fact, if tderivation
only uses the rule of GNSEQUENCE specification compatibilty
degenerates to behavioural subtyping.

Now let us consider the method call rule:

METHOD CALL f [ / ]f
T/t his. T ApiTk y'H”}:.{ym”C'H"}
aer e { PRI ST @) Qe 3/t i s, ret. ) AL e B No=n

Ap;T - {empty}a=new C() {z.fi— #*...% z.fn—> _Az:C}
wherez has static typ& and{ P}C.m(z){Q} € T whereC has fieldsf: .. . fn
The method call rule only needs to consider the static typhef

receiver, because we have restricted ourselves to methatlare 4.2 Example: Cell/Recell

specification compatiblé. Let us return to our original motivating example. We define an
_ The rules for checking the whole program deserve some atten- gpsiract predicate familyal, with the definitions forCel | and
tion. Recel | given earlier.

CLAss We have to validate four method<el | . set, Cel | . get,
Recel | . set andRecel | . get. Even though the bodies of
Cel | . get andRecel | . get are the same, we must validate

both, because they have different predicate definitions.
We give the proof foRecel | . set .

{Val(this; X,.) Athis: Recell}

{thi s.cnts — X =t hi s.bak — _Athis: Recell}
t = this.cnts;

{thi s.cnts +— X =t his.bak — _Athis: Recell A X =t}
this.bak = t;

whereT'; is the method specifications of the methods defined in {t h'tz-_cnts Ht X xthis.bak —tAthis: Recell N X =t}

nd inherited intocldef;; ...; T, is in Idef,; I' = I's.cnts =

?1d 1(3 Fe;ndAtC:C del’Af ,haCe ZISJOdIlrJ];:gng?ZZI?]gefM {thi s.cnts— n*this.bak— tAthis: Recell A X =t}

U Froeeo g, :

{t hi s.cnts +— n*thi s.bak — X Athis : Recell}
These two rules correspond to the abstract function definiti  { Val(t hi s;n, X)}
from the previous section. They enforce that each methdukicked

W'thhthde predlcgte dekf:nltll(orés a}shsor? lated to |t3.ci'ﬁs$(;1hf.er!:.ed Additionally, we must prove the method specifications ama-co
methods must be rechecked with the new predicate definit@ns — ,aipje The compatiblity of theet method follows from the rule

the class that inherits them. This is because when we check th of CONSEQUENCEANdAUXILIARY VARIABLE ELIMINATION .
method bodies in thelassrule, we add to the pre-conditidrhi s :
C. Without this we would not be able to open or close the abistrac
predicate families.

Again we have the two rules for introducing and eliminatibg a
stract predicate families.
ABSTRACT WEAKENING

Ap T H{P}IC{Q}
Ap AT F{PYOLQ)

Ag;T'F{Py Athis: Chmbody(C,mn){Qn}

ApiTF {PyAthis : Cymbody(C,m1){Q1}
,\1; FA{P1}Cmi(@){Q1}, - - s {Pn}Comn (Tn){Qn}

Ay
PROGRA
Ap;TET Ap T ETn 0, T +{P}s{Q}

F {P}cldef, ...cldef,; s{Q}

The other method bodies are all easily verifiable.

F{Val(t hi s; X, )}{ Val(t hi s;n, X)}
F{Val(t his;_, )}{Val(this;n,)}
F{Val(t hi s;)}{ Val(t hi s;n)}

The get methods have the same specification, so are obviously
compatible.

A client that uses this code does not need to worry about dy-
namic dispatch, because of the behavioural subtyping iGints.
Consider the following method:

wheredom(A’;) anddom(A) are disjoint. mCell c) {
ABSTRACT ELIMINATION , c.set(c);
Ap, AT HA{PFC{Q} . : ) : .
: This code simply sets the Cell to point to itself. The codepiscs
Ap T H{PIC{Q} fied as

{Val(c;-)} m(Cell c) {Val(c;c)}
Now consider callingnwith aRecel | argument.

where the predicates namesin@, I andA are not indoma(Aff)
and definelom.(Ay) as{a|(a, C) € dom(Ay)}.

1 The frame rule could be included in this listdfis restricted to

terms that modify no variables. {emgg}(;el I r = new Recel | (x):
12 g . '
We could present additional rules that do not rely on theysiig {Val(r;z, )}
constraint, but they would only serve to complicate the gméstion {Vai(r;.)

and wouldn't illustrate anything interesting.

BWe assume these definitions will be provided during the proof

and provide no explicit syntax for them.

}
mr);
{Val(r;r)]%

{Val(r;r,_)



We useCONSEQUENCHO cast theVal predicate to have the correct
arity. We need not consider dynamic dispatch at all becafise o
behavioural subtyping.

Note: The specification of methoahis weaker than we might like.
Based on the implementation we might expect the post-cdondit
{Val(r;r,z)}. However, there are several bodies that satigfy
specification: for example. set (x); c. set (c);. We can set

theCel | to have any value, as long as the last value we set is the

Cel | itself. This body acts identically on@el | to the previous
body, however on Recel | acts differently. Hence only using the
specification we can not infer the tighter post-conditiohisicould
be deduced ifmwas specified for &ecel | as well.

4.3 Semantics

In this section we consider the extensions to the semantics o
§3.4 sufficient to model abstract predicate families. MJ hesnb
defined formally elsewhere [3]. First we shall make some bmal
changes to the basics of the separation logic setting:

DEFINITION 4.2. Aheap, H, is composed of two functions=H
(Hy, Hy): the first, H,, maps pairs of object identifiers and field
names,(oid, f), to values,wal; and the second, H maps object
identifiers to class names§;. We use Kbid, f) to refer to the value
given by the first function, Hoid, f), and Hoid) to refer to the
value given by the second function,(bid).

(We make the obvious alterations to the semantics to dehlth
new heap definition.) This definition allows a heap to contaily
some fields of an object. This new definition also separatet/fie
information from the value information in the heap.

We use the following two definitions to give the partial commu
tative heap composition monoid

(Hiyy Hp) s (), HE) S (HG o HY HY)
and is defined ifidom(H;,) Ldom(H;) andH; = H{ whereo is
composition of disjoint partial functions.
The semantic predicate environment as defing{Bid has to be
extended to handle the arity changes that predicate famnéiguire.
We define a semantic predicate family environment as

A AxC— (Nt — P(H))

This is a partial function from pairs of predicate and claama
to semantic definition. An abstract predicate family is dedifior
all arities, so the semantic definition must be a functiomfal
tuples of non-zero arity. This semantically supports thenge in
arity required bywIDEN andNARROW.

We can now give the semantics of the new assertions as follows

SH,Ia, Ef — E
< H([Elsy, f) = [E']ls) A dom(H) = {[E]s,, f}

SH,I ':Af E:C & H([[E]]SJ):C
SH I Fa; a(EE) & He (Af(a, O))[[EE]si] A H([E]s)) = C

The field “points to” relation, Ef — E, holds if the heap con-
sists of a single fieldf, of the object[E]s, and has the value
[Elsi- E: Cis true if the heap typefE]s, as classC. «o(E;E)
holds for some heaH, where[E]s; has clas€’, iff H satisfies the
predicate definition foc, given argument§E, E]s,, in the predi-
cate familya.

To ensure thatwIDEN andNARROW hold we restrict our atten-
tion to argument refineablenvironments.

DEFINITION 4.3 (ARGUMENT REFINEABLE). A semantic pred-
icate family environment is said to be argument refineatdelding

an argument can not increase, or “decrease”, the set of atingp
states, i.e.

AR(Af) & Va,n, . Ag(a)[n;n] = UAf(a)[n;ﬁ,n'}

PrRoOPOSITION 4.4. Argument refinement coincides precisely with
WIDEN andNARROW: VS H, I, o, n, 7.

AR(Af) <= (SH,l Fa; a(n;n) < In'.a(n;n,n"))

We can define an order on semantic predicate families environ
ments, i.e
Ay C A, © o, 0n A (a,C)ny ) € Ag(a, C)[n;7]

Again, the least upper bound of the order is writterLemmas 3.4
and 3.6 can be extended to semantic predicate family emaieats
as follows:

LEMMA 4.5. Argument refineable predicate family environments
form a complete lattice with respect o

LEMMA 4.6. Positive formulae are monotonic with respect to
semantic predicate family environments

Ay C A} ASHIEa, P = SH,I ‘:A’f P
However extending Lemma 3.5 is less straight forward, asnbt

possible to tell which predicate name, class name pairssae in
a formula.

LEMMA 4.7. Formulae only depend on the abstractions they
mention. IfA; contains all the abstractions in P, amldm. (A )N
doma(A}) = (), then

VSH,I.SH,I =a; P& SH,I \=Aqu'f P

Now let us consider the construction of semantic predicate f
ily environments from their abstract syntactic countetpaVe de-
fine a new functiongstepf, that accounts for the first argument’s
type and uses the special substitution,

_, def

stepf(a ;a0 (A%) (e, O)[nsn] =

{HIH(n) = CASH 1 EAua; Af(a, O)ln; ]}
This function is monotonic on predicate family environngrie-
cause of Lemma 4.6 and that all the predicate definitions @se p

tive. Hence by Lemma 4.5 and Tarski's theorem we know a fixed
point must always exist. We writA ], as the least fixed point

of stepf(Af,Af).
LEMMA 4.8. stepf produces argument refineable results.
Consider the following set of solutions:
{[Af]a, UAf | (AxC)\dom(Ay) = dom(Ay) N AR(Af)}
This satisfies the analogues of Lemmas 3.7 and 3.8.

LEMMA 4.9. Adding new predicate definitions refines the set of
possible semantic predicate environments.

closg(Af) D close(Af, A})

LEMMA 4.10. The removal of predicate definitions does not af-
fect predicates that do not use them, i.e. gisgnwhich is disjoint
from A’; and does not mention predicates in its domain; we have

VA € closg{Af).3A% € closgAy, A%).

Ay [dom(A.'f) = A.'f [dom(A.'f)

wheref | Sis{a — bla— b€ fAa¢dom(S)}



Validity is defined identically to the previous section, i.e

def

AfEP

THEOREM 4.11. OPENandCLOSE, i.e.

VSH,I,Af € closgAy).SH,I ):Af P

A; E a(EE) AE: C = As(a, C)[E E/e,7]
As EAf(a, C)[E,E/2,T| AE: C = o(EE)

where(a, C) € dom(Ay), are valid.
THEOREM 4.12. WIDEN and NARROW, i.e.

Ay = a(E;E) = 3X.a(EE X)
As E o(EEFE) = o(EE),

are valid.

4.3.1 Judgements

We are now in a position to define the semantics for our reason-
ing system. We writé\s;I" = {P}C{Q} to mean if every spec-
ification inT" is true of a method environment, and every abstract
predicate family inA; is true of a predicate family environment,
then so is{ P}C{Q}, i.e.

ApT E {PYC{Q} &

VA; € closeAy). (Ay ET) = Ay = {P}C{Q}
where
Ap =T Y Y(PICm{Q} € T.A; = {P}mbody(C, m){Q}
Ay = {PIS{QF Y
VSH,LSH,l Ea, P = ((SH,5,[) : safe

A ((S,H,E, []) —* (S,H/,U, H) = SlvH/vl ':Af Q))

Given this definition we can show that the two new rules for
abstract predicate families are sound.

THEOREM 4.13. Abstract weakening is sound.

PrRoOOF Direct consequence of the definition of judgements and
Lemma4.9. [

THEOREM 4.14. Abstract elimination is sound.

ProOF Follows from Lemmas 4.7 and 4.1

5. RELATED AND FUTURE WORK

In this paper we have considered the problem of writing spec-
ifications for programs that use various forms of abstractid/e
have focused here on modules and Java-like classes. We ti¢tve b
on the formalism of separation logic and presented rulesdar
soning about ADTs and Java-like classes. We have demaetstrat
the utility of these rules with a series of examples.

The principles of abstraction this paper builds on have lageand
since the Seventies. Parnas [25] first described the prascipf
information hiding and showed that without it seeminglyepén-
dent components of a program could become tied togethenreHoa
provided a logic for data abstraction [11] that allowed ingg im-
plementation details to be hidden from the client. Thesaddeere
developed further by Liskov [16] and Guttag [10] to providbat
we now know as abstract datatypes.

In Hoare’s [11] presentation of data abstraction, he useaban
straction function that maps values from a concrete dorm@amt
abstract one. This abstraction function has been used avimhal
subtyping [17] to make classes with different implemeotagimeet

the same specification. When reasoning with framing, Leimo o
served that, in addition to abstraction functions, datapgsd14] are
needed to abstrantodifies* clauses. Abstract predicates, and fam-
ilies, combine the concept of both datagroups and the atbistna
function into a single definition: separation logic formeileepre-
sent both the amount of state and its possible values.

There have been several attempts to reason about Java using a

Hoare logic, including those by Oheimb and Nipkow [24], Rseh-
Heffter and Muller [27], Pierik and de Boer [26]. Howeveete
logics do not have the framing properties of separatiorctogethod
bodies must be verified at each call site. Also they do not at-
tempt to express abstraction. In this sense Leino’s work déita-
groups [14] and data abstraction [15] are more closelyedlathis
work uses the concept of “modular soundness” to determirenwh
state can be exposed to a client. Another related approaBaby
net et al. [2] uses a private invariant to encapsulate thectbptate.
This invariant can be “packed” and “unpacked” to accessats ¢
tents. These pack and unpack operations can be seen apoades
ing to the open and close implications of abstract predicate

Reddy [28] takes a different approach to adding abstradtion
the logic. He extends specification logic to provide theigbib
existentially quantify a predicate. This quantified pretiicbehaves
in a similar way to an abstract predicate.

Middelkoop et al. [18] have similar aims to us and give a sepa-
ration logic for a class-based language. Their approackiders
an object as the primitive element of the heap, rather thaela fi
This restricts their use of the frame rule by preventing tHem
considering splitting an object. Their work does not coesiab-
straction or inheritance and so can not handle any of the pbem
presented in this paper.

A different approach to adding abstraction to separatigiclo
has been taken by O’Hearn et al. [22]. They use the hypotietic
frame rule to reason about static modularity. They are nigt tb
reason about ADTSs or classes, and cannot verify the exampes
present. All the examples they present can by expressed abin
stract predicates, however the proofs are less compadiicptes
must be threaded through the proof to represent the intewesi-
ant. This leads to two open questions: (1) can abstract qartedi
express all the proofs of the hypothetical frame rule?; @&)atén
the concepts be soundly combined into a single logic? We\li
the answer to both of these questions to be yes, but more werk r
mains.

Building on the principles of the hypothetical frame ruleija/
jlovic and Torp-Smith [19] have built a semantic model dfime-
ment in a setting similar to separation logic. This allowsnthto
semantically show one module could be used in place of anothe
They do not provide any logical rules for this reasoning, ey
do not deal with ADTSs. It would be interesting to see if thedn
els could be adapted to abstract predicates.

A different approach to separation logic to dealing withpiheb-
lem of aliasing is to impose some form of restriction usingzet
system. Ownership types [6] have been used to restrictiadias
object-oriented languages. They prevent pointers intolgects
representation, which helps reasoning about encapsulafimith
and Drossopoulou [7] exploit this encapsulation to extehtbare
logic with framing properties. Separation logic is more it
than ownership types as it prevents dereferencing of agraiather
than its existence.

Many researchers have pointed to similarities betweerragpa
logic and ownership types. However close comparison has bee
hampered by the fact that separation logic research haswiial

A modifiesclause is an annotation that specifies all the possible

changes made by a method/function body.



low-level pointer manipulation; whereas ownership typas tealt
with high-level object languages. We hope that the workititén

this paper may provide a stepping-stone for a more indelysis
of these two approaches.

In this paper we have built a logic for reasoning about abstra
types. Itis well-known that abstract types correspondhéeCurry-
Howard correspondence to existential types [20]. Abstpaetli-
cates appear to be analogous, but at the level of the prapusit
themselves. We should also like to explore this analogyhéurt
perhaps using higher-order logic to provide a logical seosffior
abstract predicates.

The types analogy leads to another direction to pursue:- para

metric polymorpism. In this paper functions and methods lman
defined to manipulate a datatype or class without knowingpise-
sentation: e.g. the connection pool did not know how a catorec
was stored. This is related to O’Hearn’s comment that “Owsinigr
is in the eye of the asserter”. Abstract predicates may geoai
suitable setting for studying parametric datatypes; weareently
working on a set of proof rules.
Finally, in this paper we have only considered sequential la

guages. Recently, O’Hearn has shown how to extend separatio [17]

logic with rules to reason about concurrency primitiveg[Zhese
rules use the same information hiding principles of the hiygt-
cal frame rule [22]. They allow state to be stored in a semagpho
and by manipulating this semaphore the state can be trendfer
tween threads. Unfortunately the semaphore is staticatipex,
which prevents reasoning about heap allocated semapmmtad-i
ing, for example Java’'synchr oni sed primitive. We are cur-
rently consider the combination of the information hidingyded
by abstract predicates with O’'Hearn’s system for concuyeo
allow for reasoning about semaphores in the heap, and hexae J
with threads.
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