
Fundamenta Informaticae 44 (2000) 1–34 1

IOS Press

Strong Normalisation of Cut-Elimination in Classical Logic

C. Urban�
Institut de Math́ematiques de Luminy,

CNRS Marseille,

Marseille, France.urban@iml.univ-mrs.fr
G. M. Biermany
Computer Laboratory,

University of Cambridge,

Cambridge, UK.gmb@cl.cam.ac.uk

Abstract. In this paper we present a strongly normalising cut-elimination procedure for classical
logic. This procedure adapts Gentzen’s standard cut-reductions, but is less restrictive than previ-
ous strongly normalising cut-elimination procedures. In comparison, for example, with works by
Dragalin and Danos et al., our procedure requires no specialannotations on formulae and allows
cut-rules to pass over other cut-rules. In order to adapt thenotion of symmetric reducibility can-
didates for proving the strong normalisation property, we introduce a novel term assignment for
sequent proofs of classical logic and formalise cut-reductions as term rewriting rules.

Keywords: Classical Logic, Cut-Elimination, Strong Normalisation,Symmetric Reducibility Can-
didates.�Address for correspondence: Institut de Mathématiques deLuminy, CNRS Marseille, Marseille, FranceyAddress for correspondence: Computer Laboratory, University of Cambridge, Cambridge, UK

2 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

1. Introduction

Gentzen showed in his seminal paper [13] that all applications of the cut-rule can be eliminated from
proofs in the sequent calculi LK and LJ. He not only proved that all occurrences of this rule can be
eliminated, but also gave a simple procedure for doing so. This procedure consists of proof transforma-
tions, or cut-reductions, that do not eliminate all cut-rules from a proof immediately, rather replace every
instance of the cut-rule with simpler cut-rules, and by iteration one eventually ends up with a cut-free
proof, also called a normal form. Since Gentzen’s paper manyHaupts̈atze(cut-elimination theorems)
have appeared for various sequent calculus formulations. Each of them proves termination of a partic-
ular cut-elimination procedure. In this paper we shall introduce a novel cut-elimination procedure for a
sequent calculus of classical logic, whose design is motivated by the following three criteria:

1. the cut-elimination procedure shouldnot restrict the collection of normal forms reachable from a
given proof such that “essential” normal forms are no longerreachable,

2. the cut-elimination procedure should bestrongly normalising, i.e., all possible reduction strategies
should terminate, and

3. the cut-elimination procedure should allow cut-rules topass over other cut-rules.

At the time of writing, we are not aware of any other cut-elimination procedure for a sequent calculus
of classical logic that satisfies all three criteria. So in the remainder of this introduction we shall justify
these criteria.

Typically, cut-elimination procedures for classical logic are non-deterministic, in the sense that ap-
plying different cut-reductions may lead to different normal forms. With respect to our first criterion,
most cut-elimination procedures, including Gentzen’s original, are thus quite unsatisfactory since they
terminate only if a particular strategy for cut-elimination is employed. Common examples being an
innermost reduction strategy, or the elimination of the cutwith the highest rank. An unpleasant conse-
quence of these strategies is that they restrict heavily thenumber of normal forms reachable from a given
proof. However, the normal forms reachable from a proof playan important rôle, if we wish to extend
the proposition-as-types analogy to classical logic. Therefore our first two criteria.

As a first attempt for a strongly normalising cut-elimination procedure one might simply take an
unrestricted version of Gentzen’s cut-elimination procedure; that is by removing the strategy. Unfortu-
nately, this would, as stated earlier, allow infinite reduction sequences, one of which is illustrated in the
following example taken from [9, 12].

Example 1.1. Consider the proofA A A AA_A A;A _LA_A A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A Cut

The problem lies with the lower cut-rule—a commuting cut—which needs to be permuted upwards. (A
cut-rule is said to be a logical cut when both cut-formulae are introduced by axioms or logical inference
rules; otherwise the cut-rule is said to be a commuting cut.)There are two possible cut-reductions: either
the cut-rule can be permuted upwards in the left proof branchor in the right proof branch. If one is not

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 3

careful, applying these cut-reductions in alternation canlead to arbitrary big normal forms and to non-
termination. For example, consider the reduction sequencestarting with the proof above and continuing
as follows
This proof contains an instance of the cut-reduction applied in the first step (bold face). Even worse, this
instance is bigger than in the proof we started with, and so ineffect we can construct reduction sequences
with possibly infinitely big normal forms. ut

It seems difficult to avoid the infinite reduction sequence given in the example above using an unre-
stricted Gentzen-like formulation of the cut-reductions.A number of people, for example [6, 7, 9, 10, 17],
have managed to develop strongly normalising cut-elimination procedures, but they all impose fairly
strong restrictions on the cut-reductions. Here is one common restriction: consider the following cut-
reduction, which allows a cut-rule (Suffix 2) to pass over another cut-rule (Suffix 1).: : : : : : : : : : : :: : : : : : Cut1 : : : : : :: : : : : : Cut2 ! : : : : : : : : : : : :: : : : : : Cut2 : : : : : :: : : : : : Cut1
Clearly, this cut-reduction would immediately break strong normalisation because the reduct is again an
instance of this reduction, and we can loop by constantly applying it. Thus a common restriction is to
not allow in any circumstance a cut-rule to pass over anothercut-rule. However such a restriction limits,
for example, in the intuitionistic case the correspondencebetween cut-elimination and beta-reduction. In
particular, strong normalisation of beta-reduction cannot be inferred from the strong normalisation result
of the cut-elimination procedure, as noted in [11, 17]. Therefore our third criterion. We shall design
our cut-elimination procedure so that cut-rules can pass over other cut-rules without breaking the strong
normalisation property. As a pleasing result, we can simulate beta-reduction and infer strong normali-
sation of the simply-typed lambda calculus from the strong normalisation result of our cut-elimination
procedure. The details of this result appeared in [25].

Danos et al. allow cut-rules to pass over other cut-rules in their strongly normalising cut-elimination
procedure given for the sequent calculus LKtq [9, 18]. So this cut-elimination procedure satisfies our
second and third criterion, but as we shall see it violates the first. In LKtq every formula (and its subfor-
mulae) are required to be coloured with either ‘(’ or ‘*’. Here is an instance of a cut-rule in LKtq.(A (����(B ^ *C (����(B ^ *C *D(A *D Cut

Recall the problematic infinite reduction sequence shown inExample 1.1. This reduction sequence is
avoided in their procedure by devising a specific protocol for cut-elimination, which uses the additional
information provided by the colours. If in a commuting cut the colour ‘(’ is attached to the cut-formula,
then the commuting cut is permuted to the left, and similarlyfor the ‘*’ colour (hence the use of an
arrow to denote a colour!). By enforcing that commuting cutscan be permuted into one direction only,
the infinite reduction sequence cannot be constructed.

However, there are two annoying restrictions in their cut-elimination procedure for LKtq, both of
which violate our first criterion.� First, there is a problem with the compositionality of the colour annotation, in the sense that some

cut-rules require the same colour annotation for their cut-formulae: the choice of a colouring can

4 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logicx :B;� . Ax(x; a) .�; a :B Ax �1 .M .�1; a :B x :B;�2 .N .�2�1;�2 . Cut(haiM; (x)N) .�1;�2 Cut� .M .�; a :Bx ::B;� . NotL(haiM;x) .� :L x :B;� .M .�� . NotR((x)M;a) .�; a : :B :Rx :Bi;� .M .�y :B1^B2;� . AndiL((x)M; y) .� ^Li (i=1;2) � .M .�; a :B � .N .�; b :C� . AndR(haiM; hbiN; c) .�; c :B^C ^Rx :B;� .M .� y :C;� .N .�z :B_C;� . OrL((x)M; (y)N; z) .� _L � .M .�; a :Bi� . OriR(haiM; b) .�; b :B1_B2 _Ri (i=1;2)� .M .�; a :B x :C;� .N .�y :B�C;� . ImpL(haiM; (x)N; y) .� �L x :B;� .M .�; a :C� . ImpR((x)haiM; b) .�; b :B�C �R
Figure 1. Inference rules for the propositional fragment ofclassical logic.

permeate through a proof. In particular, the colour annotation has to respect, using terminology
introduced for LKtq, identity classes[23, Page 107]. For example, when annotating colours to the
following LK-proof

... B B B...B;� �; B� �; B Cut
...B� � Cut

all the occurrences ofB must have the same colour. In effect, the normal forms that arise by
permuting both cut-rules towards the axiom, where they merge into a single cut-rule, cannot be
obtained using the cut-elimination procedure of Danos et al.� Second, the colour annotation is invariant under cut-reductions. Thus whenever an instance of the
cut-rule is duplicated in a reduction sequence, the colour annotation prevents both instances from
reducing differently. Figure 2 gives an example of such a reduction sequence that exists in LK, but
not in LKtq.

Making the cut-elimination procedure dependent on the colour annotations is, in fact, a very strong
restriction: the colours ensure that the cut-elimination procedure becomes confluent; that is deterministic.
The confluence result is an essential property in the strong normalisation proof given by Danos et al.,
because it enabled them to exploit the strong normalisationresult for proof nets in linear logic. The
colours are used ingeniously to map every LKtq-proof to a corresponding proof-net in linear logic and
every cut-elimination step to a series of reductions on proof-nets [14].

The strongly normalising cut-elimination procedure we shall present in this paper includes the stan-
dard Gentzen-like cut-reductions for logical cuts. The cut-reductions dealing with commuting cuts, on
the other hand, will be simplified versions of the reductionspresented by Danos et al. (we remove the

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 5A_A A_A A_A A_A(A_A)_(A_A) A_A;A_A _L(A_A)_(A_A) A_A ContrR A A A AA_A A;A _LA_A A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A Cut ?(A_A)_(A_A) A^A CutA A A AA_A A;A _LA_A A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A Cut ? A A A AA_A A;A _LA_A A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A Cut ?(A_A)_(A_A) A_A;A_A _L(A_A)_(A_A) A_A ContrRA A A AA;A A^A ^RA A^A ContrL A A A AA;A A^A ^RA A^A ContrLA_A A^A;A^A _LA_A A^A ContrR A A A AA_A A;A _LA_A A ContrR A A A AA_A A;A _LA_A A ContrRA_A;A_A A^A ^RA_A A^A ContrL(A_A)_(A_A) A^A;A^A _L(A_A)_(A_A) A^A ContrR
Figure 2. The displayed LK-proofs are taken from a reductionsequence that starts with the first proof and ends
with the third proof—a normal form. The second proof is an intermediate step. The cut-rules in the top proof are
eliminated in such a way that first the right subproof is duplicated creating two instances of the cut-rule marked with
a star (second proof). Subsequently, each copy of this cut-rule is reduced applying different cut-reductions. This
reduction sequence is impossible using a cut-elimination procedure that depends on colour annotations, because
the colours prevent the two copies of the cut-rule reducing differently. In effect, starting from the first proof the
normal form is not reachable in LKtq.
colour annotations). In consequence, we shall show that thecolours in LKtq are unnecessary to ensure
strong normalisation of cut-elimination. As mentioned earlier, a pleasing consequence is that, in general,
more normal forms can be reached from a given proof containing cut-rules. Unfortunately, the generality
of our reduction system means that strong normalisation is much more difficult to prove; it cannot, for
example, be proved by a translation into proof-nets. In the end, we found it extremely useful to develop a
term calculus for sequent derivations. This then allowed usto adapt directly a powerful proof technique
from the term rewriting literature.

The paper is organised as follows. In Section 2 we shall introduce a sequent calculus where the
inference rules are inspired by Kleene’s sequent calculus G3a [19] and the sequent calculus G3c of [24].
One distinguishing feature of our calculus is that the structural rules are completely implicit in the form
of the logical rules. In effect, our contexts are sets, as in type-theory, andnot multisets, as in LK and
LJ. We shall annotate the corresponding sequent proofs withterms and formulate the cut-reductions as
term rewriting rules. A detailed strong normalisation proof will be given in Section 3. The proof adapts
Barbanera and Berardi’s technique of symmetric reducibility candidates [2]. In Section 4 we shall give

6 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

some details of how to extend the strong normalisation result to the first-order fragment of classical logic.
Section 5 will conclude and give suggestions for further work.

2. Terms, Judgements, Rewrite Rules and Substitution

In this section we shall introduce a sequent calculus for classical logic and develop a strongly normalising
cut-elimination procedure. In order to present the strong normalisation proof in a convenient form,
we shall annotate our sequent proofs with terms and formalise the cut-elimination procedure as a term
rewriting system. In particular, we are able to express a proof transformation as a special sort of proof
substitution.

Our sequents consist of two contexts—anantecedentand asuccedent—both of which are sets of
(label,formula) pairs. Since there are two sorts of contexts, it will be convenient to separate the labels
into namesandco-names; in what followsa, b, c, : : : will stand for names and: : : , x, y, z for co-names.
Consequently, contexts are either built up by (name,formula) pairs or (co-name,formula) pairs. We shall
call the formerleft-contextsand the laterright-contexts. Furthermore, we shall employ some shorthand
notation for contexts: rather than writing, for example,f(x;B); (y;C); (z;D)g, we shall simply writex :B; y :C; z :D and refer tofx; y; zg as thedomainof this context.

Whereas in LK the sequents consists of an antecedent and succedent only, in our sequent calculus
the sequents have another component: aterm. Terms encode the structure of a sequent proof, and thus
allow us to define a complete cut-elimination procedure as a term rewriting system. Other proposals for
terms, for example [3, 21], do not encode the structure of proofs and so would seem less useful for our
purposes. The set of raw terms,R, is defined by the grammarM;N ::= Ax(x; a) Axiomj Cut(ha:BiM; (x:B)N) Cutj NotR((x:B)M;a) Not-Rj NotL(ha:BiM;x) Not-Lj AndR(ha:BiM; hb:CiN; c) And-Rj AndiL((x:B)M;y) And-Li i = 1; 2j OriR(ha:BiM; b) Or-Ri i = 1; 2j OrL((x:B)M; (y:C)N; z) Or-Lj ImpR((x:B)ha:CiM; b) Imp-Rj ImpL(ha:BiM; (x:C)N; y) Imp-L

wherex, y, z are taken from a set of names anda, b, c from a set of co-names;B andC are types
(formulae) given by the grammarB ::= A j :B j B^B j B_B j B�B
in whichA ranges over propositional symbols.

We use round brackets to signify that a name becomes bound andangle brackets that a co-name
becomes bound. In what follows we shall often omit the types on the bindings for brevity, regard terms
as equal up to alpha-conversions and adopt a Barendregt-style convention for the names and co-names.
These conventions are standard in term rewriting. Notice however that names and co-names are not the
same notions as a variable in the lambda-calculus: whilst a variable can be substituted with a term, a
name or a co-name can only be “renamed”. Rewriting a namex to y in a termM is written asM [x 7!y],

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 7

and similarly rewriting a co-namea to b is written asM [a 7! b]. The routine formalisation of these
rewriting operations is omitted. For our terms we have the relatively standard notions of free names and
free co-names. Given a term, sayM , its set of free names and free co-names is written asFN(M) andFC(M), respectively. Another useful notion is as follows.

Definition 2.1. A term,M , introducesthe namez or co-namec, if and only ifM is of the form

for z: Ax(z; c)NotL(haiS; z)AndiL((x)S; z)OrL((x)S; (y)T ; z)ImpL(haiS; (x)T ; z) for c: Ax(z; c)NotR((x)S; c)AndR(haiS; hbiT ; c)OriR(haiS; c)ImpR((x)haiS; c)
A term freshly introduces a name, if and only if none of its proper subterms introduces this name. In
other words, the name must not be free in a proper subterm. Similarly for co-names. ut
As we shall see later, this definition corresponds to the traditional notion of the main formula of an
inference rule.

Thus sequents, ortyping judgements, in our sequent calculus are of the form� .M .�, where� is
a left-context,M a term and� a right-context. A term,M , is said to bewell-typed, if � .M .� can
be derived given the inference rules shown in Figure 1. For the rest of the paper we shall assume that all
terms are well-typed and writeT to denote the set of all well-typed terms. Notice however that there are
a number of subtleties concerning contexts implicit in the rules for forming typing judgements. First, we
assume the convention that a context is ill-formed, if it contains more than one occurrence of a name or
co-name. For example the left-contextx : B; x : C is not allowed. Hereafter, this will be referred to as
the context convention, and it will be assumed that all inference rules respect this convention.A A A AA_A A;A _L A A A AA;A A^A ^RA A^A ContrLA_A A;A^A Cut

A A A AA;A A^A ^RA A^A ContrLA_A A^A;A^A CutA_A A^A ContrR
where the cut-rule is permuted to the left, creating two copies of the right subproof. Now permute the
upper cut-rule to the right, which gives the following proof.A A A AA_A A;A _L A A A AA_A A;A _L A A A AA;A A^A ^RA_A;A A;A^A CutA_A;A_A A;A;A^A CutA_A A;A;A^A ContrLA_A A;A^A ContrR A A A AA;A A^A ^RA A^A ContrLA_A A^A;A^A CutA_A A^A ContrR

8 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

Second, we have the following conventions for forming contexts in Figure 1: a comma in a conclu-
sion stands for the set union and a comma in a premise stands for the disjoint set union. Consider for
example the�R-rule. x :B;� .M .�; a :C� . ImpR((x)haiM; b) .�; b :B�C �R
This rule introduces the (co-name,formula) pairb :B�C in the conclusion, and consequently,b is a free
co-name inImpR((x)haiM; b). However,b can already be free in the subtermM , in which caseb :B�C
belongs to�. Thus the conclusion of the�R-rule is of the form� . ImpR((x)haiM; b) .�� b :B�C
where� denotes set union. Note thatx : B anda : C in the premise arenot be part of the conclusion
because they are intended to become bound. Hence the premisemust be of the formx :B
 � .M .�
 a :C
where
 denotes disjoint set union. If the termImpR((x)haiM; b) freshly introducesb : B�C, then the�R-rule is as follows x :B
 � .M .�
 a :C� . ImpR((x)haiM; b) .�
 b :B�C �R
whereb :B�C is not in�.

There is one point worth mentioning in the cut-rule, becauseit is the only inference rule in our
sequent calculus that does not share the contexts, but requires that two contexts are joined on each side
of the conclusion. Thus we take this rule to be of the following form.�1 �1
 a :B x :B
 �2 �2�1 � �2 �1 ��2 Cut

In consequence, this rule is only applicable, if it does not break the context convention, which can always
be achieved by renaming some labels appropriately. Note that we do not require that cut-rules have to be
“fully” multiplicative: the �i’s (respectively the�j ’s) can share some formulae.

We add now two new syntactic categories of terms. They arenot proof annotations, but play an
important rôle in the definition of proof substitution and in the strong normalisation proof.

Definition 2.2. LetM andN be terms, then(x:B)M andha:CiN are callednamed termandco-named
term, respectively. More formally we have the following two families of sets indexed by types:T(B) def= n (x:B)M ��� M 2 T with the typing judgementx :B;� .M .� oThCi def= n ha:CiN ��� N 2 T with the typing judgement� .N .�; a :C o ut

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 9

Next we focus on the term rewriting rules. One reason for introducing terms is that they greatly
simplify the formalisation of the cut-reduction rules, most notably the rules for commuting cuts. In
the propositional fragment of the sequent calculus LK thereare 508 different cases of commuting cuts!
Traditional treatments, for example [12, 13, 15], either omit these cut-reductions entirely or present only
a handful of cases. This is unfortunate as a careful study of these reductions sheds some light on the
problems of non-termination of cut-elimination. Using thenotion of proof substitution, which we shall
introduce below, the cut-reductions necessary for dealingwith commuting cuts can be formalised in only
twenty clauses. Clearly, this is an advantage of our use of terms.

Before we formalise the notion of proof substitution, let usgive some intuition behind this operation.
Consider the following sequent proof where we have omitted the terms and labels for brevity.�18><>:B_C D�E;B_C Ax? B_C;D E;B_C Ax?B_C D�E;B_C �R(B_C)_(B_C) D�E; B_C _L B;F B;C Ax C;F B;C AxB_C;F B;C _ �LB_C ;F^G B;C ^L1 9>=>;�2(B_C)_(B_C); F^G D�E;B;C Cut

The cut-formula (shaded formula) is neither introduced in the�R-rule nor in^L1 . Therefore the cut-rule
is, by definition, a commuting cut. In�1 the cut-formula is introduced in the axioms marked with a
star, and in�2, respectively, in the inference rule marked with a disc. Eliminating the cut-rule in the
proof above means either to permute the derivation�2 to the places marked with a star and replace the
corresponding axioms with�2, or to permute�1 and “cut it against” the inference rule marked with a
disc. In the former case the derivation being permuted is duplicated.

We realise these operations at the term level with two symmetric forms of substitution, which we
shall write as P [x:B := ha:BiQ] or S[b:B := (y:B)T] .

If they are clear from the context, the type annotations in substitutions will be often omitted for brevity.
Returning to our motivating example, assume thatM andN are the terms corresponding to the

subproofs�1 and�2. Thus the terms have the following typing judgements.x : (B_C)_(B_C) . M . a :D�E; b :B_Cy :B_C; z : F^G . N . c :B; d :C
Consequently, we have the typing judgementx : (B_C)_(B_C); z :F^G . Cut(hbiM; (y)N) . a :D�E; c :B; d :C
for the conclusion of the example proof. The termM [b := (y)N] denotes then the following proof,
where we have again omitted all terms and labels for brevity.B;F D�E;B;C Ax C;F D�E;B;C AxB_C;F D�E;B;C _LB_C;F^G D�E;B;C ^L1 B;F;D E;B;C Ax C;F;D E;B;C AxB_C;F;D E;B;C _LB_C;F^G;D E;B;C ^L1B_C;F^G D�E;B;C �R(B_C)_(B_C); F^G D�E;B;C _L

10 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

Similarly the symmetric caseN [y := hbiM] denotes the proofB_C D�E;B_C Ax
B_C;D E;B_C AxB_C D�E;B_C �R(B_C)_(B_C) D�E;B_C _L B;F B;C Ax C;F B;C AxB_C;F B;C _L(B_C)_(B_C); F D�E;B;C Cut(B_C)_(B_C); E^F D�E;B;C ^L1

Before we give the definition of the substitution, it is instructive to look at some further examples.
As we have seen, commuting cuts need to permute, or “jump”, tothe places where the cut-formula is
a main formula. At the level of terms this means the cuts need to be permuted to every subterm which
introduces the cut-formula. Therefore, whenever a substitution is “next” to a term in which the cut-
formula is introduced, the substitution becomes an instance of theCut-term constructor. In the following
two examples we shall write[�] and[�] for the substitutions[c := (x)P] and[x := hbiQ], respectively.AndR(haiM; hbiN; c)[�] = Cut(hciAndR(haiM [�]; hbiN [�]; c); (x)P)ImpL(haiM; (y)N;x)[�] = Cut(hbiQ; (x)ImpL(haiM [�]; (y)N [�]; x))
In the first term the formula labelled withc is the main formula and in the second the formula labelled
with x is the main formula. So in both cases the substitutions “expand” to cuts, and in addition, the
substitutions are pushed inside the subterms. This is because there might be several occurrences ofc
andx: both labels need not have been freshly introduced. An exception applies to axioms, where the
substitution is defined differently, as shown below.Ax(x; a)[x := hbiP] = P [b 7!a]Ax(x; a)[a := (y)Q] = Q[y 7!x]
Recall thatP [b 7!a] stands for the termP in which every free occurrence of the co-nameb is rewritten
to a (similarlyQ[y 7!x]). We are left with the cases where the name or co-name that is being substituted
for is not a label of the main formula. In these cases the substitutions are pushed inside the subterms or
vanish in case of the axioms. Suppose the substitution[�] is not of the form[z := : : :] and[a := : : :],
then we have the following clauses.OrL((x)M; (y)N; z)[�] = OrL((x) M [�]; (y) N [�]; z)Ax(z; a)[�] = Ax(z; a)
Figure 3 gives the complete definition of substitution. We donot need to worry about inserting contrac-
tion rules when a term is duplicated, since our contexts are sets of labelled formulae, and thus contractions
are made implicitly. Another simplification is due to our useof the Barendregt-style naming convention,
because we do not need to worry about possible capture of freenames or co-names. Let us now introduce
some useful terminology for substitutions.

Terminology 2.1. We shall write[�] to range over substitutions of the form[x := haiQ] and[b := (y)T].
In the first case we sayx is the domain of[�], written asdom([�]), and the co-named termhaiQ is the
co-domain of[�], written ascodom([�]). Similarly for the second case. ut

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 11

1. Ax(x; c)[c := (y)P] def= P [y 7!x]
2. Ax(y; a)[y := hciP] def= P [c 7!a]
3. NotR((x)M;a)[a := (y)P] def= Cut(haiNotR((x)M [a := (y)P]; a); (y)P)
4. NotL(haiM;x)[x := hciP] def= Cut(hciP ; (x)NotL(haiM [x := hciP]; x))
5. AndR(haiM; hbiN; c)[c := (y)P] def= Cut(hciAndR(haiM [c := (y)P]; hbiN [c := (y)P]; c); (y)P)
6. AndiL((x)M;y)[y := hciP] def= Cut(hciP ; (y)AndiL((x)M [y := hciP]; y))
7. OriR(haiM; c)[c := (y)P] def= Cut(hciOriR(haiM [c := (y)P]; c); (y)P)
8. OrL((x)M; (y)N; z)[z := hciP] def= Cut(hciP ; (z)OrL((x)M [z := hciP]; (y)N [z := hciP]; z))
9. ImpR((x)haiM; b)[b := (y)P] def= Cut(hbiImpR((x)haiM [b := (y)P]; b); (y)P)

10. ImpL(haiM; (x)N; y)[y := hciP] def= Cut(hciP ; (y)ImpL(haiM [y := hciP]; (x)N [y := hciP]; y))
Otherwise:

11. Ax(x; a)[�] def= Ax(x; a)
12. Cut(haiM; (x)N)[�] def= Cut(hai M [�]; (x) N [�])
13. NotR((x)M;a)[�] def= NotR((x) M [�]; a)
14. NotL(haiM;x)[�] def= NotL(hai M [�]; x)
15. AndR(haiM; hbiN; c)[�] def= AndR(hai M [�]; hbi N [�]; c)
16. AndiL((x)M;y)[�] def= AndiL((x) M [�]; y)
17. OriR(haiM; b)[�] def= OriR(hai M [�]; b)
18. OrL((x)M; (y)N; z)[�] def= OrL((x) M [�]; (y) N [�]; z)
19. ImpR((x)haiM; b)[�] def= ImpR((x)hai M [�]; b)
20. ImpL(haiM; (x)N; y)[�] def= ImpL(hai M [�]; (x) N [�]; y)

Figure 3. Proof substitution.

12 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

Next we focus on the cut-reductions for logical cuts. Consider an instance of an̂R=^L1-cut for
which a naı̈ve definition of reduction might beCut(hciAndR(haiM; hbiN; c); (y)And1L((x)P ; y)) ! Cut(haiM; (x)P) .

Unfortunately, there is a problem with this reduction rule.In our sequent calculus the structural rules
areimplicit: this means that not only does the calculus have fewer inference rules, but more importantly,
we have a very convenient way to define substitution (we do notneed explicit contractions when a term
is duplicated). On the other hand, there is a subtle side-effect of this design decision. Consider the
following instance of the redex above�1 .M .�1; c :B^C ; a :B �1 .N .�1; b :C�1 . AndR(haiM; hbiN; c) .�1; c :B^C ^R x :B;�2 . P .�2y :B^C;�2 . And1L((x)P ; y) .�2 ^L1�1;�2 . Cut(hciAndR(haiM; hbiN; c); (y)And1L((x)P ; y)) .�1;�2 Cut

wherec is a free co-name inM . Our naı̈ve reduction rule would yield�1 .M .�1; c :B^C; a :B x :B;�2 . P .�2�1;�2 . Cut(haiM; (x)P) .�1;�2; c :B^C Cut :
Herec has become free in the conclusion! The problem is that the original proof, despite first appear-
ances, is not a logical cut, but in fact a commuting cut, and should really be reduced toAndR(haiM; hbiN; c)[c := (y)And1L((x)P ; y)] :
Consequently, we ensure that logical reduction rules applyonly where the cut-formula isfreshly intro-
duced. Figure 4 gives our cut-reductions for logical cuts, denoted by l!, and commuting cuts, denoted
by c!. We automatically assume that the reductions are closed under context formation, which is a
standard convention in term rewriting. For the cut-reductions there are a few remarks worth pointing out.

Remark 2.3. There are a few subtleties in the fourth reduction rule.� First, there are two ways to reduce a cut-rule having an implication as the cut-formula. Consider
the following cut-instancex :B .M . a :C. ImpR((x)haiM; b) . b :B�C �R .N . c :B y :C . P .z :B�C . ImpL(hciN; (y)P ; z) . �L. Cut(hbiImpR((x)haiM; b); (z)ImpL(hciN; (y)P; z)) . Cut

which can be reduced to either of the following cut-instances..N . c :B x :B .M . a :C. Cut(hciN; (x)M) . a :C Cut y :C . P .. Cut(haiCut(hciN; (x)M); (y)P) . Cut
.N . c :B x :B .M . a :C y :C . P .x :B . Cut(haiM; (y)P) . Cut. Cut(hciN; (x)Cut(haiM; (y)P)) . Cut

Therefore we have included two reductions, which entails that our cut-elimination procedure is
non-deterministic.

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 13

Logical Cuts (i = 1; 2)

1. Cut(haiNotR((x)M;a); (y)NotL(hbiN; y)) l! Cut(hbiN; (x)M)
if NotR((x)M;a) andNotL(hbiN; y) freshly introducea andy

2. Cut(hbiAndR(ha1iM1; ha2iM2; b); (y)AndiL((x)N; y)) l! Cut(haiiMi; (x)N)
if AndR(ha1iM1; ha2iM2; b) andAndiL((x)N; y) freshly introduceb andy

3. Cut(hbiOriR(haiM; b); (y)OrL((x1)N1; (x2)N2; y)) l! Cut(haiM; (xi)Ni)
if OriR(haiM; b) andOrL((x1)N1; (x2)N2; y) freshly introduceb andy

4. Cut(hbiImpR((x)haiM; b); (z)ImpL(hciN; (y)P ; z))l! Cut(haiCut(hciN; (x)M); (y)P) orl! Cut(hciN; (x)Cut(haiM; (y)P))
if ImpR((x)haiM; b) andImpL(hciN; (y)P; z) freshly introduceb andz

5. Cut(haiM; (x)Ax(x; b)) l!M [a 7!b]
if M freshly introducesa

6. Cut(haiAx(y; a); (x)M) l!M [x 7!y]
if M freshly introducesx

Commuting Cuts

7. Cut(haiM; (x)N)c!M [a := (x)N] if M does not freshly introducea, orc! N [x := haiM] if N does not freshly introducex
Figure 4. Cut-reductions for logical and commuting cuts.

14 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic� Second, special care needs to be taken so that there is no clash between bound and free (co-)names.
The termImpR((x)haiM; b) bindsx anda simultaneously; however in the reducts the cut-rules
bind x anda, separately. Therefore in the first reduction rule we need toensure thata is not a
free co-name inhciN and in the second rule thatx is not a free name in(y)P . This can always be
achieved by renaminga andx appropriately: they are binders inImpR((x)haiM; b). We assume
that the renaming is done implicitly in the cut-eliminationprocedure. ut

We are now ready to formulate our cut-elimination procedure. We shall define it in terms of an abstract
reduction system [1].

Definition 2.4. (Cut-Elimination Procedure)
The cut-elimination procedure(T; cut!) is an abstract reduction system where:� T is the set of terms, and� cut! consists of the reductions for logical cuts and commuting cuts, i.e.,cut! def= l! [c! : ut
Notice that l! and c! are closed under context formation. Thecompletenessof cut! is simply the
fact, obvious by inspection, that every term beginning witha cut matches at least one left-hand side of
the reduction rules. So each irreducible term, also called anormal form, is cut-free.

We should like to prove that the cut-reductions satisfy the subject reduction property, which states
that a term reduces to a term with the same typing judgement.

Proposition 2.5. (Subject Reduction)
SupposeM is a term with the typing judgement� .M .� andM cut! N , thenN is a term with the
typing judgement� .N .�.

Proof: By inspection of the reduction rules. ut
3. Proof of Strong Normalisation

In this section we shall give the details for the strong normalisation proof of the reduction system(T; cut!). The proof adapts the technique of the symmetric reducibility candidates from [2]. Unfor-
tunately, we cannot apply this technique directly to prove strong normalisation for(T; cut!), because to
strengthen an induction hypothesis we need the propertyM [x := haiP][b := (y)Q] � M [b := (y)Q][x := haiP]
for b not free inhaiP andx not free in(y)Q. However, this property doesnot hold for the substitution
operation given in Figure 3. This means that “independent” substitutions, in general, do not commute!
The (only) problematic case is whereM is of the formAx(x; b); for exampleAx(x; b)[x := haiP][b := (y)Q] = P [a 7!b][b := (y)Q] , butAx(x; b)[b := (y)Q][x := haiP] = Q[y 7!x][x := haiP] :

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 15

Clearly, there is no reason for the two resultant terms to be equal. To remedy this situation we shall
define an auxiliary cut-reduction system,(T; aux!), which has a more subtle definition of substitution
including two special clauses to handle the problematic example above. Intuitively we should expectAx(x; b)[x := haiP][b := (y)Q]Ax(x; b)[b := (y)Q][x := haiP]) = Cut(haiP ; (y)Q) :
The auxiliary substitution, written asMfa := (x)Ng andNfx := haiMg, is defined as follows.

Definition 3.1. (Auxiliary Substitution)
The auxiliary substitution consists of the clausesAx(x; c)fc := (y)Pg def= Cut(hciAx(x; c); (y)P)Ax(y; a)fy := hciPg def= Cut(hciP ; (y)Ax(y; a))Cut(haiAx(x; a); (y)M)fx := hbiPg def= Cut(hbiP ; (y)Mfx := hbiPg)Cut(haiM; (x)Ax(x; b))fb := (y)Pg def= Cut(haiMfb := (y)Pg; (y)P)
and the clauses 3-20 shown in Figure 3, except that[] is replaced withf g. ut
For the auxiliary substitution we apply the same terminology as for substitutions of the form[�] (see
Terminology 2.1). Since we changed the substitution operation, we need to adapt the reduction rule for
commuting cuts. The modified rule is as followsCut(haiM; (x)N) c0! Mfa := (x)Ng if M does not freshly introducea , orc0! Nfx := haiMg if N does not freshly introducex .

The auxiliary cut-elimination procedure is then

Definition 3.2. (Auxiliary Cut-Elimination Procedure)
The auxiliary cut-elimination procedure(T; aux!) is an abstract reduction system where:� T is the set of terms, and� aux! consists of the rules for the logical cuts and the modified reduction for commuting cuts, i.e.,aux! def= l! [c0! : ut
Given the proof of Proposition 2.5, it is a routine matter to verify that this reduction system, too, satisfies
the subject reduction property. Let us now outline how we shall proceed in our strong normalisation
proof for (T; aux!).

1. Define the sets of candidates over types using a fixed point construction (Definition 3.4).

2. Prove that candidates are closed under reduction (Lemma 3.12).

3. Show that a named or co-named term in a candidate implies strong normalisation for the corre-
sponding term (Lemma 3.13).

16 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

4. Extend the notion of safe substitution to simultaneous substitutions (Definition 3.15).

5. Prove that all terms are strongly normalising (Theorem 3.19).

Finally, we shall show that everycut!-reduction maps onto a series ofaux!-reductions and thus prove
that(T; cut!) is strongly normalising, too.

First, we define for every type two candidates, written ashBi and(B). These candidates are subsets
of named or co-named terms, i.e.,hBi � ThBi and(B) � T(B). Whilst traditional notions of candidates
are defined by a simple induction over types, our candidates are inductively defined over types, but also
include fixed point operations. Before we give the definitionof the candidates we shall introduce some
set operators, which fix certain closure properties for the candidates. Each of the operators is defined
over sets of (co-)named terms having a specific term constructor at the top-level.

Definition 3.3. (Set Operators)

AXIOMS(B) def= n (x:B)Ax(y; b) ��� (x:B)Ax(y; b) 2 T(B) o
AXIOMShBi def= n ha:BiAx(y; b) ��� ha:BiAx(y; b) 2 ThBi o

Note thatx can be equal toy, anda to b. Figure 5 gives the set operators that correspond to the other
term constructors. Additionally we have

BINDING(B)(X) def= n (x:B)M ��� for all ha:BiP 2 X : Mfx := ha:BiPg 2 SN o
BINDINGhBi(Y) def= n ha:BiM ��� for all (x:B)P 2 Y : Mfa := (x:B)Pg 2 SN o

where we use the notationT 2 SN to indicate thatT is strongly normalising (relative toaux!). ut
The set operators given in Figure 5 correspond to the properties we need to prove for showing that a

logical cut is strongly normalising, andBINDING is sufficient to prove strong normalisation for a com-
muting cut. In the definition of the candidates we use fixed points of increasing set operators. A set
operator,op, is said to be:

increasing, if and only if S � S0) op(S) � op(S0), and

decreasing, if and only if S � S0) op(S) � op(S0).
We are now ready to define the set operatorNEG and the candidates.

Definition 3.4. (Candidates)
The mutually recursive definition over types forNEG and the candidates is as follows.

NEGhBi:
NEGhAi(X) def=
NEGh:Ci(X) def=
NEGhC^Di(X) def=
NEGhC1_C2i(X) def=
NEGhC�Di(X) def=

9>>>>>>>=>>>>>>>; AXIOMShBi [BINDINGhBi(X) [8>>>>><>>>>>: �
NOTRIGHTh:Ci((C))
ANDRIGHThC^Di(hCi; hDi)Si=1;2 ORRIGHTihC1_C2i(hCii)
IMPRIGHThC�Di((C); hDi)

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 17

NOTRIGHTh:Bi(X) def= 8><>: ha::BiNotR((x:B)M;a) jNotR((x:B)M;a) freshly introducesa;(x:B)M 2 X 9>=>;
NOTLEFT(:B)(X) def= 8><>: (x::B)NotL(ha:BiM;x) jNotL(ha:BiM;x) freshly introducesx;ha:BiM 2 X 9>=>;

ANDRIGHThB^Ci(X;Y) def= 8>>><>>>: hc:B^CiAndR(ha:BiM; hb:CiN; c) jAndR(ha:BiM; hb:CiN; c) freshly introducesc;ha:BiM 2 X;hb:CiN 2 Y 9>>>=>>>;
ANDLEFTi(B1^B2)(X) def= 8><>: (y:B1^B2)AndiL((x:Bi)M; y) jAndiL((x:Bi)M; y) freshly introducesy;(x:Bi)M 2 X 9>=>;
ORRIGHTihB1_B2i(X) def= 8><>: hb:B1_B2iOriR(ha:BiiM; b) jOriR(ha:BiiM; b) freshly introducesb;ha:BiiM 2 X 9>=>;
ORLEFT(B_C)(X;Y) def= 8>>><>>>: (z:B_C)OrL((x:B)M; (y:C)N; z) jOrL((x:B)M; (y:C)N; z) freshly introducesz;(x:B)M 2 X;(y:C)N 2 Y 9>>>=>>>;

IMPRIGHThB�Ci(X;Y) def= 8>>>>>>>><>>>>>>>>:
hb:B�CiImpR((x:B)ha:CiM; b) jImpR((x:B)ha:CiM; b) freshly introducesb;

for all (z:C)P 2 Y :(x:B)Mfa := (z)Pg 2 X;
for all hc:BiQ 2 X :ha:CiMfx := hciQg 2 Y

9>>>>>>>>=>>>>>>>>;
IMPLEFT(B�C)(X;Y) def= 8>>><>>>: (y:B�C)ImpL(ha:BiM; (x:C)N; y) jImpL(ha:BiM; (x:C)N; y) freshly introducesy;ha:BiM 2 X;(x:C)N 2 Y 9>>>=>>>;

Figure 5. Definition of the set operators for the propositional connectives.

18 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

NEG(B):
NEG(A)(X) def=
NEG(:C)(X) def=
NEG(C1^C2)(X) def=
NEG(C_D)(X) def=
NEG(C�D)(X) def=

9>>>>>>>=>>>>>>>; AXIOMS(B) [BINDING(B)(X) [8>>>>><>>>>>: �
NOTLEFT(:C)(hCi)Si=1;2 ANDLEFTi(C1^c2)((Ci))
ORLEFT(C_D)((C); (D))
IMPLEFT(C�D)(hCi; (D))

candidates:(B) def= X0hBi def= NEGhBi((B))
whereX0 is the least fixed point of the operatorNEG(B)� NEGhBi. ut

Remark 3.5. The least fixed point of the operatorNEG(B) � NEGhBi is defined since bothBINDINGhBi
andBINDING(B) are decreasing operators. Consequently,NEGhBi andNEG(B) are decreasing. But then
NEG(B)� NEGhBi must be increasing, and the least fixed pointX0 exists according to Tarski’s fixed point
theorem. ut
Two basic properties of the candidates are as follows.

Proposition 3.6. (i) (B) = NEG(B)(hBi) (ii) AXIOMS(B) � (B)hBi = NEGhBi((B)) AXIOMShBi � hBi
Proof: (i) follows from Definition 3.4, and (ii) holds trivially sinceNEG is closed underAXIOMS. ut
Let us analyse some of the motivations behind the completelysymmetric definition of the candidates.

Remark 3.7. Given the symmetry stated in Lemma 3.6(i), we have a simple method to check whether
a named or co-named term belongs to a candidate. For example,take a co-named term of the formha:B^CiM for which we wish to know whether it belongs to the candidatehB^Ci. Because of
the equationhB^Ci = NEGhB^Ci((B^C)) it is sufficient to show thatha:B^CiM is an element in
NEGhB^Ci((B^C)). By definition ofNEGhB^Ci we therefore have to show thatha:B^CiM belongs to
at least one of the following three sets:

(i) AXIOMShB^Ci
(ii) ANDRIGHThB^Ci(hBi; hCi)
(iii) BINDINGhB^Ci((B^C))

This means thatha:B^CiM must satisfy certain conditions depending on its top-levelterm constructor.
For example, in (i) it is required thatha:B^CiM is of the formha:B^CiAx(x; b); in (ii) of the formha:B^CiAndR(hbiS; hciT ; a) and it is presupposed thathbiS andhciT belong tohBi and tohCi, respec-
tively; in (iii) it is required thatM is strongly normalising under any substitution ona with a named term
belonging to the candidate(B^C). ut

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 19

In the next four lemmas we deduce some properties off�g and aux!. The first shows that the standard
substitution lemma holds for the auxiliary substitution (this lemma fails for substitutions of the form[�]).
Lemma 3.8. (Substitution Lemma)
For allM 2 T and two arbitrary proof substitutions,f�g andf�g, such thatdom(f�g) is not free incodom(f�g), we haveMf�gf�g �Mf�gf�f�gg.
Proof: By induction on the structure ofM . The only case that is non-trivial is whereM is an axiom,
the details of which are given below.

CaseM � Ax(x; b): Supposef�g andf�g are of the formfx := haiPg andfb := (y)Qg, respectively.
We analyse in turn the casesAx(x; b)f�gf�g andAx(x; b)f�gf�f�gg.Mf�gf�g = Cut(haiP ; (x)Ax(x; b))fb := (y)Qg= Cut(haiPfb := (y)Qg; (y)Q)Mf�gf�f�gg = Cut(hbiAx(x; b); (y)Q)fx := haiPfb := (y)Qgg= Cut(haiPfb := (y)Qg; (y)Qfx := haiPfb := (y)Qgg)� Cut(haiPfb := (y)Qg; (y)Q) because by assumptionx 62 FN((y)Q) ut

Lemma 3.9. SupposeM 2 T andM aux!M 0.
(i) If M freshly introduces the namex, thenM 0 freshly introducesx.

(ii) If M freshly introduces the co-namea, thenM 0 freshly introducesa.

Proof: If M freshly introduces a name or a co-name, thenM cannot be of the formCut(;) (see
Definition 2.1). The lemma follows by inspection of the reduction rules of aux!. ut
Lemma 3.10. For all termsM 2 T we have

(i) Mfx := haiAx(y; a)g aux!� M [x 7!y]
(ii) Mfa := (x)Ax(x; b)g aux!� M [a 7!b]

Proof: By routine induction on the structure ofM . ut
Notation 3.1. The expressionM aux!0=1 M 0 stands for eitherM �M 0 orM aux!M 0. ut
Lemma 3.11. For an arbitrary substitutionf�g, if M aux!M 0, thenMf�g aux!0=1 M 0f�g.
Proof: By induction on the structure ofM . We illustrate the proof with one case whereMf�g �M 0f�g
is possible.

20 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

CaseM � Cut(haiAx(y; a); (x)S): SupposeS freshly introducesx and assumef�g is of the formfy := hciTg. Furthermore, letM aux! M 0 with M 0 � S[x 7! y]. In the following calculation
the equivalence (‘0’-case) occurs ifSfy := hciTg freshly introducesx.Mf�g � Cut(haiAx(y; a); (x)S)fy := hciTg= Cut(hciT ; (x)Sfy := hciTg)aux!0=1 Sfy := hciTgfx := hciTg(�)� S[x 7!y]fy := hciTg �M 0f�g(�) because by Barendregt-style naming conventionx 62 FN(hciT) ut

The next two lemmas establish important properties of the candidates. The first shows that the candidates
are closed under reductions, and the second shows how the candidates are linked to the property of strong
normalisation.

Lemma 3.12.

(i) If ha:BiM 2 hBi andM aux!M 0, thenha:BiM 0 2 hBi.
(ii) If (x:B)M 2 (B) andM aux!M 0, then(x:B)M 0 2 (B).

Proof: We prove both cases simultaneously by induction on the degree of B (defined as usual). By
Proposition 3.6(i) we need to analyse all possible sets where ha:BiM could be member in. Four repre-
sentative cases for (i) are given below; the arguments for (ii) are similar and omitted.

Case AXIOMShBi : ha:BiM cannot be inAXIOMShBi because axioms do not reduce.

Case BINDINGhBi((B)):
(1) ha:BiM 2 BINDINGhBi((B)) by assumption
(2) Mfa := (x:B)Pg 2 SN for all (x:B)P 2 (B) by Definition 3.3
(3) M aux!M 0 by assumption
(4) Mfa := (x:B)Pg aux!0=1 M 0fa := (x:B)Pg by Lemma 3.11
(5) M 0fa := (x:B)Pg 2 SN for all (x:B)P 2 (B) by (2) and (4)
(6) ha:BiM 0 2 BINDINGhBi((B)) by Definition 3.3
(7) ha:BiM 0 2 hBi by Definition 3.4

Case ANDRIGHThC^Di(hCi; hDi),B � C^D:

(1) M � AndR(hdiS; heiT ; a), M 0 � AndR(hdiS0; heiT 0; a) andha:C^DiM 2 ANDRIGHThC^Di(hCi; hDi) by assumption
(2) S aux! S0 andT � T 0 (the other case being similar) new assumption
(3) M freshly introducesa, hd:CiS 2 hCi andhe:DiT 2 hDi by Definition 3.3
(4) M 0 freshly introducesa by Lemma 3.9
(5) hd:CiS0 2 hCi by induction
(6) ha:C^DiM 0 2 ANDRIGHThC^Di(hCi; hDi) by (4), (5) and Definition 3.3
(7) ha:C^DiM 0 2 hC^Di by Definition 3.4

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 21

Case IMPRIGHThC�Di((C); hDi),B � C�D:

(1) M � ImpR((x)hdiS; a), M 0 � ImpR((x)hdiS0; a), S aux! S0 andha:C�DiM 2 IMPRIGHThC�Ci((C); hDi) by assumption
(2) M freshly introducesa,hd:DiSfx := he:CiQg 2 hDi for all he:CiQ 2 hCi, and(x:C)Sfd := (z:D)Pg 2 (C) for all (z:D)P 2 (D) by Definition 3.3
(3) M 0 freshly introducesa by Lemma 3.9
(4) Sfx := he:CiQg aux!0=1 S0fx := he:CiQg,Sfd := (z:D)Pg aux!0=1 S0fd := (z:D)Pg by Lemma 3.11
(5) hd:DiS0fx := he:CiQg 2 hDi for all he:CiQ 2 hCi,(x:C)S0fd := (z:D)Pg 2 (C) for all (z:D)P 2 (D)

by (2) and (4): ‘0’-case trivial, ‘1’-case by induction
(6) ha:C�DiM 0 2 IMPRIGHThC�Ci((C); hDi) by (3), (5) and Definition 3.3
(7) ha:C�DiM 0 2 hC�Di by Definition 3.4ut

Lemma 3.13.

(i) If ha:BiM 2 hBi, thenM 2 SN .

(ii) If (x:B)M 2 (B), thenM 2 SN .

Proof: The proof is similar to the one of Lemma 3.12. We shall give thedetails for four cases of (i).

Case AXIOMShBi: In this caseM is an axiom, and therefore strongly normalising.

Case BINDINGhBi((B)):
(1) ha:BiM 2 BINDINGhBi((B)) by assumption
(2) Mfa := (x:B)Pg 2 SN for all (x:B)P 2 (B) by Definition 3.3
(3) (x:B)Ax(x; a) 2 (B) by Lemma 3.6(ii)
(4) Mfa := (x:B)Ax(x; a)g 2 SN by (2), (3) andP � Ax(x; a)
(5) Mfa := (x:B)Ax(x; a)g aux!� M by Lemma 3.10
(6) M 2 SN by (4) and (5)

Case ANDRIGHThC^Di(hCi; hDi), B � C^D:

(1) M � AndR(hdiS; heiT ; a); ha:C^DiM 2 ANDRIGHThC^Di(hCi; hDi) by assumption
(2) hd:CiS 2 hCi andhe:DiT 2 hDi by Definition 3.3
(3) S 2 SN andT 2 SN by induction
(4) AndR(hdiS; heiT ; a) 2 SN by (3)

Case IMPRIGHThC�Di((C); hDi),B � C�D:

22 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

(1) M � ImpR((x)hdiS; a); ha:C�DiM 2 IMPRIGHThC�Ci((C); hDi) by assumption
(2) (x:C)Sfd := (z:D)Pg 2 (C) for all (z:D)P 2 (D) by Definition 3.3
(3) (z:D)Ax(z; d) 2 (D) by Lemma 3.6(ii)
(4) (x:C)Sfd := (z:D)Ax(z; d)g 2 (C) by (2), (3) andP � Ax(z; d)
(5) Sfd := (z:D)Ax(z; d)g 2 SN by induction
(6) Sfd := (z:D)Ax(z; d)g aux!� S by Lemma 3.10
(7) S 2 SN by (5) and (6)
(8) ImpR((x)hdiS; a) 2 SN by (7)ut

We are now in the position to prove that a cut is strongly normalising given that its immediate subterms
are strongly normalising and in a candidate corresponding to the cut-formula. The proof of this lemma
is inspired by a technique applied in [22]. Unfortunately, this proof is rather lengthy: the cases for the
logical reductions require relatively difficult arguments.

Lemma 3.14.
If M;N 2 SN andha:BiM 2 hBi, (x:B)N 2 (B), thenCut(ha:BiM; (x:B)N) 2 SN .

Proof: We prove by induction that all terms to whichCut(haiM; (x)N) reduces in one step are strongly
normalising. The induction proceeds over a lexicographically ordered induction value of the form(�; l(M); l(N)), where� is the degree of the cut-formulaB; l(M) and l(N) are the lengths of the
maximal reduction sequences starting fromM andN , respectively. By assumption bothl(M) andl(N)
are finite.

Inner Reduction:

(1) Cut(haiM; (x)N) aux! Cut(haiM 0; (x)N 0);ha:BiM 2 hBi and(x:B)N 2 (B) by assumption
(2) M aux!M 0 andN � N 0 (the other case being similar) new assumption
(3) ha:BiM 0 2 hBi by Lemma 3.12
(4) M 0 2 SN by Lemma 3.13
(5) Cut(haiM 0; (x)N 0) 2 SN by induction,

the degree of the cut-formula is equal in both terms, butl(M 0) < l(M)
In the following we show the cases where a reduction occurs onthe top-level.

Commuting Reduction:
(1) Cut(haiM; (x)N) c0!Mfa := (x)Ng andha:BiM 2 hBi by assumption

We know that the commuting reduction is only applicable, ifM does not freshly introducea. This
implies that there are only two possibilities forha:BiM to be inhBi: it can be inAXIOMShBi or
in BINDINGhBi((B)).
In the first caseM is an axiom that does not introducea. ThusMfa := (x)Ng is equivalent toM ,
which we know is strongly normalising by assumption.

The proof for the second case is as follows.

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 23

(2) ha:BiM 2 BINDINGhBi((B)) new assumption
(3) Mfa := (y:B)Pg 2 SN for all (y:B)P 2 (B) by Definition 3.3
(4) (x:B)N 2 (B) by assumption
(5) Mfa := (x:B)Ng 2 SN by (3), (4) and(y)P � (x)N

The case whereCut(haiM; (x)N) reduces toNfx := haiMg is analogous. It remains to check for every
logical cut-reduction rule that the immediate reducts ofCut(haiM; (x)N) are strongly normalising. Here
we give just three cases to illustrate the proof. The difficult case is the logical reduction�R=�L, because
both immediate reducts have two nested cuts.

Logical Reduction with Axioms: Cut(haiAx(y; a); (x)N) reduces toN [x 7!y] . By assumption we
know thatN is strongly normalising, and thereforeN [x 7!y] must be strongly normalising.

Logical Reduction^R=^L1 ,B � C^D:

(1) Cut(hciM; (y)N) l! Cut(haiS; (x)U); M � AndR(haiS; hbiT ; c), N � And1L((x)U; y),M andN freshly introducec andy, respectively,hc:C^DiM 2 hC^Di and(y:C^D)N 2 (C^D) by assumption

(2) By Lemma 3.6(i) we have:hc:C^DiM 2 BINDINGhC^Di((C^D)) [ANDRIGHThC^Di(hCi; hDi)(y:C^D)N 2 BINDING(C^D)(hC^Di) [ANDLEFT1(C^D)((C))
Now our argument splits into two cases depending on whether at least one of thehc:C^DiM and(y:C^D)N belong toBINDING. Let us assumehc:C^DiM is in BINDINGhC^Di((C^D)).
(3.1) hc:C^DiM 2 BINDINGhC^Di((C^D)) new assumption
(3.2) Mfc := (z)Pg 2 SN for all (z:C^D)P 2 (C^D) by Definition 3.3
(3.3) Mfc := (y)Ng 2 SN by (1), (3.2) and(z)P � (y)N
(3.4) The following calculation shows thatCut(hciM; (y)N) 2 SN .Mfc := (y)Ng � AndR(haiS; hbiT ; c)fc := (y)Ng= Cut(hciAndR(haiSfc := (y)Ng; hbiTfc := (y)Ng; c); (y)N)� Cut(hciAndR(haiS; hbiT ; c); (y)N) becauseM freshly introducesc� Cut(hciM; (y)N)
If Cut(hciM; (y)N) is strongly normalising, then its reductCut(haiS; (x)U) must be strongly nor-
malising, too. In case(y:C^D)N is in BINDING(C^D)(hC^Di), we reason analogous.

If neither hc:C^DiM nor (y:C^D)N are inBINDING, then we proceed as follows.

(4.1) hc:C^DiM 2 ANDRIGHThC^Di(hCi; hDi),(y:C^D)N 2 ANDLEFT1(C^D)((C)) new assumption

(4.2) ha :CiS 2 hCi and(x :C)U 2 (C) by Definition 3.3
(4.3) S andU are strongly normalising by Lemma 3.13
(4.4) Cut(ha:CiS; (x:C)U) 2 SN by induction (the degree decreased)

24 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

Logical Reduction�R=�L,B � C�D:

(1) M � ImpR((x)haiS; b), N � ImpL(hciT ; (y)U; z),M andN freshly introduceb andz, respectively,hc:C�DiM 2 hC�Di and(y:C�D)N 2 (C�D) by assumption

The termCut(hbiM; (z)N) reduces to eitherCut(hai Cut(hciT ; (x)S); (y)U) or Cut(hciT ; (x) Cut(haiS; (y)U)) .

We have to show that both reducts are strongly normalising. We shall however only analyse the
first case in detail.

(2) By Lemma 3.6(i) we have:hb:C�DiM 2 BINDINGhC�Di((C�D)) [IMPRIGHThC�Di((C); hDi)(z:C�D)N 2 BINDING(C�D)(hC�Di) [IMPLEFT(C�D)(hCi; (D))
Again the proof splits into two cases depending on whether the co-named termhb :C�DiM or
the named term(z :C�D)N belong toBINDING. Let us assumehb:C�DiM is an element in
BINDINGhC�Di((C�D)).
(3.1) hb:C�DiM 2 BINDINGhC�Di((C�D)) new assumption
(3.2) Mfb := (v)Pg 2 SN for all (v:C�D)P 2 (C�D) by Definition 3.3
(3.3) Mfb := (z)Ng 2 SN by (1), (3.2) and(v)P � (z)N
(3.4) The following calculation shows thatCut(hciM; (y)N) 2 SN .Mfb := (z)Ng � ImpR((x)haiS; b)fb := (z)Ng= Cut(hbiImpR((x)haiSfb := (z)Ng; b); (z)N)� Cut(hbiImpR((x)haiS; b); (z)N) becauseM freshly introducesb� Cut(hbiM; (z)N)
Therefore we know that the termCut(hbiM; (z)N) is strongly normalising, and hence its reductCut(hai Cut(hciT ; (x)S); (y)U) must be strongly normalising, too. In fact both reducts mustbe
strongly normalising. The case where(z:C�D)N belongs toBINDING(C�D)(hC�Di) is similar.

We now have to show that the reduct is strongly normalising inthe case wherehb :C�DiM
and(z :C�D)N belong toIMPRIGHThC�Di((C); hDi) and toIMPLEFT(C�D)(hCi; (D)), respec-
tively.

We first show that the inner cut of the reduct is strongly normalising.

(4.1) hb :C�DiM 2 IMPRIGHThC�Di((C); hDi),(z :C�D)N 2 IMPLEFT(C�D)(hCi; (D)) new assumption
(4.2) (x :C)Sfa := (v:D)Pg 2 (C) for all (v:D)P 2 (D),hc:CiT 2 hCi by Definition 3.3
(4.3) Sfa := (v:D)Pg 2 SN andT 2 SN by Lemma 3.13
(4.4) Cut(hciT ; (x)Sfa := (v:D)Pg) 2 SN by induction (the degree decreased)

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 25

We required thata is not free inhciT (see Remark 2.3), and therefore we may move the substitution
on the top-level. Thus we have thatCut(hciT ; (x)Sfa := (v:D)Pg) � Cut(hciT ; (x)S)fa := (v:D)Pg:
(4.5) Cut(hciT ; (x)S)fa := (v:D)Pg 2 SN for all (v:D)P 2 (D) by (4.4)
(4.6) ha:DiCut(hciT ; (x)S) 2 hDi by Definition 3.3

Now we show that the outer cut is strongly normalising.

(4.7) (y:D)U 2 (D) by (4.1) and Definition 3.3
(4.8) Cut(hciT ; (x)S) 2 SN andU 2 SN by Lemma 3.13
(4.9) Cut(haiCut(hciT ; (x)S); (y)U) 2 SN by induction (the degree decreased)

We reason analogous in the case whereCut(hbiM; (z)N) l! Cut(hciT ; (x) Cut(haiS; (y)U)) :
We have shown that all immediate reducts ofCut(haiM; (x)N) are strongly normalising. Consequently,Cut(haiM; (x)N) must be strongly normalising. Thus we are done. ut

It is left to show that all well-typed terms are strongly normalising. In order to do so, we shall
consider a special class of substitutions, which are calledsafe. Two substitutions, sayf�g andf�g, are
safe, if and only if the domain off�g is not free in the co-domain off�g and the domain off�g is not
free in the co-domain off�g. For examplefx := haiPg andfb := (y)Qg are safe provided thatx is not
free in (y)Q andb is not free inhaiP . As explained earlier, the auxiliary substitution operation, f g, is
defined with the property in mind that safe substitutions cancommute. A special case of the substitution
lemma forf g (Lemma 3.8) ensures that for allM and any two safe substitutionsf�g andf�g we haveMf�gf�g �Mf�gf�g :
We shall now extend the notion of safety from substitutions to simultaneous substitutions; that is to sets
of substitutions.

Definition 3.15. (Safe Simultaneous Substitution,sss); is ansss.�̂ [f�g is ansss, if and only if �̂ is ansss, dom(f�g) 62 dom(�̂),dom(f�g) not free incodom(�̂), anddom(�̂) not free incodom(f�g). ut
In the presence of our Barendregt-style naming convention and alpha-conversion, any set of substitutions
can be transformed into a safe simultaneous substitution. We shall, however, omit a formal proof and
rather give the reader the following example.

Example 3.16. Suppose we have a term, sayM , and a safe simultaneous substitution, say�̂ � nfx := hciAx(x; b)g;fa := (z)Ax(z; c)go;

26 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

and let us assume we have the substitutionf�g � fb := (y)Ax(x; a)g. Clearly,�̂ [f�g is not safe, and
thereforeM(�̂ [f�g) is an ill-defined expression. However,x, a andb are considered as binders and
thus can be rewritten. In effect, we can form the following safe version of�̂ [f�g�̂safe= nfx0 := hciAx(x; b)g;fa0 := (z)Ax(z; c)g;fb0 := (y)Ax(x; a)go;
assuming thatx0, a0 andb0 are fresh. Subsequently, we need to rewrite the corresponding names and
co-names inM . Now the expressionM [x 7!x0][a 7!a0][b 7!b0] �̂safe is well-defined. ut
In the next lemma, we shall show that a specific substitution built up by axioms is an sss.

Lemma 3.17. Let �̂ be of the formn [i=0;::: ;nfxi := hciAx(xi; c)go [n [j=0;::: ;mfaj := (y)Ax(y; aj)go
where thexi’s andai’s are distinct names and co-names, respectively. Substitution �̂ is an sss.

Proof: By induction on the length of̂�. ut
Now we can show that every well-typed term together with a closing substitution is strongly normalising.
This is again a rather lengthy proof.

Lemma 3.18.� For every well-typed termM—not necessarily strongly normalising—with a typing judgement� .M .�, and� for every sss,̂�, such thatdom(�) [dom(�) � dom(�̂), i.e.,�̂ is a closing substitution,1 and� for every(x:B)P 2 codom(�̂) we require that(x:B)P 2 (B) and� for everyha:CiQ 2 codom(�̂) we require thatha:CiQ 2 hCi;
we haveM�̂ 2 SN .

Proof: The proof proceeds by induction over the structure ofM . We shall give four representative cases,
in which we write�̂; f�g for the set̂� [f�g and assumef�g 62 �̂.

CaseAx(x; a): We have to prove thatAx(x; a) �̂;fx := hbiPg;fa := (y)Qg is strongly normalising for
arbitrary (co-)named termshb:BiP 2 hBi and(y:B)Q 2 (B).
(1) Ax(x; a) �̂;fx := hbiPg;fa := (y)Qg = Cut(hbiP ; (y)Q) by Definition off g
(2) hb:BiP 2 hBi and(y:B)Q 2 (B) by assumption
(3) P 2 SN andQ 2 SN by Lemma 3.13
(4) Cut(hbiP ; (y)Q) 2 SN by Lemma 3.14
(5) Ax(x; a) �̂;fx := hbiPg;fa := (y)Qg 2 SN by (1) and (4)

CaseAndR(haiM; hbiN; c): We have to prove thatAndR(haiM; hbiN; c) �̂;fc := (z)Rg is strongly
normalising for an arbitrary named term(z:B^C)R 2 (B^C).

1All free names and co-names ofM are amongst the domain of�̂.

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 27

(1) AndR(haiM; hbiN; c) �̂;fc := (z)Rg =Cut(hciAndR(hai M�̂;fc := (z)Rg; hbi N�̂;fc := (z)Rg; c); (z)R) Definition off g
(2) M �̂;fc := (z)Rg;fa := (y)Pg 2 SN for arbitrary(y:B)P 2 (B),N �̂;fc := (z)Rg;fb := (x)Qg 2 SN for arbitrary(x:C)Q 2 (C) by induction
(3) (M�̂;fc := (z)Rg)fa := (y)Pg 2 SN ,(N�̂;fc := (z)Rg)fb := (x)Qg 2 SN by (2) and sss
(4) ha:Bi(M�̂;fc := (z)Rg) 2 hBi,hb:Ci(N�̂;fc := (z)Rg) 2 hCi by Definition 3.3
(5) AndR(haiM�̂ fc := (z)Rg; hbiN�̂ fc := (z)Rg; c) freshly introducesc by (1)
(6) hc:B^CiAndR(haiM�̂;fc := (z)Rg; hbiN�̂;fc := (z)Rg; c) 2 hB^Ci

by (4), (5) and Definition 3.3
(7) AndR(haiM�̂;fc := (z)Rg; hbiN�̂;fc := (z)Rg; c) 2 SN , R 2 SN by Lemma 3.13
(8) Cut(hciAndR(haiM�̂;fc := (z)Rg; hbiN�̂;fc := (z)Rg; c); (z)R) 2 SN by Lemma 3.14
(9) AndR(haiM; hbiN; c) �̂;fc := (z)Rg 2 SN by (1) and (8)

CaseImpR((x)haiM; b): We prove thatImpR((x)haiM; b) �̂;fb := (z)Rg is strongly normalising for an
arbitrary named term(z:B�C)R 2 (B�C).
(1) ImpR((x)haiM; b) �̂;fb := (z)Rg =Cut(hciImpR((x)haiM�̂;fb := (z)Rg; b); (z)R) by Definition off g
(2) M �̂;fb := (z)Rg;fa := (y)Pg;fx := hciQg 2 SN

for arbitrary(y:B)P 2 (B) andhc:CiQ 2 hCi by induction
(3) (M�̂;fb := (z)Rg;fx := hciQg)fa := (y)Pg 2 SN ,(M�̂;fb := (z)Rg;fa := (y)Pg)fx := hciQg 2 SN by (2) and sss
(4) ha:Bi M�̂;fb := (z)Rg;fx := hciQg 2 hBi(x:C) M�̂;fb := (z)Rg;fa := (y)Pg 2 (C) by Definition 3.3
(5) ImpR((x)haiM�̂;fb := (z)Rg; b) freshly introducesb by (1)
(6) hb:B�CiImpR((x)haiM�̂;fb := (z)Rg; b) 2 hB�Ci by (4) and (5) and Definition 3.3
(7) ImpR((x)haiM�̂;fb := (z)Rg; b) 2 SN andR 2 SN by Lemma 3.13
(8) Cut(hbiImpR((x)haiM�̂;fb := (z)Rg; b); (z)R) 2 SN by Lemma 3.14
(9) ImpR((x)haiM; b) �̂;fb := (z)Rg 2 SN by (1) and (8)

CaseCut(haiM; (x)N): Since we introduced in the definition off g two special clauses for cuts with
an axiom as immediate subterm, we have to distinguish two cases.

Subcase I:M is an axiom that freshly introduces the label of the cut-formula (the caseN be-
ing such an axiom is similar). We have to show that for arbitrary hb:BiR 2 hBi the termCut(haiAx(x; a); (y)N) �̂;fx := hbiRg is strongly normalising.

28 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

(1) Cut(haiAx(x; a); (y)N) �̂;fx := hbiRg =Cut(hbiR; (y) N�̂;fx := hbiRg) by Definition off g
(2) N �̂;fx := hbiRg;fy := hciPg 2 SN for arbitraryhc:BiP 2 hBi by induction
(3) (N �̂;fx := hbiRg)fy := hciPg 2 SN by (2) and sss
(4) (y:B) N�̂;fx := hbiRg 2 (B) by Definition 3.3
(5) N �̂;fx := hbiRg 2 SN andR 2 SN by Lemma 3.13
(6) Cut(hbiR; (y) N�̂;fx := hbiRg) 2 SN by Lemma 3.14
(7) Cut(haiAx(x; a); (y)N) �̂;fx := hbiRg 2 SN by (1) and (6)

Subcase II:M andN are not axioms that freshly introduce the label of the cut-formula. We have
to prove thatCut(haiM; (x)N) �̂ is strongly normalising.

(1) Cut(haiM; (x)N) �̂ = Cut(haiM�̂; (x)N�̂) by Definition off g
(2) M �̂;fa := (y)Sg 2 SN for arbitrary(y:B)S 2 (B),N �̂;fx := hbiTg 2 SN for arbitraryhb:BiT 2 hBi by induction
(3) (M�̂)fa := (y)Sg 2 SN and(N�̂)fx := hbiTg 2 SN by (2) and sss
(4) ha:Bi M�̂ 2 hBi and(x:B) N�̂ 2 (B) by Definition 3.3
(5) M�̂ 2 SN andN�̂ 2 SN by Lemma 3.13
(6) Cut(hai M�̂; (x) N�̂) 2 SN by Lemma 3.14
(7) Cut(haiM; (x)N) �̂ 2 SN by (1) and (6)ut

We are now able to prove that(T; aux!) is strongly normalising.

Theorem 3.19. For all well-typed termsaux! is strongly normalising.

Proof: By Lemma 3.18 we know that for an arbitrary well-typed term, sayM , with the typing judgement� .M .� and an arbitrary safe simultaneous substitution, say�̂, where all free names and co-names are
amongst the domain of�, the termM�̂ is strongly normalising. Takinĝ� to be the safe simultaneous
substitution from Lemma 3.17 we can infer, using Lemma 3.10,thatM�̂ aux!� M , and we therefore
have thatM is strongly normalising. Thus we are done. ut

From this result we can deduce strong normalisation for(T; cut!), which is relatively straightforward
since every cut!-reduction maps onto a series ofaux!-reductions. First we prove thatMf�g reduces to
or is equivalent toM [�].
Lemma 3.20. For allM;N 2 T we have

(i) Mfa := (x)Ng aux!� M [a := (x)N]
(ii) Mfx := haiNg aux!� M [x := haiN]

Proof: By induction on the structure ofM . The non-trivial cases are where the definitions off g and[] differ, one of which is given below.

CaseM � Cut(hbiP ; (y)Ax(y; a)) :

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 29Mfa := (x)Ng � Cut(hbiP ; (y)Ax(y; a))fa := (x)Ng= Cut(hbi Pfa := (x)Ng; (x)N)aux
(by IH)
!� Cut(hbi P [a := (x)N]; (x)N)M [a := (x)N] � Cut(hbiP ; (y)Ax(y; a))[a := (x)N]= Cut(hbi P [a := (x)N]; (y) Ax(y; a)[a := (x)N])= Cut(hbi P [a := (x)N]; (y) N [x 7!y])(�)� Cut(hbi P [a := (x)N]; (x)N)(�) because by the Barendregt-style naming conventiony cannot be free inN . ut

The next lemma shows that everycut!-reduction maps onto a series ofaux!-reductions.

Lemma 3.21. For allM ,N 2 T, if M cut! N , thenM aux!+ N .

Proof: By induction on the structure ofcut!. We analyse all possible cases ofcut!-reductions.

Inner Reduction: Given thatM cut! N , there is a proper subterm inM , sayS, which reduces toS0.
This termS0 is a subterm ofN . We know by induction thatS aux!+ S0 and by context closure
thatM aux!+ N .

Logical Reduction: This case is obvious, because bothcut! and aux! perform the same logical reduc-
tions.

Commuting Reduction: SupposeM c! N with M � Cut(haiS; (x)T) andN � S[a := (x)T], then

we know thatM c0! Sfa := (x)Tg. From Lemma 3.20 we have thatSfa := (x)Tg aux!� N ,
and thereforeM aux!+ N . The symmetric case is analogous. ut

Now it is rather easy to show that(T; cut!) is strongly normalising

Theorem 3.22. (Main Theorem)
For all well-typed termscut! is strongly normalising.

Proof: Since aux! is strongly normalising for all well-typed terms, and wheneverM cut! N , we have
thatM aux!+ N . Consequently, the reductioncut! must be strongly normalising. ut
4. First-Order Classical Logic

In this section we extend the cut-elimination procedure(T; cut!) to the first-order fragment of classical
logic. To do so, we extend the notion of a formula by allowing atomic formulae to have arguments rang-
ing overexpressionsand introduce the quantifiers8 and9. We use ‘expression’ instead of ‘term’—the
standard terminology—in order to avoid confusion with our terminology introduced in previous sections.
Moreover, we use a sans serif font for expressions to clearlydistinguish them from terms. The grammar
for expressions is

30 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logict ::= x j f t : : : t
wherex is taken from a set ofvariablesand f from a set of functional symbols. The formulae in the
first-order case are given by the grammarB ::= At1 : : : tn j :B j B^B j B_B j B�B j 8x:B j 9x:B
whereA ranges over predicate symbols, each of which take a fixed number of expressions as arguments,
and wherex ranges over variables.

Instances of the cut-rule with a quantified formula as cut-formula are eliminated such that in a sub-
proof a variable, also calledeigenvariable, is replaced by an expression. At the level of terms this means
some term constructors introduce an expression, which may appear in a substitution for an eigenvariable;
other term constructors bind a variable to signify that it isa placeholder for which an expression may be
substituted. The set of raw terms,R89, is obtained by extending the grammar ofR given in Section 2
with the clauses M;N ::= ForallR(ha:Bi[y]M; b) Forall-Rj ForallL((x:B)M; t; y) Forall-Lj ExistsR(ha:BiM; t; b) Exists-Rj ExistsL((x:B)[y]M;y) Exists-L

in whichy is a variable andt is an expression. In these terms, square brackets indicate that a variable be-
comes bound, and analogous to names and co-names we observe aBarendregt-style naming convention
for bound and free variables.

We now give the typing rules for the new terms and the corresponding cut-reductions. In both we
shall use the standard notion of (capture avoiding) variable substitution, written as[x := t]; this notion
is defined over expressions, formulae and terms. The are fourtyping rules to govern the new term
constructors. x :B[x := t];� .M .�y : 8x:B;� . ForallL((x)M; t; y) .� 8L � .M .�; a :B[x := y]� . ForallR(hai[y]M; b) .�; b : 8x:B 8Rx :B[x := y];� .M .�y : 9x:B;� . ExistsL((x)[y]M; y) .� 9L � .M .�; a :B[x := t]� . ExistsR(haiM; t; b) .�; b : 9x:B 9R
The8R and9L rules are subject to the usual proviso thaty does not appear free in� and�.
The cut-reductions are given next.

Definition 4.1. (Cut-Reductions for Quantifiers)Cut(hbiForallR(hai[y]M; b); (y)ForallL((x)N; t; y)) l! Cut(haiM [y := t]; (x)N)
if ForallR(hai[y]M; b) andForallL((x)N; t; y) freshly introducea andxCut(hbiExistsR(haiM; t; b); (y)ExistsL((x)[y]N; y)) l! Cut(haiM; (x)N [y := t])
if ExistsR(haiM; t; b) andExistsL((x)[y]N; y) freshly introducea andx ut

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 31

We identify, as usual, terms which differ only in their namesof bound variables, because otherwise the
cut-reductions given above are not complete, in that some instances of the cut-rule cannot be eliminated.
An example of an LK-proof where a renaming of a variable is required during cut-elimination is given
in [19, 24]. In our calculus we assume that these renamings are done implicitly.

The definition of our proof substitution (see Figure 3) and the reduction c! can be extended toR89 in the obvious way. Therefore the details are omitted. Our strong normalisation proof given for the
propositional fragment of classical logic can be extended to include the rules dealing with the quantifiers;
for space reasons, however, we only give the set operators for the universal quantifier and omit the other
details.

FORALLLEFT(8x:B)(X) def= 8><>:(y:8x:B)ForallL((x:B[x := t])M; t; y) jForallL((x:B[x := t])M; t; y) freshly introducesy;(x:B[x := t])M 2 X 9>=>;
FORALLRIGHTh8x:Bi(X) def= 8><>: (b:8x:B)ForallR(ha:B[x := y]i[y]M; b) jForallR(ha:B[x := y]i[y]M; b) freshly introducesb;

for all t (x:B[x := t])M 2 X 9>=>;
5. Conclusion

In this paper we have shown that only a slight reformulation of the standard cut-reductions is sufficient
to obtain a strongly normalising cut-elimination procedure for classical logic. Prior to our work some
strongly normalising cut-elimination procedures have been developed, but all of them impose some quite
strong restrictions. In consequence, all of them violate one or more criteria we put forward in the Intro-
duction. In particular, they restrict the normal forms reachable from a proof containing cuts, which we
feel is unfortunate as the normal forms play an important rôle in investigating the computational content
of classical logic. Therefore we have improved the cut-elimination procedure of [9], mainly by removing
the restrictions imposed by the colour annotation on formulae.

It is important to notice that our cut-elimination procedure is non-deterministic. Consider Lafont’s
now famous example [15, Page 151].�1(....BB;C WeakR:BC B WeakL)�2B;B CutB ContrR
Rewritten in our system, this proof would be represented by the termCut(haiM; (x)N) whereM andN
correspond to�1 and�2, respectively, and wherea is not free inM andx is not free inN . According to

32 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

our cut-elimination procedure, we may reduce this term to eitherM orN , non-deterministically.
Another point to notice is that our substitution operation is a global proof transformation. (A trans-

formation is said to belocal, if only neighbouring inference rules are rewritten possibly duplicating a
subderivation; otherwise the transformation is said to be global.) Using results concerning explicit sub-
stitution calculi we can replace this global operation withcompletely local proof transformations and
obtain again a strongly normalising cut-elimination procedure. This result allows us to prove strong
normalisation for a slight variant of Gentzen’s original cut-elimination procedure for LK. The details are
given in [25].

While both cut-elimination procedures,(T; cut!) and(T; aux!), are complete, in the sense that they
are effective procedures for eliminating all instances of acut-rule in a sequent proof,(T; cut!) can be
used to show strong normalisation for normalisation in natural deduction using the standard translations
between natural deduction proofs and sequent proofs as presented, for example, in [27]. This result, too,
is given in [25].

Note also that our term annotation encodes precisely the structure of sequent proofs. In consequence,
we were able to adopt proof techniques from term rewriting for proving the strong normalisation property
of cut-elimination. Pfenning used a similar term annotation for proving in LF the weak normalisation
property [20]. A different term annotation, called the symmetric lambda calculus, was introduced by Bar-
banera and Berardi [2]. Although in the (^;_)-fragment of classical logic there are simple translations
between symmetric lambda terms and our terms, we found that our reduction rules are more general, in
that strong normalisation of the symmetric lambda calculuscan be inferred from our strong normalisation
result, but not vice versa (using a simple translation [25]). Moreover, for implication and multiplicative
connectives the symmetric lambda calculus seems very inconvenient, because it does not allow multiple
binders. Yet another term annotation, motivated by a study of a specific computational interpretation of
classical logic, was introduced by Curien and Herbelin [8].Independent from our work [26], and oth-
ers [20], they also proposed to use multiple binders for dealing with the implicational-right rule. Their
main finding is that if one consistently gives priority to oneof the clauses of c! (see Figure 4), then
one obtains either a call-by-name or call-by-value lambda calculus. Of course imposing a priority means
that the resulting reduction system is deterministic, likethe cut-elimination procedure presented for LKtq
[9]. While the observation of Curien and Herbelin is interesting, our suspicion is that it does not extend
to our non-deterministic setting.

Most of the work concerning the computational interpretation of classical logic focuses on functional
programs enriched with control operators, such as operators for continuation passing [4, 5, 8, 16]. We
should like to promote the view that the computational content of classical logic can also be seen as
non-deterministic computation. A similar view is taken in [2]. However the consequences of this view
for programming remain to be investigated. We leave this anda semantical study of our cut-elimination
procedure to future work.

Acknowledgements

We should like to thank Roy Dyckhoff and Martin Hyland for their help and encouragement. The work
has greatly benefited from discussions with Harold Schellinx and Jean-Baptiste Joinet concerning LKtq.
The work was completed whilst Urban was at the University of Cambridge Computer Laboratory and
supported by a scholarship from the DAAD. Bierman was supported by EPSRC Grant GR-M04716 and
Gonville & Caius College, Cambridge.

C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic 33

References

[1] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1998.

[2] F. Barbanera and S. Berardi. A Symmetric Lambda Calculusfor “Classical” Program Extraction. InTheo-
retical Aspects of Computer Software, volume 789 ofLNCS, pages 495–515. Springer Verlag, 1994.

[3] H. Barendregt and S. Ghilezan. Theoretical Pearls: Lambda Terms for Natural Deduction, Sequent Calculus
and Cut Elimination.Journal of Functional Programming, 10(1):121–134, 2000.

[4] U. Berger and H. Schwichtenberg. Program Extraction from Classical Proofs. InLogic and Computational
Complexity, volume 960 ofLNCS, pages 77–97, 1995.

[5] G. M. Bierman. A Computational Interpretation of the��-calculus. InMathematical Foundations of Com-
puter Science, volume 1450 ofLNCS, pages 336–345. Springer-Verlag, 1998.

[6] E. T. Bittar. Strong Normalisation Proofs for Cut-Elimination in Gentzen’s Sequent Calculi. InLogic, Algebra
and Computer Science, volume 46 ofBanach-Center Publications, pages 179–225, 1999.

[7] E. A. Cichon, M. Rusinowitch, and S. Selhab. Cut-Elimination and Rewriting: Termination Proofs. Technical
Report, 1996.

[8] P.-L. Curien and H. Herbelin. The Duality of Computation. In Conference on Functional Programming,
pages 233–243. ACM Press, 2000.

[9] V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstructive Logic: Linear Logic.Journal of Symbolic
Logic, 62(3):755–807, 1997.

[10] A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67 ofTranslations of
Mathematical Monographs. American Mathematical Society, 1988.

[11] R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic.
Studia Logica, 60(1):107–118, 1998.

[12] J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed�-calculi. Theoretical Com-
puter Science, 110(2):249–239, 1993.

[13] G. Gentzen. Untersuchungen über das logische Schließen I and II. Mathematische Zeitschrift, 39:176–210,
405–431, 1935.

[14] J.-Y. Girard. Linear Logic.Theoretical Computer Science, 50(1):1–102, 1987.

[15] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types, volume 7 ofCambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989.

[16] T. Griffin. A Formulae-as-Types Notion of Control. InPrinciples of Programming Languages, pages 47–58.
ACM Press, 1990.

[17] H. Herbelin. A�-calculus Structure Isomorphic to Sequent Calculus Structure. InComputer Science Logic,
volume 933 ofLNCS, pages 67–75. Springer Verlag, 1995.

[18] J.-B. Joinet, H. Schellinx, and L. Tortora de Falco. SN and CR for Free-Style LKtq: Linear Decorations and
Simulation of Normalisation. Preprint No. 1067, Utrecht University, Department of Mathematics, 1998.

[19] S. C. Kleene.Introduction to Metamathematics. North-Holland, 1952.

[20] F. Pfenning. Structural Cut-Elimination. InLogic and Computer Science, pages 156–166. IEEE Computer
Society, 1995.

34 C. Urban and G.M. Bierman / Strong Normalisation of Cut-Elimination in Classical Logic

[21] G. Pottinger. Normalisation as Homomorphic Image of Cut-Elimination. Annals of Mathematical Logic,
12:323–357, 1977.

[22] D. Prawitz. Ideas and Results of Proof Theory. InProceedings of the 2nd Scandinavian Logic Symposium,
volume 63 ofStudies in Logic and the Foundations of Mathematics, pages 235–307. North-Holland, 1971.

[23] H. Schellinx.The Noble Art of Linear Decorating. PhD thesis, Institute for Logic, Language and Computa-
tion, University of Amsterdam, 1994. ILLC dissertation series.

[24] A. S. Troelstra and H. Schwichtenberg.Basic Proof Theory, volume 43 ofCambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1996.

[25] C. Urban.Classical Logic and Computation. PhD thesis, Cambridge University, October 2000.

[26] C. Urban and G. M. Bierman. Strong Normalisation of Cut-Elimination in Classical Logic. InTyped Lambda
Calculi and Applications, volume 1581 ofLNCS, pages 365–380. Springer Verlag, 1999.

[27] J. Zucker. The Correspondance Between Cut-Elimination and Normalisation.Annals of Mathematical Logic,
7:1–112, 1974.

