Fundamenta Informaticae 44 (2000) 1-34
10S Press

Strong Normalisation of Cut-Elimination in Classical Logic

C. Urban*

Institut de Matt®ematiques de Luminy,
CNRS Marseille,

Marseille, France.

urban@iml .univ-mrs.fr

G. M. Bierman'
Computer Laboratory,
University of Cambridge,
Cambridge, UK.
gmb@cl.cam.ac.uk

Abstract. In this paper we present a strongly normalising cut-eliri@meprocedure for classical
logic. This procedure adapts Gentzen’s standard cut-teohs; but is less restrictive than previ-
ous strongly normalising cut-elimination procedures. dmparison, for example, with works by
Dragalin and Danos et al., our procedure requires no speci@tations on formulae and allows
cut-rules to pass over other cut-rules. In order to adaphti®n of symmetric reducibility can-
didates for proving the strong normalisation property, weeoduce a novel term assignment for
sequent proofs of classical logic and formalise cut-reiduastas term rewriting rules.

Keywords: Classical Logic, Cut-Elimination, Strong Normalisati@ymmetric Reducibility Can-
didates.

*Address for correspondence: Institut de Mathématiqudsudany, CNRS Marseille, Marseille, France
fAddress for correspondence: Computer Laboratory, Uritlyess Cambridge, Cambridge, UK

2 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

1. Introduction

Gentzen showed in his seminal paper [13] that all applioatiof the cut-rule can be eliminated from
proofs in the sequent calculi LK and LJ. He not only proved tilloccurrences of this rule can be
eliminated, but also gave a simple procedure for doing s@s pitocedure consists of proof transforma-
tions, or cut-reductions, that do not eliminate all cuesufrom a proof immediately, rather replace every
instance of the cut-rule with simpler cut-rules, and byat®n one eventually ends up with a cut-free
proof, also called a normal form. Since Gentzen’s paper nidanyptsitze (cut-elimination theorems)
have appeared for various sequent calculus formulatioash Bf them proves termination of a partic-
ular cut-elimination procedure. In this paper we shallddtrce a novel cut-elimination procedure for a
sequent calculus of classical logic, whose design is mietivay the following three criteria:

1. the cut-elimination procedure shoulidt restrict the collection of normal forms reachable from a
given proof such that “essential” normal forms are no lonmgachable,

2. the cut-elimination procedure shoulddiengly normalisingi.e., all possible reduction strategies
should terminate, and

3. the cut-elimination procedure should allow cut-rulepdss over other cut-rules.

At the time of writing, we are not aware of any other cut-efiation procedure for a sequent calculus
of classical logic that satisfies all three criteria. So i temainder of this introduction we shall justify
these criteria.

Typically, cut-elimination procedures for classical logire non-deterministic, in the sense that ap-
plying different cut-reductions may lead to different nainforms. With respect to our first criterion,
most cut-elimination procedures, including Gentzen'giasl, are thus quite unsatisfactory since they
terminate only if a particular strategy for cut-eliminatics employed. Common examples being an
innermost reduction strategy, or the elimination of thewith the highest rank. An unpleasant conse-
guence of these strategies is that they restrict heavilpthngber of normal forms reachable from a given
proof. However, the normal forms reachable from a proof glaymportant rdle, if we wish to extend
the proposition-as-types analogy to classical logic. €fwee our first two criteria.

As a first attempt for a strongly normalising cut-eliminatiprocedure one might simply take an
unrestricted version of Gentzen’s cut-elimination prageg that is by removing the strategy. Unfortu-
nately, this would, as stated earlier, allow infinite re@utisequences, one of which is illustrated in the
following example taken from [9, 12].

Example 1.1. Consider the proof

ArA Avd, ArA Avd
AVAFAA (U A ARANA (1
AvAara “OMWrR o ToTaAA CUtoan

AVAF- ANA

The problem lies with the lower cut-rule—a commuting cut—ethneeds to be permuted upwards. (A
cut-rule is said to be a logical cut when both cut-formulaeiatroduced by axioms or logical inference
rules; otherwise the cut-rule is said to be a commuting duigre are two possible cut-reductions: either
the cut-rule can be permuted upwards in the left proof bramah the right proof branch. If one is not

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 3

careful, applying these cut-reductions in alternation leal to arbitrary big normal forms and to non-
termination. For example, consider the reduction sequstacéng with the proof above and continuing
as follows

This proof contains an instance of the cut-reduction agphehe first step (bold face). Even worse, this
instance is bigger than in the proof we started with, and sff@ct we can construct reduction sequences
with possibly infinitely big normal forms. O

It seems difficult to avoid the infinite reduction sequenaegiin the example above using an unre-
stricted Gentzen-like formulation of the cut-reductioAsiumber of people, for example [6, 7, 9, 10, 17],
have managed to develop strongly normalising cut-elinonaprocedures, but they all impose fairly
strong restrictions on the cut-reductions. Here is one commastriction: consider the following cut-
reduction, which allows a cut-rule (Suffix 2) to pass overthaocut-rule (Suffix 1).

T I =
cut e

T - Cut

~ Cuty
LB

el

~ Cut

Clearly, this cut-reduction would immediately break sggarormalisation because the reduct is again an
instance of this reduction, and we can loop by constantlyyappit. Thus a common restriction is to
not allow in any circumstance a cut-rule to pass over anattierule. However such a restriction limits,
for example, in the intuitionistic case the corresponddyete/een cut-elimination and beta-reduction. In
particular, strong normalisation of beta-reduction cartoinferred from the strong normalisation result
of the cut-elimination procedure, as noted in [11, 17]. Ef@re our third criterion. We shall design
our cut-elimination procedure so that cut-rules can pass ather cut-rules without breaking the strong
normalisation property. As a pleasing result, we can siteuteta-reduction and infer strong normali-
sation of the simply-typed lambda calculus from the stroogmalisation result of our cut-elimination
procedure. The details of this result appeared in [25].

Danos et al. allow cut-rules to pass over other cut-rulebeir strongly normalising cut-elimination
procedure given for the sequent calculus!f9, 18]. So this cut-elimination procedure satisfies our
second and third criterion, but as we shall see it violateditst. In LK' every formula (and its subfor-
mulae) are required to be coloured with either ‘or * —'. Here is an instance of a cut-rule in XK

AFr BAC BANCY D
AvY D

Cut

Recall the problematic infinite reduction sequence showBxample 1.1. This reduction sequence is
avoided in their procedure by devising a specific protocoktd-elimination, which uses the additional
information provided by the colours. Ifin a commuting cu tolour “—’ is attached to the cut-formula,
then the commuting cut is permuted to the left, and simil&olythe ‘—’ colour (hence the use of an
arrow to denote a colour!). By enforcing that commuting a#s be permuted into one direction only,
the infinite reduction sequence cannot be constructed.

However, there are two annoying restrictions in their dimi@ation procedure for LK/, both of
which violate our first criterion.

e First, there is a problem with the compositionality of théotw annotation, in the sense that some
cut-rules require the same colour annotation for theirfeutiulae: the choice of a colouring can

4 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

A A AX F1>M>A1,CLSB .I'SB,FQDNDAQ cut
.I'.B,FD x(;r;,a)l> ’a'B I‘l,I‘z>Cut(<a>M,(:c)N)>A1,A2 u
>M»>A,a:B _ z:B,I'>M»>A .
z:-B,T>Noty (@M, z) > A © T[> Notr(@M,a) > A,a: =B
z:B;,I'>M>A) eM>Aa:B L>N>Ab:C
- Ar;(i=1,2) > > AR
y: B1ABy,T'>And) ()M, y) » A C>Andgr({@)M, YN, c) > A, c: BAC
z:B,T>M>A y:C,T>No>A > M>Aja:B,; Vi (i=12)
2:BVC,T»Orp (@M, N, z)» A © T>0rk((@M,b) > A b: BiVBy
Fr>Mv»A,a:B x:C,I> N> A 5 x:B, e M>Aa:C
L

D)
y:B>C,T > Imp, (@M, @N,y) > A Lo lmpp(@@M,b) > A, b: BoC &

Figure 1. Inference rules for the propositional fragmentlagsical logic.

permeate through a proof. In particular, the colour animiatas to respect, using terminology
introduced for LK¢, identity classe§23, Page 107]. For example, when annotating colours to the
following LK-proof

BB

F B B,T+A,B :
TFAB Cut BE
IFA u

all the occurrences aB must have the same colour. In effect, the normal forms thae dy
permuting both cut-rules towards the axiom, where they martp a single cut-rule, cannot be
obtained using the cut-elimination procedure of Danos.et al

e Second, the colour annotation is invariant under cut-reols. Thus whenever an instance of the
cut-rule is duplicated in a reduction sequence, the coloapttion prevents both instances from
reducing differently. Figure 2 gives an example of such acddn sequence that exists in LK, but
not in LK,

Making the cut-elimination procedure dependent on theuwoénnotations is, in fact, a very strong
restriction: the colours ensure that the cut-eliminatioocpdure becomes confluent; that is deterministic.
The confluence result is an essential property in the strangalisation proof given by Danos et al.,
because it enabled them to exploit the strong normalisasalt for proof nets in linear logic. The
colours are used ingeniously to map every't4groof to a corresponding proof-net in linear logic and
every cut-elimination step to a series of reductions onfpnets [14].

The strongly normalising cut-elimination procedure wellshi@sent in this paper includes the stan-
dard Gentzen-like cut-reductions for logical cuts. Theredluctions dealing with commuting cuts, on
the other hand, will be simplified versions of the reductipnssented by Danos et al. (we remove the

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 5

A-A Avr4A AFA A4,
AVAFAVA AVAFAVA AVAFAA - A ArAnA R
(AVA)V(AVA) - AVA, AVA “AVAE A4 Conte —r - conty,

(AVA)W(AVA) - AVA AVAr AN Cut*
(AVA)V(AVA) - ANA

Contrg

Cut

v, AFA AFA, AFA ArA,.
cor AAFANA [N TAVACAA LA ACARA
Ok —ArAnA cor . AVAr A R A ANA
AVAF ANA AVAVANA
(AVA)V(AVA) - AVA, AVA

(AVA)V(AVA) - AVA

ArA ArFA ArA ArA
AVAF A, A

AVArFA

AR
Contr,
Cut™*

Contrg

v, A-A ArA
AVAFA A AVAF A, A
= "7 Contrp, ———1—

AVAFE A AVAF A
AVAAVAFANA
AVAVANA onti

AvA Av4
A A ANA B TATAV ANA
——— — — Contr, —Q— ——
Ar AN AF ANA

AVAF ANA, ANA

AVA-ANA

Ar-A ArA A-A AvrA

AR

Contr,
Vr,

Contrp

Vi

Contrg
AR

(AVA)V(AVA) - ANA, ANA
(AVA)V(AVA) - ANA

Contrp

Figure 2. The displayed LK-proofs are taken from a reducsiequence that starts with the first proof and ends
with the third proof—a normal form. The second proof is amintediate step. The cut-rules in the top proof are
eliminated in such a way that first the right subproofis degged creating two instances of the cut-rule marked with
a star (second proof). Subsequently, each copy of thisweatis reduced applying different cut-reductions. This
reduction sequence is impossible using a cut-eliminatiocgrure that depends on colour annotations, because
the colours prevent the two copies of the cut-rule reduciffgreéntly. In effect, starting from the first proof the
normal form is not reachable in 'K

colour annotations). In consequence, we shall show thatdlweirs in LK'Y are unnecessary to ensure
strong normalisation of cut-elimination. As mentionediegra pleasing consequence is that, in general,
more normal forms can be reached from a given proof cont@icin-rules. Unfortunately, the generality
of our reduction system means that strong normalisationushnmore difficult to prove; it cannot, for
example, be proved by a translation into proof-nets. In titg e found it extremely useful to develop a
term calculus for sequent derivations. This then allowetbulapt directly a powerful proof technique
from the term rewriting literature.

The paper is organised as follows. In Section 2 we shall duite a sequent calculus where the
inference rules are inspired by Kleene’s sequent calcues[B9] and the sequent calculus G3c of [24].
One distinguishing feature of our calculus is that the $tmat rules are completely implicit in the form
of the logical rules. In effect, our contexts are sets, aypeitheory, andot multisets, as in LK and
LJ. We shall annotate the corresponding sequent proofsteiiths and formulate the cut-reductions as
term rewriting rules. A detailed strong normalisation gratll be given in Section 3. The proof adapts
Barbanera and Berardi’s technique of symmetric redutybdiandidates [2]. In Section 4 we shall give

6 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

some details of how to extend the strong normalisation té&stie first-order fragment of classical logic.
Section 5 will conclude and give suggestions for furtherkwvor

2. Terms, Judgements, Rewrite Rules and Substitution

In this section we shall introduce a sequent calculus fasital logic and develop a strongly normalising
cut-elimination procedure. In order to present the stroogmalisation proof in a convenient form,
we shall annotate our sequent proofs with terms and formétis cut-elimination procedure as a term
rewriting system. In particular, we are able to express afpiransformation as a special sort of proof
substitution.

Our sequents consist of two contexts—amtecedenaind asuccedert-both of which are sets of
(label,formula) pairs. Since there are two sorts of costextwill be convenient to separate the labels
into namesandco-namesin what followsa, b, ¢, . . . will stand for names and . , z, y, z for co-names.
Consequently, contexts are either built up by (name,foainpéirs or (co-name,formula) pairs. We shall
call the formereft-contextsand the lateright-contexts Furthermore, we shall employ some shorthand
notation for contexts: rather than writing, for exampléz, B), (v, C), (2, D)}, we shall simply write
xz:B,y:C,z: D and refer to{z, y, z} as thedomainof this context.

Whereas in LK the sequents consists of an antecedent anddmmtconly, in our sequent calculus
the sequents have another componertersn Terms encode the structure of a sequent proof, and thus
allow us to define a complete cut-elimination procedure &sra tewriting system. Other proposals for
terms, for example [3, 21], do not encode the structure obfgrand so would seem less useful for our
purposes. The set of raw ternds, is defined by the grammar

M,N == Ax(z,a) Axiom
| Cut((a:B)M, (x:B)N) Cut
| Notg((x:B)M, a) Not-R
| Noty,((a:B)M, x) Not-L
| Andg({a:B)M, (b:C)N, c) And-R
| And’, ((z:B)M) And-L;, i=1,2
| Or%((a:B)M, b) or-R; i=1,2
| Orp((x:B)M, (y:C)N, z) Or-L
| Imp g ((z:B){a:C)M,b) Imp-R
| Imp; ({a:B)M, (2:C)N, y) Imp-L

wherez, y, z are taken from a set of names awdb, ¢ from a set of co-names3 and C' are types
(formulae) given by the grammar

Bu=A|-B|BAB|BVB|BOB

in which A ranges over propositional symbols.

We use round brackets to signify that a name becomes boundragid brackets that a co-name
becomes bound. In what follows we shall often omit the typeshe bindings for brevity, regard terms
as equal up to alpha-conversions and adopt a Barendrégtesigpvention for the names and co-names.
These conventions are standard in term rewriting. Noticeever that names and co-names are not the
same notions as a variable in the lambda-calculus: whilgtralle can be substituted with a term, a
name or a co-name can only be “renamed”. Rewriting a natog, in a termM/ is written asM [z +— y],

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 7

and similarly rewriting a co-name to b is written asM [a — b]. The routine formalisation of these
rewriting operations is omitted. For our terms we have tletikely standard notions of free names and
free co-names. Given a term, s&, its set of free names and free co-names is writteRA’ 4/) and
FC (M), respectively. Another useful notion is as follows.

Definition 2.1. A term, M, introducesthe namez or co-name, if and only if M is of the form

forz: Ax(zc) fore: Ax(z,c)
Notz ((a)S ,z) Notg((x)S, c)
And:, ((2)S, 2) Andr((a)S, (BT, c)
OrL((x) , ()T, 2) Or% ((a)S, c)
Imp; ((a)S, ()T, z) Impp((x)a)S, c)

A term freshlyintroduces a name, if and only if none of its proper subtemm®duces this name. In
other words, the name must not be free in a proper subtermila8Bifor co-names. O

As we shall see later, this definition corresponds to theitios@l notion of the main formula of an
inference rule.

Thus sequents, dyping judgemenisn our sequent calculus are of the foitm M > A, wherel is
a left-context,M a term andA a right-context. A term}, is said to bewell-typed if I' > M > A can
be derived given the inference rules shown in Figure 1. Fereéit of the paper we shall assume that alll
terms are well-typed and writé to denote the set of all well-typed terms. Notice howevet tihere are
a number of subtleties concerning contexts implicit in thles for forming typing judgements. First, we
assume the convention that a context is ill-formed, if itte@ms more than one occurrence of a name or
co-name. For example the left-context B, x : C'is not allowed. Hereafter, this will be referred to as
the context convention, and it will be assumed that all erfiee rules respect this convention.

ArA Avr A

- A -
A4 Ara AAFANA N I AvaA
£ £ 40 Ay, 2 "7 Cont, &2 2 AR
AVAF A A A AnA AAvana (1
AVAF A ANA Cut AFAN ontig
AVAFANAL AN ut
AVAFAnA O

where the cut-rule is permuted to the left, creating two esmif the right subproof. Now permute the
upper cut-rule to the right, which gives the following proof

A4 dra,, Avd dvd
A-A Ar A AVArFA A A A ANA

AVAFA A VL AVA, A A, ANA Cut

AVA AVAr A 4, ANA
AVAF A A AN

AVAF A, AN

Cut -

A A ANA
ContrR m ContrL
Cut

AVAF ANA, ANA
AVAF ANA

Contrg

8 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

Second, we have the following conventions for forming crigtén Figure 1. a comma in a conclu-
sion stands for the set union and a comma in a premise standisefdisjoint set union. Consider for
example thed p-rule.

z:B,I'>M>A,a:C 5
T > Impp(@X@M,b) > A, b: BoC "

This rule introduces the (co-name,formula) gailB>C in the conclusion, and consequentlys a free
co-name inmp((z)(a)M,b). Howeverb can already be free in the subteivfy, in which caseé : BOC
belongs taA. Thus the conclusion of the z-rule is of the form

Lelmpgr((@)a)M,b) > A @ b: BOC

where® denotes set union. Note that B anda : C in the premise areot be part of the conclusion
because they are intended to become bound. Hence the pramssée of the form

z:BQI'>"MrAQ®a:C

where® denotes disjoint set union. If the tefdmpy((x){a) M, b) freshly introduces : BOC, then the
Dg-rule is as follows

z:BI'>M>AQa:C 5
T o lmpg(@(@M,b)sA@b: BoC ~°

whereb: BOC'is not inA.

There is one point worth mentioning in the cut-rule, becatise the only inference rule in our
sequent calculus that does not share the contexts, buteésghat two contexts are joined on each side
of the conclusion. Thus we take this rule to be of the follayviarm.

MMrAi®a:B z:BRIyrA,
Mol A @A

Cut

In consequence, this rule is only applicable, if it does metik the context convention, which can always
be achieved by renaming some labels appropriately. Notevitnao not require that cut-rules have to be
“fully” multiplicative: the I';’s (respectively the);’s) can share some formulae.

We add now two new syntactic categories of terms. Theynateroof annotations, but play an
important réle in the definition of proof substitution amdthe strong normalisation proof.

Definition 2.2. Let M andN be terms, thew: B)M and(a:C)N are callechamed ternandco-named
term, respectively. More formally we have the following two fdi®s of sets indexed by types:

J(B) def { (x:B)M ‘ M € T with the typing judgementz : B,T'> M » A }

Jioy = {(a:C)N ‘ N € T with the typing judgement’ > N > A a: C }

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 9

Next we focus on the term rewriting rules. One reason foodhicing terms is that they greatly
simplify the formalisation of the cut-reduction rules, mostably the rules for commuting cuts. In
the propositional fragment of the sequent calculus LK tlzeee508 different cases of commuting cuts!
Traditional treatments, for example [12, 13, 15], eitheitahese cut-reductions entirely or present only
a handful of cases. This is unfortunate as a careful studiesfet reductions sheds some light on the
problems of non-termination of cut-elimination. Using t@&ion of proof substitution, which we shall
introduce below, the cut-reductions necessary for dealittycommuting cuts can be formalised in only
twenty clauses. Clearly, this is an advantage of our useoiste

Before we formalise the notion of proof substitution, legiiee some intuition behind this operation.
Consider the following sequent proof where we have omittedderms and labels for brevity.

*
BVC,DvE,BvC ™ B FrBc™ CFrBC ™

*
m{ BVOv DoE, BVC A% BVCI—DDE,BVCVR BVC,FFB,C__, b
L L
(BVO)V(BVC) - DSE, [BVC BVC ,FAGvB,C

(BVC)V(BVC), FAGv DSE, B,C

Cut

The cut-formula (shaded formula) is neither introducedett z-rule nor inAy, . Therefore the cut-rule
is, by definition, a commuting cut. la; the cut-formula is introduced in the axioms marked with a
star, and inme, respectively, in the inference rule marked with a disc.miflating the cut-rule in the
proof above means either to permute the derivatigo the places marked with a star and replace the
corresponding axioms with,, or to permuter; and “cut it against” the inference rule marked with a
disc. In the former case the derivation being permuted i$icatpd.

We realise these operations at the term level with two symenietrms of substitution, which we
shall write as

Plz:B :={(a:B)Q] or Sb:B:=y:B1T].

If they are clear from the context, the type annotations bisstutions will be often omitted for brevity.
Returning to our motivating example, assume thatand N are the terms corresponding to the
subproofsr; andw,. Thus the terms have the following typing judgements.

z:(BVC)V(BVC) » M » a:DDE,b: BVC
y:BVC,z: FNG » N » ¢:B,d:C

Consequently, we have the typing judgement
z: (BVC)V(BVC),z: FAG » Cut((b)M,(y)N) » a:DDE,c:B,d:C

for the conclusion of the example proof. The tefb := (y)N] denotes then the following proof,
where we have again omitted all terms and labels for brevity.

B.ED-EBC ™ CFDrEB.C™

B.FrDoE.B.C ™ CFrDoE B,C ™ BVC,FDvB,B,C_ Ve
BVC,FFDSEB,C Vi BVC, FAG, Dv E,B,C "
BVC,FAGFDOE,B,C ' " BVC,FAGv DOE, B,C vf

(BVC)V(BVC), FAGv DOE, B,C

10 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

Similarly the symmetric cas& [y := (b)M] denotes the proof

BVC,DvE,BVC ™

BVCrDoSE, BvC ™ BVCr DoSE, BvC —F
(BVC)V(BVC)+ D>E, BVC b
(BVOW(BVC), F-DoE, B,C

(BVC)V(BVC),ENFv-DDE, B,C

X X

BF-B.C™ CFrB.C CX

BVC,FvB,C o
Cut

Ly

Before we give the definition of the substitution, it is ingitive to look at some further examples.
As we have seen, commuting cuts need to permute, or “jumptheé@laces where the cut-formula is
a main formula. At the level of terms this means the cuts neduktpermuted to every subterm which
introduces the cut-formula. Therefore, whenever a sulbistit is “next” to a term in which the cut-
formula is introduced, the substitution becomes an ingtafitheCut-term constructor. In the following
two examples we shall writer] and[7] for the substitutionsc := (z)P] and[z := (b)Q)], respectively.

Andg (@M, BN, ¢)jo] = Cut((Andg((@ M[o], ®) Nlol,c), @)P)
Imp; ((@)M, (N, z)[r] = Cut((b)Q, @)Impy({a) M[7],(y) N|[1],z))

In the first term the formula labelled withis the main formula and in the second the formula labelled
with z is the main formula. So in both cases the substitutions “edp&o cuts, and in addition, the
substitutions are pushed inside the subterms. This is becduere might be several occurrences: of
andz: both labels need not have been freshly introduced. An ¢ixgeppplies to axioms, where the
substitution is defined differently, as shown below.

Ax(z,a)[z := (BP] = Plb—al
Ax(z,a)la := Q] = Qly+—]

Recall thatP[b+ a] stands for the tern® in which every free occurrence of the co-natis rewritten

to a (similarly Q[y+— z]). We are left with the cases where the name or co-name thairig Bubstituted
for is not a label of the main formula. In these cases the gutishs are pushed inside the subterms or
vanish in case of the axioms. Suppose the substitlitibis not of the form[z := ...] and[a := ...],
then we have the following clauses.

Orp (@M, (y)N, z)[c] = Org((x) M[o],(y) No], z)
Ax(z,a)[o] = Ax(z,a)

Figure 3 gives the complete definition of substitution. Wendbneed to worry about inserting contrac-
tion rules when a term is duplicated, since our contextsetseds labelled formulae, and thus contractions
are made implicitly. Another simplification is due to our w§ehe Barendregt-style naming convention,
because we do not need to worry about possible capture afifimes or co-names. Let us now introduce
some useful terminology for substitutions.

Terminology 2.1. We shall write[o] to range over substitutions of the fofm:= («)@Q] and[b := (y)T7].
In the first case we say is the domain ofc], written asdom([o]), and the co-named term)(@ is the
co-domain oflo], written ascodom([c]). Similarly for the second case. 0

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic

11

1 Ax(z, c)[c := (y)P]
2 Ax(y, a)[y := () P]
3 Notg((x)M,a)a := (yP] =
4 Noty, (@M, z)[z := (& P] €
5. Andg((@M,(bN,c)[c := (yP] =
6 And’ ((z)M,)y := (©P] =
7 Orx((a)M, ¢)[c := W P] =
8. Orp(@)M,(y)N,z)[z:=(P] =
9 Imp g ((@)(a)M,b)[b := (y)P]
10. Impy (@M, (@)N,y)[y := (& P] =
Otherwise:
11. Ax(z,a)[o]
12. Cut({a)M, (z)N)[o]
13. Notr((x)M,a)[o]
14, Noty ((a)M, z)[o]
15. Andg((a)M, (b)N, ¢)[o]
16. And? ((2) M, y)[o]
17. Or, ((a) M, b)[o]
18. Orp((@)M, (y)N, z)[o]
19. Imp g ((@)(a) M, b)[o]
20. Imp;, (@M, @)N,y)[o]

&' Plyrsa]

def

Plc—al
% Cut(la)NotR((x)M[a :

def Cut(

def

t AndR(

% ¢ y)And? () M

Cut

def
ut

(€
(G
((c Mlc :
Cut(te
(Y
(¢e)

OFL(()

OrR(
def

Cut ImpR(

Cu
def Cut((

§
©
H

=
i

s
!
&
=
<

Figure 3. Proof substitution.

12 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

Next we focus on the cut-reductions for logical cuts. Coasiah instance of ang/Ar,-cut for
which a naive definition of reduction might be

Cut({©)And g ((a)M, BN, ¢), ipAndL ()P, y)) — Cut((a)M, (z)P) .

Unfortunately, there is a problem with this reduction rule.our sequent calculus the structural rules
areimplicit: this means that not only does the calculus have fewer infereules, but more importantly,
we have a very convenient way to define substitution (we daaet explicit contractions when a term
is duplicated). On the other hand, there is a subtle sideseftif this design decision. Consider the
following instance of the redex above

FleDAl,CZB/\C,GZB FleDAl,bZC .Z'CB,FQDPDAQ
T, > Andg((@M, BN, c) > Ay, c: BAC f oy BAC,Ty > And} (@) P,y) > A,
Iy, Ty > Cut((@Andg((a) M, (BN, ¢), ipAnd] ()P, y)) > Ay, Ay

Ly

Cut

wherec is a free co-name ifv/. Our naive reduction rule would yield

F1[>M[>A1,CZB/\C,GZB Z’ZB,FQDPDAQ
Fl,rz DCUt(<CL>.Z\4-, (Z’)P) DAl,Az, c: BAC

Cut.

Herec has become free in the conclusion! The problem is that thggnali proof, despite first appear-
ances, is not a logical cut, but in fact a commuting cut, amiikhreally be reduced to

Andg((a)M, (DN, c)[c := () And} (@) P, y)] .

Consequently, we ensure that logical reduction rules apply where the cut-formula ieshlyintro-
duced. Figure 4 gives our cut-reductions for logical cuesiated by——, and commuting cuts, denoted
by —<-. We automatically assume that the reductions are closedrwmhtext formation, which is a
standard convention in term rewriting. For the cut-redudithere are a few remarks worth pointing out.

Remark 2.3. There are a few subtleties in the fourth reduction rule.

e First, there are two ways to reduce a cut-rule having an gapbn as the cut-formula. Consider
the following cut-instance

v:BoMva:C 5 >Nvoe:B y:C>Po 5
> Impg ((@)a)M,b) »b: BOC f z:BDC v lmpp (N, (P, z) > Lt
> Cut(DImpg (@)@ MM, b), (Dlmp, (ON,)P, 2)) > !
which can be reduced to either of the following cut-instance
>Nvce:B x;BDMDa;CCut z:B>Mva:C yZCDPD Cut
> Cut({(ON,@)M)>a:C y:Cv>Prv cut >Nve¢:B x:B»>Cut({a)M,(yP)v
> Cut({@)Cut((e)N, (x) M), (y) P) > ! > Cut({e) N, ()Cut({a) M, (y) P)) >

Therefore we have included two reductions, which entaig tdur cut-elimination procedure is
non-deterministic.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic

13

Logical Cuts (z = 1, 2)

1. Cut((@Notr((x)M,a), y)Not,((BN,y)) —— Cut((BWN, () M)
if Notg((z)M,a) andNoty, ((b)N,y) freshly introduce: andy

2. Cut((WAndg((a1) My, (ag) My, b), And} ()N, y)) —— Cut((a;)M;, (x)N)
if Andg((a1)My, (ag)Ms,b) andAnd} ((x)N,y) freshly introduceh andy

3. Cut((WOr (@M, b), ()Orp ((z1) Ny, (x2)No, y)) - Cut((a)M, (z;)N;)
if Or%((aYM,b) andOry ((z1) Ny, (2) Ny, y) freshly introduceh andy

4. Cut(®Wlmpp((@)a)M,b),()]Imp; (N, (y) P, z))
—L Cut({@)Cut((e)N, (x)M), (y)P) or
L Cut({e)N, (x)Cut((a) M, (y) P))

if Impg((z){a)M,b) andlmp;, ((e)N, (y) P, z) freshly introduceh andz

5. Cut((a)M, (@)Ax(z,b)) —— Marsb]

if M freshly introduces:

o

Cut((@Ax(y, a), (@)M) L= M|z y]

if M freshly introduces:

Commuting Cuts

7. Cut((@)M,(z)N)
< M[a = (x)N] if M does not freshly introduce, or

—~£— N[z := (@M] if N does not freshly introduce

Figure 4. Cut-reductions for logical and commuting cuts.

14 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

e Second, special care needs to be taken so that there is hdelageen bound and free (co-)names.
The termimp((z){a)M,b) bindsz anda simultaneously; however in the reducts the cut-rules
bind x anda, separately. Therefore in the first reduction rule we neeenture that is not a
free co-name iric) N and in the second rule thatis not a free name ify) P. This can always be
achieved by renaming andxz appropriately: they are binders imp((z){a)M,b). We assume
that the renaming is done implicitly in the cut-eliminatiprocedure. O

We are now ready to formulate our cut-elimination procediie shall define it in terms of an abstract
reduction system [1].

Definition 2.4. (Cut-Elimination Procedure)
The cut-elimination procedur@’, -<“£+) is an abstract reduction system where:

e T is the set of terms, and

e -4ty consists of the reductions for logical cuts and commutirtg,de.,

cut/d:ef l)U c

O

Notice that—— and —<— are closed under context formation. Téwmpletenesef <4 is simply the
fact, obvious by inspection, that every term beginning waitbut matches at least one left-hand side of
the reduction rules. So each irreducible term, also calledrenal form, is cut-free.

We should like to prove that the cut-reductions satisfy thigexct reduction property, which states
that a term reduces to a term with the same typing judgement.

Proposition 2.5. (Subject Reduction)
SupposeV/ is a term with the typing judgemeiit> M > A andM <45 N, thenN is a term with the
typing judgement’ > N > A.

Proof: By inspection of the reduction rules. O

3. Proof of Strong Normalisation

In this section we shall give the details for the strong ndisation proof of the reduction system
(T,-<uL3). The proof adapts the technique of the symmetric redusibiandidates from [2]. Unfor-

tunately, we cannot apply this technique directly to praversy normalisation fofT, -<“t+), because to

strengthen an induction hypothesis we need the property

for b not free in(a) P andzx not free in(y)@Q). However, this property doewot hold for the substitution
operation given in Figure 3. This means that “independeulisstutions, in general, do not commute!
The (only) problematic case is wheb¢ is of the formAx(x, b); for example

Ax(z,b)[z := (@) P][b := Q] = Plar0b][b:= (y)Q], but
Ax(z,b)[b = WQ][z :=(@)P] = Qly— z][z := (@) P].

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 15

Clearly, there is no reason for the two resultant terms tocagle To remedy this situation we shall
define an auxiliary cut-reduction systeffT;, 2“£;), which has a more subtle definition of substitution
including two special clauses to handle the problematicgta above. Intuitively we should expect

Ax(z,b)[z := (@) P][b := (y)Q]

Ax(z,b)[b := Q][z := (@) P] } = Cut((@P, Q).

The auxiliary substitution, written a&/{a := ()N} and N{z := (a) M}, is defined as follows.

Definition 3.1. (Auxiliary Substitution)
The auxiliary substitution consists of the clauses

and the clauses 3-20 shown in Figure 3, except|thpis replaced with{_}. a

For the auxiliary substitution we apply the same terminglag for substitutions of the forrw] (see
Terminology 2.1). Since we changed the substitution omsTatve need to adapt the reduction rule for
commuting cuts. The modified rule is as follows

Cut((@M,(@)N) —<= M{a:=(@)N} if M does not freshly introduce, or
< N{z:= (@M} if N does not freshly introduce.

The auxiliary cut-elimination procedure is then

Definition 3.2. (Auxiliary Cut-Elimination Procedure)
The auxiliary cut-elimination procedufd’, %) is an abstract reduction system where:

e T is the set of terms, and

e -2UL, consists of the rules for the logical cuts and the modifiedicedn for commuting cuts, i.e.,

def /
aux [c
> = > U >

O

Given the proof of Proposition 2.5, it is a routine matter éoify that this reduction system, too, satisfies
the subject reduction property. Let us now outline how wdl giraceed in our strong normalisation
proof for (T, 44L).

1. Define the sets of candidates over types using a fixed poigtiziction (Definition 3.4).

2. Prove that candidates are closed under reduction (Lemi2a 3

3. Show that a named or co-named term in a candidate imptesgshormalisation for the corre-
sponding term (Lemma 3.13).

16 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

4. Extend the notion of safe substitution to simultaneolssutions (Definition 3.15).
5. Prove that all terms are strongly normalising (Theoreh®)3.

Finally, we shall show that ever“’;-reduction maps onto a series -§£%;-reductions and thus prove
that (7, -<“t+) is strongly normalising, too.

First, we define for every type two candidates, writter{/as and(B). These candidates are subsets
of named or co-named terms, i.€f3) C Ty and(B) C Tpy. Whilst traditional notions of candidates
are defined by a simple induction over types, our candidatesductively defined over types, but also
include fixed point operations. Before we give the definitidrthe candidates we shall introduce some
set operators, which fix certain closure properties for tedoates. Each of the operators is defined
over sets of (co-)named terms having a specific term coretratthe top-level.

Definition 3.3. (Set Operators)

AXIOMS) def {(x:B)Ax(y,b) ‘ (x:B)Ax(y,b)eT(B)}

AXIOMS) def {(a:B)AX(y,b) ‘ <a:B>Ax(y,b)eT}

Note thatz can be equal tg, anda to b. Figure 5 gives the set operators that correspond to the othe
term constructors. Additionally we have

BINDING 5 (X) & { (@:B)M ‘ forall (a:B)P € X . M{z := (a:B)P} € SN }
sinoiNG (V) & { wBIM ‘ for all w:B)P € Y. M{a := :B)P} € SN}
where we use the notatidh € SN to indicate thafl" is strongly normalising (relative t6“%;).]

The set operators given in Figure 5 correspond to the pliegeste need to prove for showing that a
logical cut is strongly normalising, argiNDING is sufficient to prove strong normalisation for a com-
muting cut. In the definition of the candidates we use fixedh{goof increasing set operators. A set
operatorop, is said to be:

increasing, ifandonlyif SCS' = op(S) C op(S’), and
decreasing, ifandonlyif SC S = op(S) 2 op(5’).
We are now ready to define the set operates and the candidates.

Definition 3.4. (Candidates)
The mutually recursive definition over types foEG and the candidates is as follows.

NEGZ

NEG(X) &) B

NEG(.c)(X) € NOTRIGHT, ¢ ((C))
NEG() (X) % 3 AXIOMS 3, U BINDING (5, (X) U { ANDRIGHT(c:py((C), (D))
NEG(c,v) (X) £ Ui MORRIGH% v ((Ci)
NEG(c py (X) def) IMPRIGHT (¢ py ((C), (D))

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic

(a:=B)Notg((x:BYM ,a) |
NOTRIGHT gy (X) def Notg((z:B)M,a) freshly introduces,
(x:B)M € X
(z:=B)Noty ({a:BYM , x) |
NOTLEFT(-p)(X) def Notz ({a:BYM , x) freshly introduces,
(a:BYM € X
(e:BACYAndg({a:BYM, (b:C)N , ¢) |
ANDRIGHT (5701 (X,) def Andg({a:B)M, (b:C)YN, c¢) freshly introduces,
(a:BYM € X,
(b:C)N €Y
(y:B1ABy)And’, ((x:B) M, y) |
ANDLEFTfBlABz)(X) def And’ ((z:B;) M ,y) freshly introduceg,
(x:B;)M € X
(b:B,VBy)Or% ((a:By) M, b) |
ORRIGHT 5, (X) def Or,(¢a:B;) M, b) freshly introduces,
(a:B;)M € X
((2:BVC)Orp ((z:B)M, (y:C)N, 2) |
ORLEFT sy (X, Y) def Orp((@:B)M, (y:C)N, z) freshly introduces,
(x:B)M € X,
(y:C)N €Y
([b:BOC)Impg((z:B)(a:C)M,b) |)
Imp R ((x:B){a:CYM,b) freshly introduce$,
def forall (z:C)P €Y .
IMPRIGHT XY =
20) (X, Y) (w:B)M{a = (2)P} € X,
forall (e:B)Q € X .
(a:CYM{z =@} €Y J
((y:BDO)mpy, ((a:BYM, (x:C)N,y) |
IMPLEFT 55 (X, 1) def Imp, ((a:B)M, (z:C)N, y) freshly introduceg,
(a:BYM € X,
L (x:C)N €Y

Figure 5. Definition of the set operators for the propostiaonnectives.

18 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

NEG(B)
NEG(A)(X) d:ef) _
NEGc)(X) £ NOTLEFT(—¢) ((C))
NEG(c; ¢y (X) def AXIOMS () U BINDING) (X) U Ui:mANDLEFTZ(CIACZ)((Oi))
NEG(ypy(X) = ORLEFT(0vp)((C), (D))
NEG(CDD)(X) d:ef) IMPLEFT(CDD)(<C>7())
candidates:
CINE e ¢
def
(B) = NEG((B))
whereXj is the least fixed point of the operatoEG z)o NEG(p;. O

Remark 3.5. The least fixed point of the operatNEGp) o NEGp, is defined since botBINDING (g,
andBINDING () are decreasing operators. ConsequentiG, z) andNEGp) are decreasing. But then
NEG(pyo NEG g, must be increasing, and the least fixed paijgtexists according to Tarski's fixed point
theorem. O

Two basic properties of the candidates are as follows.

Proposition 3.6. 0 (B) (B)

(B)

EG(B)((B>) (i) AXIOMS gy

C
EG(py((B)) AXIOMS gy C

Proof: (i) follows from Definition 3.4, and (ii) holds trivially sice NEG is closed undeaxioms. O
Let us analyse some of the motivations behind the complsietymetric definition of the candidates.

Remark 3.7. Given the symmetry stated in Lemma 3.6(i), we have a simpléodeto check whether
a named or co-named term belongs to a candidate. For exatagéea co-named term of the form
(a:BANCYM for which we wish to know whether it belongs to the candidaB\C). Because of
the equation(BAC) = NEG px¢)((BAC)) it is sufficient to show thata: BAC)M is an element in
NEG(prcy ((BAC)). By definition ofNEG ¢y We therefore have to show that BAC)M belongs to
at least one of the following three sets:

() AXIOMS(gAcy
(i) ANDRIGHT gac)((B),(C))
(i) BINDING Aoy ((BAC))

This means thai: BAC)M must satisfy certain conditions depending on its top-lézeh constructor.
For example, in (i) it is required thét: BAC)M is of the form(a:BAC)Ax(z, b); in (i) of the form
(a:BACYAndr((h)S, ()T, a) and it is presupposed th@h.S and(c)T" belong to(B) and to(C), respec-
tively; in (iii) it is required thatM is strongly normalising under any substitution@with a named term
belonging to the candida{e3A\C). 0

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 19

In the next four lemmas we deduce some propertieg-¢fand -4“%;. The first shows that the standard
substitution lemma holds for the auxiliary substitutiomgtiemma fails for substitutions of the forjan]).

Lemma 3.8. (Substitution Lemma)
For all M € T and two arbitrary proof substitutiongg } and{7}, such thatdom({c}) is not free in
codom({7}), we haveM{c}{r} = M{r}{o{7}}.

Proof: By induction on the structure af/. The only case that is non-trivial is whefé is an axiom,
the details of which are given below.

CaseM = Ax(z,b): Suppos€{c} and{r} are of the form{z := (a)P} and{b := (y)Q}, respectively.
We analyse in turn the cas@s(z, b){o}{7} andAx(z,b){r}{o{7}}.

M{o}r} = Cut((a) Ax(w b)){b = (Q}
= Cut((a P{b Q})Q)
M{t}H{o{r}} = Cut((bAx(z, b))Q){z := (@) P{b := (y)Q}}
= Cut({@)P{b := (y)Q},) Q{z := (@) P{b := (Q}})
= Cut({@)P{b := (y)Q}, ()Q) because by assumptiangZ F N (()Q) 0

Lemma 3.9. SupposeVl € T andM -%Z, M.

() If M freshly introduces the name thenM’ freshly introduces:.
(i) If M freshly introduces the co-nanagtheni’ freshly introduces.

Proof: If M freshly introduces a name or a co-name, tiiércannot be of the fornCut(_,) (see
Definition 2.1). The lemma follows by inspection of the retiloe rules of-24£;, O

Lemma 3.10. For all termsM € T we have

(i) M{z = (@Ax(y,a)} 5" M[z—y]
(i) M{a := (@Ax(z,b)} 5" M[a b

Proof: By routine induction on the structure 1. O
Notation 3.1. The expressiod/ -242,0/1 N1’ stands for eithehl = M’ or M -4z, g’ O
Lemma 3.11. For an arbitrary substitutiofio'}, if M 242 V', thenM {o} 24,9/t M'{o}.

Proof: By induction on the structure @ff. We illustrate the proof with one case whé o} = M'{c}
is possible.

20 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

CaseM = Cut((a)Ax(y,a), (®)S): SupposeS freshly introducesr and assumgo} is of the form
{y := (&T}. Furthermore, lef/ -2%%; M’ with M' = S[z — y]. In the following calculation
the equivalence (‘0’-case) occursSiy := ()T} freshly introduces:.

M{o} = Cut((a)Ax(y, a), (@) S){y := ()T}
= Cut({aT', (@) S{y :=(T})
%‘ZE;O/I S{y == THz =T}
= Slz—yl{y := T} = M'{c}
(*) because by Barendregt-style naming conventigh F'N ((c)T) 0

The next two lemmas establish important properties of thelidates. The first shows that the candidates
are closed under reductions, and the second shows how ttielates are linked to the property of strong
normalisation.

Lemma 3.12.
(i) If (a:BYM € (B) andM -2“Zy M', then(a:B)M' € (B).
(i) If (z:B)M € (B) andM % M’, then(z:B)M' € (B).

Proof: We prove both cases simultaneously by induction on the degié# (defined as usual). By
Proposition 3.6(i) we need to analyse all possible setsevaeB)M could be member in. Four repre-
sentative cases for (i) are given below; the argumentsijjcar@ similar and omitted.

Case AXIOMS py: (a:B)M cannot be ilmXIOMS) because axioms do not reduce.

Case BINDING () ((B)):

(1) (a:B)M € BINDING g ((B)) by assumption
(2) M{a:=(@:B)P} € SN forall (z:B)P € (B) by Definition 3.3
(3) M -z, M by assumption
(4) Mia:= (@:BP} <01 Mg := (:B)P} by Lemma 3.11
(5) M'{a:=(x:B)P} € SN forall (xz:B)P € (B) by (2) and (4)
(6) (a:B)M' € BINDING py((B)) by Definition 3.3
(7) (@:B)M' € (B) by Definition 3.4

Case ANDRIGHT ¢ p) ((C), (D)), B = CAD:
(1) M =Andr((d)S,(eT,a), M' = Andr((d)S’, ()T, a) and

(@:CAD)M € ANDRIGHT i py ((C), (D)) by assumption
(2) S -®ry, §"andT = T" (the other case being similar) new assumption
(3) M freshly introduces:, (d:C)S € (C) and(e:D)T € (D) by Definition 3.3
(4) M’ freshly introduces by Lemma 3.9
(5) (@:C)S' € (C) by induction
(6) (a:CADYM' € ANDRIGHT (ca) ((C), (D)) by (4), (5) and Definition 3.3

(7) (a:CAD)M' € (CAD) by Definition 3.4

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 21

Case IMPRIGHT 5 py((C), (D)), B = CDD:

(1) M =lmpp(@)d)S,a), M’ = Impg(@)(d)5',a), S -2 S and
(a:CDDYM € IMPRIGHT o5 ¢ ((C), (D))
(2) M freshly introduces:,
(d:D)S{zx := (e:CHQ} € (D) for all (e:C)Q € (C), and
P e

by assumption

(z:C)S{d := (z:D)P} € (C) for all (D)P € (D) by Definition 3.3
(3) M’ freshly introduces: by Lemma 3.9
(4) Sz = (e:0)Q} &0/l Sy .= (e: O Q},

S{d := (2:D) P} auz,0/1 §f] .= (z:D)P} by Lemma 3.11

(5) (d:D)S{z :=(e:C)Q} € (D) for all (e:ChQ € (C),
(2:C)8d := (z:D)P} € (C) for all (z:D)P € (D)
by (2) and (4): ‘0’-case trivial, ‘1’-case by induction

(6) (a:CDDYM' € IMPRIGHT (o~ ((C), (D)) by (3), (5) and Definition 3.3
(7) (a:CoOD)M' e (CDOD) by Definition 3.4
a
Lemma 3.13.

() If (a:B)M € (B), thenM € SN.
(i) If (z:B)M € (B), thenM € SN.

Proof: The proof is similar to the one of Lemma 3.12. We shall givedbtils for four cases of (i).

Case AXIOMS p): In this caselM is an axiom, and therefore strongly normalising.

Case BINDING gy ((B)):

(1) (a:B)M € BINDING g ((B)) by assumption
(2) M{a:=@:B)P} € SN forall (z:B)P € (B) by Definition 3.3
(3) (z:B)Ax(x,a) € (B) by Lemma 3.6(ii)
4) M{a:=@:B)Ax(z,a)} € SN by (2), (3) andP = Ax(z, a)

(5) Mia:= (@:B)Ax(z,a)} 245 M by Lemma 3.10
6) MeSN by (4) and (5)

Case ANDRIGHTcnpy({C), (D)), B = CAD:
(1) M =Andr((dS,(eT,a), {@:CAD)YM € ANDRIGHT (cxp)((C), (D)) by assumption

(2) (d:O)S € (C)andle:D)T € (D) by Definition 3.3
3 SeSNandT € SN by induction
(4) Andr((d)S,(eT,a) € SN by (3)

Case IMPRIGHT o5y ((C), (D)), B = CDD:

22 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

(1) M =Impg(@)d)S,;a), (a:CDODYM € IMPRIGHT (5) ((C), (D)) by assumption
(2) (@:O)8{d:= (=:D)P} € (C)forall (z:D)P € (D) by Definition 3.3
(3) (z:D)Ax(z,d) € (D) by Lemma 3.6(ii)
4) (@:0)S{d := (z:D)Ax(z,d)} € (C) by (2), (3) andP = Ax(z,d)
(5) S{d:= (z:D)Ax(z,d)} € SN by induction
6) S{d:= (z:D)Ax(z,d)} 24&* S by Lemma 3.10
(7)y SeSN by (5) and (6)
(8) Impr((@)d)S,a) € SN by (7)
O

We are now in the position to prove that a cut is strongly ndisimgy given that its immediate subterms
are strongly normalising and in a candidate correspondirtpe cut-formula. The proof of this lemma
is inspired by a technique applied in [22]. Unfortunatehistproof is rather lengthy: the cases for the
logical reductions require relatively difficult arguments

Lemma 3.14.
If M,N € SN and(a:B)M € (B), (x:B)N € (B), thenCut((a:B)M, (z:B)N) € SN.

Proof: We prove by induction that all terms to whi€ut({a)M, (x)N') reduces in one step are strongly
normalising. The induction proceeds over a lexicograplyicardered induction value of the form
(0,1(M),I(N)), whered is the degree of the cut-formulB; /(M) and[(N) are the lengths of the
maximal reduction sequences starting fréfnand N, respectively. By assumption batfiV/) andl (V)
are finite.

Inner Reduction:
(1) Cut({a)M,(z)N) 24y Cut((a)M', (z)N"),

(a:B)M € (B) and(z:B)N € (B) by assumption
(20 M -2z, M"andN = N’ (the other case being similar) new assumption
(3) (@:BM'e (B) by Lemma 3.12
4 M eSN by Lemma 3.13
(5) Cut({a)M',(x)N') € SN by induction,

the degree of the cut-formula is equal in both terms,/but’) < I(M)

In the following we show the cases where a reduction occutb®itop-level.
Commuting Reduction:
(1) Cut(@M,®N) -~ M{a := ()N} and(a:B)M € (B) by assumption

We know that the commuting reduction is only applicablé/ifdoes not freshly introduce This
implies that there are only two possibilities far: B)M to be in(B): it can be INAXIOMS) or
in BINDING (py((B)).

In the first casél/ is an axiom that does not introduae ThusM{a := ()N} is equivalent taV/,
which we know is strongly normalising by assumption.

The proof for the second case is as follows.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 23

(2) (a:B)M € BINDING p)((B)) new assumption
(3) M{a:=w:B)P} e SN forall (y:B)P € (B) by Definition 3.3
(4 (@:B)N € (B) by assumption
(5) M{a:=@:B)N} € SN by (3), (4) andy) P = ()N

The case wher€ut((a) M, (x)N) reduces taV{z := (a) M} is analogous. It remains to check for every
logical cut-reduction rule that the immediate reduct€of((a) M, (x)N') are strongly normalising. Here
we give just three cases to illustrate the proof. The difficae is the logical reduction /D 1., because
both immediate reducts have two nested cuts.

Logical Reduction with Axioms: Cut((a)Ax(y, a), ()N) reduces toN[z—y]. By assumption we
know thatV is strongly normalising, and thereforé[x — y| must be strongly normalising.
Logical Reduction Ar/AL,, B = CAD:

(1) Cut(e@M,(y)N) - Cut((a)S, @)U), M = Andr((a)S, (BT, c), N = And} ()U,y),
M andN freshly introduce: andy, respectively,
(e:CADYM € (CAD) and(y:CAD)N € (CAD) by assumption

(2) ByLemma 3.6(i) we have:

(c:CAD)M € BINDING (¢ py((CAD)) U ANDRIGHT cp py ((C), (D))
(y:CAD)N € BINDING (¢ p)((CAD)) U ANDLEFT%C/\D)((C))

Now our argument splits into two cases depending on whetHeast one of théc: CAD)M and
(y:CAD)N belong toBINDING. Let us assumé:CAD)M is in BINDING (o py ((CAD)).

(3.1) (c:CADYM € BINDING (capy ((CAD)) new assumption
(3.2) M{c:= =P} e SN forall (z:CAD)P € (CAD) by Definition 3.3
(33) M{c:=wN}eSN by (1), (3.2) and2)P = (y)N

(3.4) The following calculation shows th@ut((c)M, (y)N) € SN.

M{c = (y)N} = Andr({a)S, (DT, c){c := (y) N}

()
= Cut((c)AndR((a>S{c (N}, 0)T{c := (y)N}, ¢), (y)N)
= Cut((e)Andr({a)S, (BT, ¢), (y)N) becauselVf freshly introduces:
= Cut((&M, (y)N)

If Cut((e)M, (y)N) is strongly normalising, then its reduCtit({a)S, (x)U) must be strongly nor-
malising, too. In casg:CAD)N is in BINDING (o py({CAD)), we reason analogous.

If neither (c:CAD)M nor (y:CAD)N are inBINDING, then we proceed as follows.
(4.1) (c:CAD)M € ANDRIGHT (¢ p)((C), (D)),

(y:CAD)N € ANDLEFT%CAD)((C)) new assumption
4.2) @:O)S e (C)andz:COWU € (C) by Definition 3.3
(4.3) S andU are strongly normalising by Lemma 3.13

(4.4) Cut(t@:O)S,(z:ChU) € SN by induction (the degree decreased)

24 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

Logical ReductionDgr/Dr, B = CDD:

1) M =Impg(@)a)S,b), N =Imp; (T, U, z),
M andN freshly introduce andz, respectively,
(c:CDD)M € (CDOD) and(y:CDD)N € (CDD) by assumption

The termCut((b)M, (z)N) reduces to either

Cut({@) Cut({aT, ()S),(y)U) or Cut({aT,(x) Cut({a)S, (yU)) .

We have to show that both reducts are strongly normalising.sWéall however only analyse the
first case in detail.

(2) ByLemma 3.6(i) we have:
(b:CDD)M € BINDING (o py((CDD)) U IMPRIGHT 5 py ((C), (D))
(2:CDD)N € BINDING (¢5p)((CDD)) U IMPLEFT(¢5p)((C), (D))

Again the proof splits into two cases depending on whetherctiinamed ternb: COD)M or
the named termz : CO>D)N belong toBINDING. Let us assumeh:CDOD)M is an element in
BINDING (o5 py((CDD)).

(3.1) (b:CDDYM € BINDING (c5) ((CDD)) new assumption
(3.2) M{b:= WP} €SN forall (v:COD)P € (COD) by Definition 3.3
(3.3) M{b:=(2)N} € SN by (1), (3.2) andv)P = (2)N

(3.4) The following calculation shows th@ut((c)M, (y)N) € SN.

M{b := ()N} = Impg((@)a)S,b){b := ()N}
= Cut(®)Impp (@)@ S{b := (2)N},b), 2)N)
= Cut((bImpg((@)a)S, b), (2)N) becauseVf freshly introduce$
= Cut((WM, (2)N)

Therefore we know that the ter@ut((b) M, (z)N) is strongly normalising, and hence its reduct
Cut({a) Cut({a)T, (x)S), (y)U) must be strongly normalising, too. In fact both reducts niest
strongly normalising. The case whereC'>D)N belongs t®INDING ¢ py((CDD)) is similar.

We now have to show that the reduct is strongly normalisinghan case wheréb: COD)M
and(z : CDD)N belong toIMPRIGHT 5 py ((C), (D)) and toIMPLEFT ¢+ py ((C), (D)), respec-
tively.

We first show that the inner cut of the reduct is strongly ndisiry.

(4.1) (b:CDODIM € IMPRIGHT 5 py((C), (D)),

(z: CDD)N € IMPLEFT(¢5 p)((C), (D)) new assumption
4.2) (@:O)8{a:=w:D)P} € (C)forall (v:D)P € (D),

(c:O)T € (C) by Definition 3.3
4.3) S{a:=w:D)P} € SN andT € SN by Lemma 3.13

(4.4) Cut(aT,(@)S{a:= w:D)P}) € SN by induction (the degree decreased)

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 25

We required that is not free in(c)T" (see Remark 2.3), and therefore we may move the substitution
on the top-level. Thus we have that

Cut((a)T', (x)S{a := (v:D)P}) = Cut((e)T, (2)S){a := (v:D)P}.

(4.5) Cut(eT,@S){a:= w:D)P} € SN forall (v:D)P € (D) by (4.4)
(4.6) (a:D)Cut((aT,(x)S) € (D) by Definition 3.3
Now we show that the outer cut is strongly normalising.

4.7y (y:D)U € (D) by (4.1) and Definition 3.3
(4.8) Cut(eT,(®)S) e SN andU € SN by Lemma 3.13
(4.9) Cut((@Cut({aT, ®)S),y)U) € SN by induction (the degree decreased)

We reason analogous in the case where

Cut((WM, (2)N) — Cut(()T, () Cut(ia)S,)U)) .

We have shown that all immediate reduct<at((a)M, () N') are strongly normalising. Consequently,
Cut({a) M, (z)N') must be strongly normalising. Thus we are done. O

It is left to show that all well-typed terms are strongly nalising. In order to do so, we shall
consider a special class of substitutions, which are calide Two substitutions, sajo} and{r}, are
safe, if and only if the domain dfo} is not free in the co-domain dfr} and the domain of 7} is not
free in the co-domain ofo}. For examplgz := ()P} and{b := (y)Q)} are safe provided thatis not
free in(y)@Q andb is not free in(a)P. As explained earlier, the auxiliary substitution opemat{__}, is
defined with the property in mind that safe substitutions@ammute. A special case of the substitution
lemma for{_} (Lemma 3.8) ensures that for @il and any two safe substitutiogs } and{r} we have

M{op{r} = M{r}{o} .

We shall now extend the notion of safety from substitutiansiultaneous substitutions; that is to sets
of substitutions.
Definition 3.15. (Safe Simultaneous Substitutionsss)

0 isansss
oU{o} isansssifandonlyif 6is ansss dom({c}) & dom(5),
dom({o}) not free incodom(&), anddom (&) not free incodom({c}).

In the presence of our Barendregt-style naming conventidragpha-conversion, any set of substitutions
can be transformed into a safe simultaneous substitutioa.shll, however, omit a formal proof and
rather give the reader the following example.

Example 3.16. Suppose we have a term, séf, and a safe simultaneous substitution, say

b= {{x = (OAx(z,b)},{a := (z)Ax(z,c)}},

26 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

and let us assume we have the substitufief = {b := (y)Ax(z,a)}. Clearly,é U {c} is not safe, and
thereforeM (6 U {c}) is an ill-defined expression. However, « andb are considered as binders and
thus can be rewritten. In effect, we can form the followingessersion ofs U {o'}

Gsate= { o i= (OAX(z, D)}, {d = (AX(z,)}, {V' i= W)AX(z, 0} },

assuming that’, o’ andb’ are fresh. Subsequently, we need to rewrite the correspgrmiimes and
co-names inV/. Now the expressio [z — z'][a+ a'][b— b'] G5ateiS Well-defined. a

In the next lemma, we shall show that a specific substitutigh bp by axioms is an sss.

Lemma 3.17. Let 6 be of the form

{ U {z; := ()Ax(z;, ¢) } { U {aj := Ax(y,aj)}}

N 7=0,...,m

where thex;’s anda;’s are distinct names and co-names, respectively. Sutistité is an sss.
Proof. By induction on the length of. O

Now we can show that every well-typed term together with aialg substitution is strongly normalising.
This is again a rather lengthy proof.

Lemma 3.18.

e For every well-typed termM/—not necessarily strongly normalising—with a typing judgnt
I'sM»>A, and

e for every sssg, such thatlom(I') U dom(A) C dom(5), i.e.,é is a closing substitutioh,and

e for every(z:B)P € codom/(d) we require thatz: B)P € (B) and
e for every(a:C)Q € codom(&) we require thata:C)Q € (C);

we haveM s € SN.

Proof:. The proof proceeds by induction over the structur@fofWe shall give four representative cases,
in which we writeg, {o} for the sett U {o} and assuméo} ¢ 5.

CaseAx(z,a): We have to prove thakx(z,a) & { = (0P}, {a := (y)Q} is strongly normalising for
arbitrary (co-)named term$:B)P € (B) and(y:B)Q € (B).
(1) Ax(z,a) 6,{z = O P}, {a := (Q} = Cut((KP, (y)Q) by Definition of {__}
(2) (:B)P € (B)and(y:B)Q € (B) by assumption
(3) PeSNandQ e SN by Lemma 3.13
4) Cut(dP,yQ) € SN by Lemma 3.14
(5) Ax(z,a) 6,{z:= OP},{a = Q} € SN by (1) and (4)

CaseAndp((@)M, (b)N,c): We have to prove thalndg((a)M,(b)N,c) 6,{c := (2)R} is strongly
normalising for an arbitrary named teim BAC)R € (BAC).

LAll free names and co-names bf are amongst the domain 6f

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 27

(1) Andg((@M, BN, c)é,{c:=(2)R} =

Cut({c)Andgr((a) M6,{c := (2)R},(b) N&,{c := ()R}, c), (2)R) Definition of {_}
(2) M 6,{c:= (2)R},{a := (y)P} € SN for arbitrary(y:B)P € (B),

N 6,{c = @R}, {b:= (@)Q} € SN for arbitrary(z:C)Q € (C) by induction
(8) (Mé,{c:= @R}){a:= (P} € SN,

(NG, {c:=)R}{b:= @)Q} € SN by (2) and sss
4) (a:B)(Mé&,{c:= (2)R}) € (B),

(b:CY(Na,{c:= (2)R}) € (C) by Definition 3.3
(5) Andr({a)M6{c:= ()R}, (b)NG {c := ()R}, c) freshly introduces by (1)

(6) (e:BAC)Andg((a)M&,{c := (2)R},(b)NG,{c := (2)R},c) € (BAC)
by (4), (5) and Definition 3.3

(7) Andg((@Mé,{c = ()R}, N6, {c := ()R},) € SN, R e SN by Lemma 3.13
(8) Cut((cAndg((@Mé,{c = (2)R}, BN&,{c == (2)R},c),(»)R) € SN by Lemma 3.14
9) Andz((@M, BN, c) 6,{c:= ()R} € SN by (1) and (8)

Caselmp((z){a)M,b): We prove thatmp((z)(a)M,b) 6,{b := (2)R} is strongly normalising for an
arbitrary named ternz: BOC)R € (BDC).

1) Impr(@(@M b) 6,{b = R}:

Cut((@Impp(@Xa)Ma,{b:= (2)R},b), (2)R) by Definition of {__}
(2) M 6,{b:= R}, {a := P}, {z:=(OQ} € SN

for arbltrary(y B)P € (B) and(c:C) Q € (C) by induction
() (M6,{b:= @R}, {z := (©Q}){a :=)P} € SN,

(M&,{b:=)R}, {a := (@ P}){z := (©Q} € SN by (2) and sss
@) (a:B) Mé,{b = (2) }{ = (0Q} € (B)

(z:C) Mo {b = ()R}, { = (yP} € (O) by Definition 3.3
(5) Impr((x)a)Mab,{b:= (2)R},b) freshly introduce$ by (1)
6) (b: BDO)ImpR(x){a) 6 {b:=(2)R},b) € (BDC) by (4) and (5) and Definition 3.3
(7) Impgp((@)a)Mé,{b:= (2)R},b) € SN andR € SN by Lemma 3.13
(8) Cut((BImpp(@)/@Mé,{b:= (2)R},b),(2)R) € SN by Lemma 3.14
Q) Impp(@(@M,b) &,{b:= ()R} € SN by (1) and (8)

CaseCut({a)M, (x)N): Since we introduced in the definition ¢f_} two special clauses for cuts with
an axiom as immediate subterm, we have to distinguish twescas

Subcase |: M is an axiom that freshly introduces the label of the cut-falan(the caseV be-
ing such an axiom is similar). We have to show that for arbjtré: B)R € (B) the term
Cut({@)Ax(z,a), (y)N) 6,{x := (bR} is strongly normalising.

28 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

(1) Cut({a)Ax(z,a),y)N) 6,{z := bR} =

Cut((WR,(y) No,{z := (b)R}) by Definition of {__}
(2) N 6,{z:= R}, {y:= (P} € SN for arbitrary(c:B)P € (B) by induction
3 (N&,{z:=WR}){y:= (P} €SN by (2) and sss
(4) (y:B) No,{z:= bR} € (B) by Definition 3.3
5) N, {zr:= bR} € SN andR € SN by Lemma 3.13
(6) Cut((WR,y) N&,{z:=(R}) € SN by Lemma 3.14
(7) Cut({a)Ax(z,a),y)N) 6,{x .= bR} € SN by (1) and (6)

Subcase Il: M and N are not axioms that freshly introduce the label of the cutrida. We have
to prove thatCut((a)M, (z)N) ¢ is strongly normalising.

(1) Cut({a)M,(@)N) 6 = Cut((a)M&, (x)N&) by Definition of {__}
(20 M é,{a:=yS} € SN for arbitrary(y: B)S € (B),
N 6,{x := (0T} € SN for arbitrary(b: B)T' € (B) by induction
8) (Mé){a:= S} e SN and(Ns){z := BT} € SN by (2) and sss
(4) (@a:B)Mos e (B)and(z:B) Né € (B) by Definition 3.3
(5) Mo e SNandNg € SN by Lemma 3.13
(6) Cut({a) M6, (z) N6) € SN by Lemma 3.14
(7) Cut({a)M,(®)N) 6 € SN by (1) and (6)
0

We are now able to prove thél, -“%;) is strongly normalising.
Theorem 3.19. For all well-typed terms®“%s is strongly normalising.

Proof: By Lemma 3.18 we know that for an arbitrary well-typed teray, 87, with the typing judgement
I'> M » A and an arbitrary safe simultaneous substitution,gsayhere all free names and co-names are
amongst the domain af, the termM ¢ is strongly normalising. Taking to be the safe simultaneous
substitution from Lemma 3.17 we can infer, using Lemma 3th&t Mo -““%* M, and we therefore
have thatl/ is strongly normalising. Thus we are done. O

From this result we can deduce strong normalisatiofifor<“s), which is relatively straightforward
since every-<“ts-reduction maps onto a series-8&%-reductions. First we prove that {o} reduces to
or is equivalent ta\/[o].

Lemma 3.20. For allM, N € T we have
() M{a:= (@)N} 45" M[a := (2)N]
(i) M{z := (@N} %" Mz :=(a)N]

Proof: By induction on the structure af/. The non-trivial cases are where the definitiong.of and
[] differ, one of which is given below.

CaseM = Cut((b)P, (y)Ax(y,a)) :

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 29

M{a := (x)N} = Cut((h) P, () Ax(y,a)){a := ()N}
Cut((b) P{a := ()N}, (x)N)
ﬁff—g* Cut((b) Pla := (z)N], (x)N)
M]a := ()N] = Cut((b) P, (Ax(y, a))[a := (x)N]
Cut((b) Pla := (z)N], (y) Ax(y, a)[a := (x)N])
= Cut((d) Pla := (@)N], (y) N[z y])
()
= Cut((b) Pla := ()N, (z)N)
(*) because by the Barendregt-style naming conventioannot be free ioV. O

The next lemma shows that evestts-reduction maps onto a series-8#£2;-reductions.
Lemma 3.21. ForallM, N € T,if M < N, thenM -2+ N,

Proof: By induction on the structure cf“ss. We analyse all possible cases-8f-+-reductions.

Inner Reduction: Given thatM <t N, there is a proper subterm i, sayS, which reduces te&’.
This termS’ is a subterm ofV. We know by induction thas -2+ S’ and by context closure
that M -4, + N,

Logical Reduction: This case is obvious, because bef- and-24Z; perform the same logical reduc-
tions.

Commuting Reduction: SupposeV! —— N with M = Cut((a)S, (z)T) andN = Sa := ()T, then
we know thatM —<— S{a := (@)T}. From Lemma 3.20 we have th&{a := ()T} 45" N,

and thereforel/ -44Z,* . The symmetric case is analogous.
a

Now it is rather easy to show théT, -4ts) is strongly normalising

Theorem 3.22. (Main Theorem)
For all well-typed terms<4ts is strongly normalising.

Proof: Since-%Z; is strongly normalising for all well-typed terms, and whesel <%, N, we have
that M 24z, N. Consequently, the reducticfs must be strongly normalising. O

4. First-Order Classical Logic

In this section we extend the cut-elimination proced@e-<“t;) to the first-order fragment of classical
logic. To do so, we extend the notion of a formula by allowitgnaic formulae to have arguments rang-
ing overexpressions&nd introduce the quantifieksandd. We use ‘expression’ instead of ‘term’—the
standard terminology—in order to avoid confusion with arntinology introduced in previous sections.
Moreover, we use a sans serif font for expressions to clestinguish them from terms. The grammar
for expressions is

30 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

to=x|ft...t

wherex is taken from a set ofariablesandf from a set of functional symbols. The formulae in the
first-order case are given by the grammar

B = Aty ...ty | ~B | BAB | BVB | BOB |V¥x.B | 3x.B

where A ranges over predicate symbols, each of which take a fixed euoflexpressions as arguments,
and wherex ranges over variables.

Instances of the cut-rule with a quantified formula as cutrida are eliminated such that in a sub-
proof a variable, also callegigenvariableis replaced by an expression. At the level of terms this mean
some term constructors introduce an expression, which @gea in a substitution for an eigenvariable;
other term constructors bind a variable to signify that @ glaceholder for which an expression may be
substituted. The set of raw terniR}>, is obtained by extending the grammar®fgiven in Section 2
with the clauses

M,N == Forallg({a:B)lylM,b) Forall-R
| Forally, ((z:B)M,t,y) Forall-L
| Existsg((a:B)M, t,b) Exists-R
| Exists,(@:BlylM,y) Exists-L

in whichy is a variable and is an expression. In these terms, square brackets indieta variable be-
comes bound, and analogous to names and co-names we ob8&sarendregt-style naming convention
for bound and free variables.

We now give the typing rules for the new terms and the cornedipg cut-reductions. In both we
shall use the standard notion of (capture avoiding) vagiahbstitution, written aj := t]; this notion
is defined over expressions, formulae and terms. The aretypurg rules to govern the new term
constructors.

x:B[x:=t],I'>M»>A v I'>Mv>Aja:Blx:=y] v

y:Vx.B,I > Forall, (@M, t,y) > A " © I > Forallg((@lylM,b) > A, b:Vx.B
z:Bx:=y],[>M»>A FeM»>Aa:Blx:=t]

I dr

y:Ix.B, [> Existsy, ((x)lylM,y) > A I > Existsg({a)M,t,b) > A, b: Ix.B

TheVy anddy, rules are subject to the usual proviso thaloes not appear free inand A.
The cut-reductions are given next.
Definition 4.1. (Cut-Reductions for Quantifiers)
Cut((b)Forallz ((a)lylM, b), (y)Forall, (2)N, t,y)) = Cut((@)M]y := t], (x)N)
if Forallg({a)lylM,b) andForall;,((x)N,t,y) freshly introduce: andz

Cut((h)Existsg ((a) M, t,b), (y)Existsz, (2)lyIN,y)) — Cut((a)M, (2)N]y := t])
if Existsp((a)M,t,b) andExistsy ((x)lylN, y) freshly introducez andz

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 31

We identify, as usual, terms which differ only in their nanoé$ound variables, because otherwise the
cut-reductions given above are not complete, in that sostarices of the cut-rule cannot be eliminated.
An example of an LK-proof where a renaming of a variable isunemgl during cut-elimination is given
in [19, 24]. In our calculus we assume that these renamirgdame implicitly.

The definition of our proof substitution (see Figure 3) ane teduction—— can be extended to
R¥3 in the obvious way. Therefore the details are omitted. Quangt normalisation proof given for the
propositional fragment of classical logic can be extendeddlude the rules dealing with the quantifiers;
for space reasons, however, we only give the set operatotsfaniversal quantifier and omit the other
details.

(y:Vx.B)Forally, ((z:B[x := t)M, t,y) |
FORALLLEFT (v) (X) def Forally, ((z:B[x := t)) M, t, y) freshly introduceg,
(z:B[x:=t)M € X

(b:Vx.B)Forallg({a:B[x := y])lylM, b) |
FORALLRIGHT vy By (X) def Forallg({a: B[x := y]lylM, b) freshly introduces,
forallt (z:B[x:=t)M € X

5. Conclusion

In this paper we have shown that only a slight reformulatibthe standard cut-reductions is sufficient
to obtain a strongly normalising cut-elimination proceslfor classical logic. Prior to our work some
strongly normalising cut-elimination procedures havenbgeveloped, but all of them impose some quite
strong restrictions. In consequence, all of them violate @nmore criteria we put forward in the Intro-
duction. In particular, they restrict the normal forms teglale from a proof containing cuts, which we
feel is unfortunate as the normal forms play an importal® idinvestigating the computational content
of classical logic. Therefore we have improved the cut-iglation procedure of [9], mainly by removing
the restrictions imposed by the colour annotation on foaaul

It is important to notice that our cut-elimination proceelis non-deterministic. Consider Lafont’s
now famous example [15, Page 151].

71'1{ |—:B . |—:B }71'2

FB.C Weakg Cr B WeagLt
FB,B u
- ontrg

Rewritten in our system, this proof would be representechbytérmCut((a) M, (z)N) whereM and N
correspond tar; andm,, respectively, and whereis not free inM andz is not free in/V. According to

32 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

our cut-elimination procedure, we may reduce this termtteeeid/ or N, non-deterministically.

Another point to notice is that our substitution operatisraiglobal proof transformation. (A trans-
formation is said to béocal, if only neighbouring inference rules are rewritten polgsituplicating a
subderivation; otherwise the transformation is said tolbbaj.) Using results concerning explicit sub-
stitution calculi we can replace this global operation wittimpletely local proof transformations and
obtain again a strongly normalising cut-elimination pihaoe. This result allows us to prove strong
normalisation for a slight variant of Gentzen’s originat-elimination procedure for LK. The details are
given in [25].

While both cut-elimination procedurefT, -“ts) and (T, -24%;), are complete, in the sense that they
are effective procedures for eliminating all instances ofiarule in a sequent proofJ, %) can be
used to show strong normalisation for normalisation in retdeduction using the standard translations
between natural deduction proofs and sequent proofs asreses for example, in [27]. This result, too,
is given in [25].

Note also that our term annotation encodes precisely thetate of sequent proofs. In consequence,
we were able to adopt proof techniques from term rewritingpfoving the strong normalisation property
of cut-elimination. Pfenning used a similar term annotatior proving in LF the weak normalisation
property [20]. A different term annotation, called the syetirit lambda calculus, was introduced by Bar-
banera and Berardi [2]. Although in the (v)-fragment of classical logic there are simple translation
between symmetric lambda terms and our terms, we found thiaeduction rules are more general, in
that strong normalisation of the symmetric lambda calco@ursbe inferred from our strong normalisation
result, but not vice versa (using a simple translation [2Blpreover, for implication and multiplicative
connectives the symmetric lambda calculus seems veryveodnt, because it does not allow multiple
binders. Yet another term annotation, motivated by a stddyspecific computational interpretation of
classical logic, was introduced by Curien and Herbelin J@dependent from our work [26], and oth-
ers [20], they also proposed to use multiple binders foridgakith the implicational-right rule. Their
main finding is that if one consistently gives priority to oofethe clauses of<— (see Figure 4), then
one obtains either a call-by-name or call-by-value lamladeutus. Of course imposing a priority means
that the resulting reduction system is deterministic, fil@cut-elimination procedure presented for'tK
[9]. While the observation of Curien and Herbelin is intéireg our suspicion is that it does not extend
to our non-deterministic setting.

Most of the work concerning the computational interpretawf classical logic focuses on functional
programs enriched with control operators, such as oparéorcontinuation passing [4, 5, 8, 16]. We
should like to promote the view that the computational contd classical logic can also be seen as
non-deterministic computation. A similar view is taken #j.[However the consequences of this view
for programming remain to be investigated. We leave thisasedmantical study of our cut-elimination
procedure to future work.

Acknowledgements

We should like to thank Roy Dyckhoff and Martin Hyland for ithieelp and encouragement. The work
has greatly benefited from discussions with Harold Schelimd Jean-Baptiste Joinet concerning’t.K
The work was completed whilst Urban was at the University ambridge Computer Laboratory and
supported by a scholarship from the DAAD. Bierman was sugepdoy EPSRC Grant GR-M04716 and
Gonville & Caius College, Cambridge.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Efiation in Classical Logic 33

References

[1] F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press, 1998.

[2] F. Barbanera and S. Berardi. A Symmetric Lambda CalcfdusClassical” Program Extraction. Ifmheo-
retical Aspects of Computer Softwawlume 789 oLLNCS pages 495-515. Springer Verlag, 1994.

[3] H. Barendregtand S. Ghilezan. Theoretical Pearls: Ldariierms for Natural Deduction, Sequent Calculus
and Cut EliminationJournal of Functional Programmind 0(1):121-134, 2000.

[4] U. Berger and H. Schwichtenberg. Program Extractiomfi©lassical Proofs. lhogic and Computational
Complexity volume 960 oLLNCS pages 77-97, 1995.

[5] G. M. Bierman. A Computational Interpretation of th@-calculus. InMathematical Foundations of Com-
puter Sciencevolume 1450 of NCS pages 336—345. Springer-Verlag, 1998.

[6] E.T. Bittar. Strong Normalisation Proofs for Cut-Elingtion in Gentzen’s Sequent Calculi.llogic, Algebra
and Computer Scienceolume 46 oBanach-Center Publicationpages 179-225, 1999.

[7] E. A. Cichon, M. Rusinowitch, and S. Selhab. Cut-Elintina and Rewriting: Termination Proofs. Technical
Report, 1996.

[8] P.-L. Curien and H. Herbelin. The Duality of Computatiomn Conference on Functional Programming
pages 233-243. ACM Press, 2000.

[9] V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstite Logic: Linear Logic.Journal of Symbolic
Logic, 62(3):755-807, 1997.

[10] A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Thegryolume 67 ofTranslations of
Mathematical MonographsAmerican Mathematical Society, 1988.

[11] R. Dyckhoffand L. Pinto. Cut-Elimination and a Permtiga-Free Sequent Calculus for Intuitionistic Logic.
Studia Logica60(1):107-118, 1998.

[12] J. Gallier. Constructive Logics. Part I: A Tutorial ond®f Systems and Typektcalculi. Theoretical Com-
puter Sciencegl10(2):249-239, 1993.

[13] G. Gentzen. Untersuchungen uber das logische Semie&nd II. Mathematische Zeitschrjf89:176—-210,
405-431, 1935.

[14] J.-Y. Girard. Linear LogicTheoretical Computer Science0(1):1-102, 1987.

[15] J.-Y. Girard, Y. Lafont, and P. TaylorProofs and Typesvolume 7 ofCambridge Tracts in Theoretical
Computer ScienceCambridge University Press, 1989.

[16] T. Griffin. A Formulae-as-Types Notion of Control. Rrinciples of Programming Languaggsages 47-58.
ACM Press, 1990.

[17] H. Herbelin. AX-calculus Structure Isomorphic to Sequent Calculus SirectinComputer Science Logic
volume 933 ofLNCS pages 67—75. Springer Verlag, 1995.

[18] J.-B. Joinet, H. Schellinx, and L. Tortora de Falco. $id &R for Free-Style LK: Linear Decorations and
Simulation of Normalisation. Preprint No. 1067, Utrechtivémsity, Department of Mathematics, 1998.

[19] S. C. Kleenelntroduction to Metamathematicdlorth-Holland, 1952.

[20] F. Pfenning. Structural Cut-Elimination. Logic and Computer Sciencpages 156-166. IEEE Computer
Society, 1995.

34 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Etiation in Classical Logic

[21] G. Pottinger. Normalisation as Homomorphic Image of-Elimination. Annals of Mathematical Logjc
12:323-357, 1977.

[22] D. Prawitz. Ideas and Results of Proof Theory.Pioceedings of the 2nd Scandinavian Logic Sympagsium
volume 63 ofStudies in Logic and the Foundations of Mathemafieges 235-307. North-Holland, 1971.

[23] H. Schellinx. The Noble Art of Linear DecoratindPhD thesis, Institute for Logic, Language and Computa-
tion, University of Amsterdam, 1994. ILLC dissertationissr

[24] A. S. Troelstra and H. SchwichtenbeiBasic Proof Theoryvolume 43 ofCambridge Tracts in Theoretical
Computer Science&Cambridge University Press, 1996.

[25] C. Urban.Classical Logic and ComputatiofPhD thesis, Cambridge University, October 2000.

[26] C. Urbanand G. M. Bierman. Strong Normalisation of Elitnination in Classical Logic. ITyped Lambda
Calculi and Applicationsvolume 1581 of.NCS pages 365-380. Springer Verlag, 1999.

[27] J. Zucker. The Correspondance Between Cut-Elimimatizd NormalisationAnnals of Mathematical Logjc
7:1-112,1974.

